1
|
Koch KW. Molecular tuning of calcium dependent processes by neuronal calcium sensor proteins in the retina. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119491. [PMID: 37230154 DOI: 10.1016/j.bbamcr.2023.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination mediated by phototransduction, which is under control of the two secondary messengers cGMP and Ca2+. Feedback mechanisms enable photoreceptor cells to regain their responsiveness after light stimulation and involve neuronal Ca2+-sensor proteins, named GCAPs (guanylate cyclase-activating proteins) and recoverins. This review compares the diversity in Ca2+-related signaling mediated by GCAP and recoverin variants that exhibit differences in Ca2+-sensing, protein conformational changes, myristoyl switch mechanisms, diversity in divalent cation binding and dimer formation. In summary, both subclasses of neuronal Ca2+-sensor proteins contribute to a complex signaling network in rod and cone cells, which is perfectly suited to match the requirements for sensitive cell responses and maintaining this responsiveness in the presence of different background light intensities.
Collapse
Affiliation(s)
- Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
2
|
Avesani A, Bielefeld L, Weisschuh N, Marino V, Mazzola P, Stingl K, Haack TB, Koch KW, Dell’Orco D. Molecular Properties of Human Guanylate Cyclase-Activating Protein 3 (GCAP3) and Its Possible Association with Retinitis Pigmentosa. Int J Mol Sci 2022; 23:ijms23063240. [PMID: 35328663 PMCID: PMC8948881 DOI: 10.3390/ijms23063240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
The cone-specific guanylate cyclase-activating protein 3 (GCAP3), encoded by the GUCA1C gene, has been shown to regulate the enzymatic activity of membrane-bound guanylate cyclases (GCs) in bovine and teleost fish photoreceptors, to an extent comparable to that of the paralog protein GCAP1. To date, the molecular mechanisms underlying GCAP3 function remain largely unexplored. In this work, we report a thorough characterization of the biochemical and biophysical properties of human GCAP3, moreover, we identified an isolated case of retinitis pigmentosa, in which a patient carried the c.301G>C mutation in GUCA1C, resulting in the substitution of a highly conserved aspartate residue by a histidine (p.(D101H)). We found that myristoylated GCAP3 can activate GC1 with a similar Ca2+-dependent profile, but significantly less efficiently than GCAP1. The non-myristoylated form did not induce appreciable regulation of GC1, nor did the p.D101H variant. GCAP3 forms dimers under physiological conditions, but at odds with its paralogs, it tends to form temperature-dependent aggregates driven by hydrophobic interactions. The peculiar properties of GCAP3 were confirmed by 2 ms molecular dynamics simulations, which for the p.D101H variant highlighted a very high structural flexibility and a clear tendency to lose the binding of a Ca2+ ion to EF3. Overall, our data show that GCAP3 has unusual biochemical properties, which make the protein significantly different from GCAP1 and GCAP2. Moreover, the newly identified point mutation resulting in a substantially unfunctional protein could trigger retinitis pigmentosa through a currently unknown mechanism.
Collapse
Affiliation(s)
- Anna Avesani
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Laura Bielefeld
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
- Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Daniele Dell’Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
- Correspondence: ; Tel.: +39-045-802-7637
| |
Collapse
|
3
|
Cudia D, Roseman GP, Assafa TE, Shahu MK, Scholten A, Menke-Sell SK, Yamada H, Koch KW, Milhauser G, Ames JB. NMR and EPR-DEER Structure of a Dimeric Guanylate Cyclase Activator Protein-5 from Zebrafish Photoreceptors. Biochemistry 2021; 60:3058-3070. [PMID: 34609135 DOI: 10.1021/acs.biochem.1c00612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinal guanylate cyclases (RetGCs) are regulated by a family of guanylate cyclase-activating proteins (called GCAP1-7). GCAPs form dimers that bind to Ca2+ and confer Ca2+ sensitive activation of RetGC during visual phototransduction. The GCAP5 homologue from zebrafish contains two nonconserved cysteine residues (Cys15 and Cys17) that bind to ferrous ion, which stabilizes GCAP5 dimerization and diminishes its ability to activate RetGC. Here, we present NMR and EPR-DEER structural analysis of a GCAP5 dimer in the Mg2+-bound, Ca2+-free, Fe2+-free activator state. The NMR-derived structure of GCAP5 is similar to the crystal structure of Ca2+-bound GCAP1 (root-mean-square deviation of 2.4 Å), except that the N-terminal helix of GCAP5 is extended by two residues, which allows the sulfhydryl groups of Cys15 and Cys17 to become more solvent exposed in GCAP5 to facilitate Fe2+ binding. Nitroxide spin-label probes were covalently attached to particular cysteine residues engineered in GCAP5: C15, C17, T26C, C28, N56C, C69, C105, N139C, E152C, and S159C. The intermolecular distance of each spin-label probe in dimeric GCAP5 (measured by EPR-DEER) defined restraints for calculating the dimer structure by molecular docking. The GCAP5 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H18, Y21, M25, F72, V76, and W93, as well as an intermolecular salt bridge between R22 and D71. The structural model of the GCAP5 dimer was validated by mutations (H18E/Y21E, H18A/Y21A, R22D, R22A, M25E, D71R, F72E, and V76E) at the dimer interface that disrupt dimerization of GCAP5 and affect the activation of RetGC. We propose that GCAP5 dimerization may play a role in the Fe2+-dependent regulation of cyclase activity in zebrafish photoreceptors.
Collapse
Affiliation(s)
- Diana Cudia
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Graham P Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Tufa E Assafa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Manisha Kumari Shahu
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Alexander Scholten
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Sarah-Karina Menke-Sell
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Hiroaki Yamada
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Karl-W Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Glenn Milhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - James B Ames
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
4
|
Zang J, Neuhauss SCF. Biochemistry and physiology of zebrafish photoreceptors. Pflugers Arch 2021; 473:1569-1585. [PMID: 33598728 PMCID: PMC8370914 DOI: 10.1007/s00424-021-02528-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.
Collapse
Affiliation(s)
- Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland.
| |
Collapse
|
5
|
Ahrens N, Elbers D, Greb H, Janssen-Bienhold U, Koch KW. Interaction of G protein-coupled receptor kinases and recoverin isoforms is determined by localization in zebrafish photoreceptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118946. [PMID: 33385424 DOI: 10.1016/j.bbamcr.2020.118946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The zebrafish retina expresses four recoverin genes (rcv1a, rcv1b, rcv2a and rcv2b) and four opsin kinase genes (grk1a, grk1b, grk7a and grk7b) coding for recoverin and G protein-coupled receptor kinase (opsin kinase) paralogs, respectively. Both protein groups are suggested to form regulatory complexes in rod and cone outer segments, but at present, we lack information about co-localization of recoverin and opsin kinases in zebrafish retinae and which protein-protein interacting pairs form. We analyzed the distribution and co-localization of recoverin and opsin kinase expression in the zebrafish retina. For this purpose, we used custom-tailored monospecific antibodies revealing that the amount of recoverin paralogs in a zebrafish retina can differ by more than one order of magnitude with the highest amount for recoverin 1a and 2b. Further, immunohistochemical labelling showed presence of recoverin 1a in all rod cell compartments, but it only co-localized with opsin kinase 1a in rod outer segments. In contrast, recoverin 2b was only detected in double cones and co-localized with opsin kinases 1b, 7a and 7b. Further, we investigated the interaction between recoverin and opsin kinase variants by surface plasmon resonance spectroscopy indicating interaction of recoverin 1a and recoverin 2b with all opsin kinases. However, binding kinetics for recoverin 1a differed from those observed with recoverin 2b that showed slower association and dissociation processes. Our results indicate diverse recoverin and opsin kinase properties due to differential expression and interaction profiles.
Collapse
Affiliation(s)
- Nicole Ahrens
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Dana Elbers
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Helena Greb
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Department of Neuroscience, Division of Neurobiology, University of Oldenburg, 26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
6
|
Abbas S, Koch KW. Quantitative Determination of Ca 2+-binding to Ca 2+-sensor Proteins by Isothermal Titration Calorimetry. Bio Protoc 2020; 10:e3580. [PMID: 33659550 DOI: 10.21769/bioprotoc.3580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/29/2023] Open
Abstract
Diverse and complex molecular recognitions are central elements of signal transduction cascades. The strength and nature of these interaction modes can be determined by different experimental approaches. Among those, Isothermal titration calorimetry (ITC) offers certain advantages by providing binding constants and thermodynamic parameters from titration series without a need to label or immobilize one or more interaction partners. Furthermore, second messenger homeostasis involving Ca2+-ions requires in particular knowledge about stoichiometries and affinities of Ca2+-binding to Ca2+-sensor proteins or Ca2+-dependent regulators, which can be obtained by employing ITC. We used ITC to measure these parameters for a set of neuronal Ca2+-sensor proteins operating in photoreceptor cells. Here, we present a step wise protocol to (a) measure Ca2+ interaction with the Ca2+-sensor guanylate cyclase-activating protein 1, (b) to design an ITC experiment and prepare samples, (c) to remove Ca2+ nearly completely from Ca2+ binding proteins without using a chelating agent like EGTA.
Collapse
Affiliation(s)
- Seher Abbas
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Oldenburg D-26129, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Oldenburg D-26129, Germany
| |
Collapse
|
7
|
Mapping Calcium-Sensitive Regions in GCAPs by Site-Specific Fluorescence Labelling. Methods Mol Biol 2019. [PMID: 30710298 DOI: 10.1007/978-1-4939-9030-6_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Signal transduction processes that are under control of changes in cytoplasmic Ca2+-concentration involve Ca2+-sensor proteins, which often undergo pronounced conformational transitions triggered by Ca2+. Consequences of conformational changes can be the structural rearrangement of single amino acids, exposition of small patches of several amino acids, or the movement of whole protein regions or domains. Furthermore, these conformational changes can lead to the exposure or movement of posttranslationally attached acyl groups. These processes could then control the function of target proteins, for example, by Ca2+-dependent protein-protein interaction. Fluorescence spectroscopy allows for mapping these Ca2+-sensitive regions but needs site-specific fluorescence labelling. We describe the application of a new group of diaminoterephthalate-derived fluorescence probes targeting either cysteines in guanylate cyclase-activating proteins, named GCAPs, or azide moieties in covalently attached acyl groups. By monitoring Ca2+-dependent changes in fluorescence emission, we identify Ca2+-sensitive protein regions in GCAPs and correlate conformational changes to protein function.
Collapse
|
8
|
Elbers D, Scholten A, Koch KW. Zebrafish Recoverin Isoforms Display Differences in Calcium Switch Mechanisms. Front Mol Neurosci 2018; 11:355. [PMID: 30323742 PMCID: PMC6172410 DOI: 10.3389/fnmol.2018.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Primary steps in vertebrate vision occur in rod and cone cells of the retina and require precise molecular switches in excitation, recovery, and adaptation. In particular, recovery of the photoresponse and light adaptation processes are under control of neuronal Ca2+ sensor (NCS) proteins. Among them, the Ca2+ sensor recoverin undergoes a pronounced Ca2+-dependent conformational change, a prototypical so-called Ca2+-myristoyl switch, which allows selective targeting of G protein-coupled receptor kinase. Zebrafish (Danio rerio) has gained attention as a model organism in vision research. It expresses four different recoverin isoforms (zRec1a, zRec1b, zRec2a, and zRec2b) that are orthologs to the one known mammalian variant. The expression pattern of the four isoforms cover both rod and cone cells, but the differential distribution in cones points to versatile functions of recoverin in these cell types. Initial functional studies on zebrafish larvae indicate different Ca2+-sensitive working modes for zebrafish recoverins, but experimental evidence is lacking so far. The aims of the present study are (1) to measure specific Ca2+-sensing properties of the different recoverin isoforms, (2) to ask whether switch mechanisms triggered by Ca2+ resemble that one observed with mammalian recoverin, and (3) to investigate a possible impact of an attached myristoyl moiety. For addressing these questions, we employ fluorescence spectroscopy, surface plasmon resonance (SPR), dynamic light scattering, and equilibrium centrifugation. Exposure of hydrophobic amino acids, due to the myristoyl switch, differed among isoforms and depended also on the myristoylation state of the particular recoverin. Ca2+-induced rearrangement of the protein-water shell was for all variants less pronounced than for the bovine ortholog indicating either a modified Ca2+-myristoyl switch or no switch. Our results have implications for a step-by-step response of recoverin isoforms to changing intracellular Ca2+ during illumination.
Collapse
Affiliation(s)
- Dana Elbers
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Alexander Scholten
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Lim S, Scholten A, Manchala G, Cudia D, Zlomke-Sell SK, Koch KW, Ames JB. Structural Characterization of Ferrous Ion Binding to Retinal Guanylate Cyclase Activator Protein 5 from Zebrafish Photoreceptors. Biochemistry 2017; 56:6652-6661. [PMID: 29172459 DOI: 10.1021/acs.biochem.7b01029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory guanylate cyclases (zGCs) in zebrafish photoreceptors are regulated by a family of guanylate cyclase activator proteins (called GCAP1-7). GCAP5 contains two nonconserved cysteine residues (Cys15 and Cys17) that could in principle bind to biologically active transition state metal ions (Zn2+ and Fe2+). Here, we present nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) binding analyses that demonstrate the binding of one Fe2+ ion to two GCAP5 molecules (in a 1:2 complex) with a dissociation constant in the nanomolar range. At least one other Fe2+ binds to GCAP5 with micromolar affinity that likely represents electrostatic Fe2+ binding to the EF-hand loops. The GCAP5 double mutant (C15A/C17A) lacks nanomolar binding to Fe2+, suggesting that Fe2+ at this site is ligated directly by thiolate groups of Cys15 and Cys17. Size exclusion chromatography analysis indicates that GCAP5 forms a dimer in the Fe2+-free and Fe2+-bound states. NMR structural analysis and molecular docking studies suggest that a single Fe2+ ion is chelated by thiol side chains from Cys15 and Cys17 in the GCAP5 dimer, forming an [Fe(SCys)4] complex like that observed previously in two-iron superoxide reductases. Binding of Fe2+ to GCAP5 weakens its ability to activate photoreceptor human GC-E by decreasing GC activity >10-fold. Our results indicate a strong Fe2+-induced inhibition of GC by GCAP5 and suggest that GCAP5 may serve as a redox sensor in visual phototransduction.
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Alexander Scholten
- Department of Neuroscience, University of Oldenburg , 26129 Oldenburg, Germany
| | - Grace Manchala
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Diana Cudia
- Department of Chemistry, University of California , Davis, California 95616, United States
| | | | - Karl-W Koch
- Department of Neuroscience, University of Oldenburg , 26129 Oldenburg, Germany
| | - James B Ames
- Department of Chemistry, University of California , Davis, California 95616, United States
| |
Collapse
|
10
|
Marino V, Borsatto A, Vocke F, Koch KW, Dell'Orco D. CaF 2 nanoparticles as surface carriers of GCAP1, a calcium sensor protein involved in retinal dystrophies. NANOSCALE 2017; 9:11773-11784. [PMID: 28785759 DOI: 10.1039/c7nr03288a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CaF2-based nanoparticles (NP) are promising biocompatible tools for nanomedicine applications. The structure of the NP crystal lattice allows for specific interactions with Ca2+-binding proteins through their EF-hand cation binding motifs. Here we investigated the interaction of 23 nm citrate-coated CaF2 NP with a calcium sensor protein GCAP1 that is normally expressed in photoreceptor cells and involved in the regulation of the early steps of vision. Protein-NP interactions were thoroughly investigated for the wild type (WT) GCAP1 as well as for a variant carrying the Asp 100 to Glu mutation (D100E), which prevents the binding of Ca2+ to the highest affinity site and is linked to cone dystrophy. Circular dichroism and fluorescence spectroscopy showed that protein structure and Ca2+-sensing capability are conserved for both variants upon interaction with the NP surface, although the interaction mode depends on the specific occupation of Ca2+-binding sites. NP binding stabilizes the structure of the bound GCAP1 and occurs with nanomolar affinity, as probed by isothermal titration calorimetry. Surface plasmon resonance revealed a fully reversible binding compatible with physiologically relevant kinetics of protein release whereas biochemical assays indicated a residual capability for NP-dissociated GCAP1 to regulate the target retinal guanylate cyclase. Our study constitutes a proof of concept that CaF2 NP could be optimized to serve as biologically compatible carriers of high amounts of functional GCAP1 in photoreceptors affected by retinal dystrophies.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Alberto Borsatto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Farina Vocke
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| |
Collapse
|
11
|
Dell’Orco D, Koch KW. Fingerprints of Calcium-Binding Protein Conformational Dynamics Monitored by Surface Plasmon Resonance. ACS Chem Biol 2016; 11:2390-7. [PMID: 27380526 DOI: 10.1021/acschembio.6b00470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface plasmon resonance (SPR) spectroscopy is widely used to probe interactions involving biological macromolecules by detecting changes in the refractive index in a metal/dielectric interface following the dynamic formation of a molecular complex. In past years, SPR-based experimental approaches were developed to monitor conformational changes induced by the binding of small analytes to proteins coupled to the surface of commercially available sensor chips. A significant contribution to our understanding of the phenomenon came from the study of several Ca(2+)-sensor proteins operating in diverse cellular scenarios, in which the conformational switch is triggered by specific Ca(2+) signals. Structural and physicochemical analyses demonstrated that the SPR signal not only depends on the change in protein size upon Ca(2+)-binding but likely originates from variations in the hydration shell structure. The resulting changes in the dielectric properties of water or of the protein-water interface eventually reflect different crowding conditions on the SPR sensor chip, which mimic the cellular environment. SPR could hence be used to monitor conformational transitions in proteins, especially when a significant variation in the hydrophobicity of the solvent-exposed protein surface occurs, thus leading to changes in the dielectric milieu of the whole sensor chip surface. We review recent work in which SPR has been successfully employed to provide a fingerprint of the conformational change dynamics in proteins under native and altered conditions, which include post-translational modifications, copresence of competing analytes, and point mutations of single amino acids associated with genetic diseases.
Collapse
Affiliation(s)
- Daniele Dell’Orco
- Department
of Neurosciences, Biomedicine and Movement Sciences, Section of Biological
Chemistry, University of Verona, I-37134 Verona, Italy
| | - Karl-Wilhelm Koch
- Department
of Neurosciences, Biochemistry Group, University of Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
12
|
Sulmann S, Wallisch M, Scholten A, Christoffers J, Koch KW. Mapping Calcium-Sensitive Regions in the Neuronal Calcium Sensor GCAP2 by Site-Specific Fluorescence Labeling. Biochemistry 2016; 55:2567-77. [DOI: 10.1021/acs.biochem.6b00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Sulmann
- Biochemistry
Group, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Melanie Wallisch
- Institut
für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Alexander Scholten
- Biochemistry
Group, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut
für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Biochemistry
Group, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
13
|
Koch KW, Dell'Orco D. Protein and Signaling Networks in Vertebrate Photoreceptor Cells. Front Mol Neurosci 2015; 8:67. [PMID: 26635520 PMCID: PMC4646965 DOI: 10.3389/fnmol.2015.00067] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/26/2015] [Indexed: 01/10/2023] Open
Abstract
Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cyclic guanosine monophosphate (cGMP) and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase (GRK1) under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases (GCs) and is regulated by specific neuronal Ca2+-sensor proteins called guanylate cyclase-activating proteins (GCAPs). At least one GC (ROS-GC1) was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated (CNG) channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments.
Collapse
Affiliation(s)
- Karl-Wilhelm Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurological, Biomedical and Movement Sciences, Section of Biological Chemistry and Center for BioMedical Computing (CBMC), University of Verona Verona, Italy
| |
Collapse
|
14
|
International Meeting Molecular Neurodegeneration: News and Views in Molecular Neuroscience in Health and Disease. Delmenhorst, Germany, July 20-22, 2015. J Mol Neurosci 2015; 57:153-9. [PMID: 26319265 DOI: 10.1007/s12031-015-0637-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|