1
|
Quiobe SP, Kalirad A, Röseler W, Witte H, Wang Y, Rödelsperger C, Sommer RJ. EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance of a predatory trait. SCIENCE ADVANCES 2025; 11:eadu0875. [PMID: 40073139 PMCID: PMC11900880 DOI: 10.1126/sciadv.adu0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Environmental influences on traits and associated transgenerational epigenetic inheritance have widespread implications but remain controversial and underlying mechanisms poorly understood. We introduce long-term environmental induction experiments on alternative diets in Pristionchus pacificus, a nematode exhibiting mouth-form plasticity including predation, by propagating 110 isogenic lines for 101 generations with associated food-reversal experiments. We found dietary induction and subsequent transgenerational inheritance of the predatory morph and identified a role of ubiquitin ligase EBAX-1/ZSWIM8 in this process. Ppa-ebax-1 mutants are transgenerational inheritance defective, and Ppa-EBAX-1 destabilizes the clustered microRNA family miR-2235a/miR-35. Deletions of a cluster of 44 identical miR-2235a copies resulted in precocious and extended transgenerational inheritance of the predatory morph. These findings indicate that EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance, suggesting a role for target-directed miRNA degradation.
Collapse
Affiliation(s)
- Shiela Pearl Quiobe
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Yinan Wang
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| |
Collapse
|
2
|
Kotagama K, McJunkin K. Recent advances in understanding microRNA function and regulation in C. elegans. Semin Cell Dev Biol 2024; 154:4-13. [PMID: 37055330 PMCID: PMC10564972 DOI: 10.1016/j.semcdb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
MicroRNAs (miRNAs) were first discovered in C. elegans as essential post-transcriptional regulators of gene expression. Since their initial discovery, miRNAs have been implicated in numerous areas of physiology and disease in all animals examined. In recent years, the C. elegans model continues to contribute important advances to all areas of miRNA research. Technological advances in tissue-specific miRNA profiling and genome editing have driven breakthroughs in understanding biological functions of miRNAs, mechanism of miRNA action, and regulation of miRNAs. In this review, we highlight these new C. elegans findings from the past five to seven years.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20892, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Verbeeren J, Teixeira J, Garcia SMDA. The Muscleblind-like protein MBL-1 regulates microRNA expression in Caenorhabditis elegans through an evolutionarily conserved autoregulatory mechanism. PLoS Genet 2023; 19:e1011109. [PMID: 38134228 PMCID: PMC10773944 DOI: 10.1371/journal.pgen.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/08/2024] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
4
|
Donnelly BF, Yang B, Grimme AL, Vieux KF, Liu CY, Zhou L, McJunkin K. The developmentally timed decay of an essential microRNA family is seed-sequence dependent. Cell Rep 2022; 40:111154. [PMID: 35947946 PMCID: PMC9413084 DOI: 10.1016/j.celrep.2022.111154] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/04/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) abundance is tightly controlled by regulation of biogenesis and decay. Here, we show that the mir-35 miRNA family undergoes selective decay at the transition from embryonic to larval development in C. elegans. The seed sequence of the miRNA is necessary and largely sufficient for this regulation. Sequences outside the seed (3' end) regulate mir-35 abundance in the embryo but are not necessary for sharp decay at the transition to larval development. Enzymatic modifications of the miRNA 3' end are neither prevalent nor correlated with changes in decay, suggesting that miRNA 3' end display is not a core feature of this mechanism and further supporting a seed-driven decay model. Our findings demonstrate that seed-sequence-specific decay can selectively and coherently regulate all redundant members of a miRNA seed family, a class of mechanism that has great biological and therapeutic potential for dynamic regulation of a miRNA family's target repertoire.
Collapse
Affiliation(s)
- Bridget F Donnelly
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Karl-Frédéric Vieux
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Chen-Yu Liu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Evans B, Furlong HA, de Lencastre A. Parkinson's disease and microRNAs - Lessons from model organisms and human studies. Exp Gerontol 2021; 155:111585. [PMID: 34634413 PMCID: PMC8596463 DOI: 10.1016/j.exger.2021.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a progressive, age-associated neurodegenerative disorder that affects an estimated 10 million people worldwide. PD is characterized by proteinaceous, cytoplasmic inclusions containing α-synuclein, called Lewy Bodies, which form in dopaminergic neurons in an age-dependent manner, and are associated with the emergence of characteristic PD symptoms such as resting tremor, rigidity, slow movements and postural instability. Although considerable progress has been made in recent years in identifying genetic and environmental factors that are associated with PD, early diagnosis and therapeutic options remain severely lacking. Recently, microRNAs (miRNAs) have emerged as novel therapeutic targets in various diseases, such as cancer and neurodegenerative diseases. MiRNAs have been shown to play roles in various aging and neurodegenerative disease models across phyla. More recently, studies have identified specific roles for miRNAs and their targets in the pathogenesis and progression of PD in several model organisms. Here, we discuss the evolving field of miRNAs, their association with PD, and the outlook for the future.
Collapse
Affiliation(s)
- Brian Evans
- Department of Biological Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Howard A Furlong
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT 06473, USA
| | | |
Collapse
|
6
|
Yang B, Schwartz M, McJunkin K. In vivo CRISPR screening for phenotypic targets of the mir-35-42 family in C. elegans. Genes Dev 2020; 34:1227-1238. [PMID: 32820039 PMCID: PMC7462058 DOI: 10.1101/gad.339333.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
In this study, Yang et al. devised a novel strategy to test the phenotypic impact of individual microRNA–target interactions by disrupting each predicted miRNA-binding site by CRISPR–Cas9 genome editing in C. elegans. They developed a multiplexed negative selection screening approach, in which edited loci are deep sequenced, and candidate sites are prioritized based on apparent selection pressure against mutations that disrupt miRNA binding. Identifying miRNA target genes is difficult, and delineating which targets are the most biologically important is even more difficult. We devised a novel strategy to test the phenotypic impact of individual microRNA–target interactions by disrupting each predicted miRNA-binding site by CRISPR–Cas9 genome editing in C. elegans. We developed a multiplexed negative selection screening approach in which edited loci are deep sequenced, and candidate sites are prioritized based on apparent selection pressure against mutations that disrupt miRNA binding. Importantly, our screen was conducted in vivo on mutant animals, allowing us to interrogate organism-level phenotypes. We used this approach to screen for phenotypic targets of the essential mir-35-42 family. By generating 1130 novel 3′UTR alleles across all predicted targets, we identified egl-1 as a phenotypic target whose derepression partially phenocopies the mir-35-42 mutant phenotype by inducing embryonic lethality and low fecundity. These phenotypes can be rescued by compensatory CRISPR mutations that retarget mir-35 to the mutant egl-1 3′UTR. This study demonstrates that the application of in vivo whole organismal CRISPR screening has great potential to accelerate the discovery of phenotypic negative regulatory elements in the noncoding genome.
Collapse
Affiliation(s)
- Bing Yang
- National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20815, USA
| | - Matthew Schwartz
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Katherine McJunkin
- National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20815, USA
| |
Collapse
|
7
|
Yang B, McJunkin K. CRISPR screening strategies for microRNA target identification. FEBS J 2020; 287:2914-2922. [DOI: 10.1111/febs.15218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Bing Yang
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program National Institutes of Health Bethesda MD USA
| | - Katherine McJunkin
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program National Institutes of Health Bethesda MD USA
| |
Collapse
|
8
|
Nehammer C, Ejlerskov P, Gopal S, Handley A, Ng L, Moreira P, Lee H, Issazadeh-Navikas S, Rubinsztein DC, Pocock R. Interferon-β-induced miR-1 alleviates toxic protein accumulation by controlling autophagy. eLife 2019; 8:49930. [PMID: 31799933 PMCID: PMC6914338 DOI: 10.7554/elife.49930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Appropriate regulation of autophagy is crucial for clearing toxic proteins from cells. Defective autophagy results in accumulation of toxic protein aggregates that detrimentally affect cellular function and organismal survival. Here, we report that the microRNA miR-1 regulates the autophagy pathway through conserved targeting of the orthologous Tre-2/Bub2/CDC16 (TBC) Rab GTPase-activating proteins TBC-7 and TBC1D15 in Caenorhabditis elegans and mammalian cells, respectively. Loss of miR-1 causes TBC-7/TBC1D15 overexpression, leading to a block on autophagy. Further, we found that the cytokine interferon-β (IFN-β) can induce miR-1 expression in mammalian cells, reducing TBC1D15 levels, and safeguarding against proteotoxic challenges. Therefore, this work provides a potential therapeutic strategy for protein aggregation disorders.
Collapse
Affiliation(s)
- Camilla Nehammer
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Ejlerskov
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Leelee Ng
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Pedro Moreira
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Huikyong Lee
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Shohreh Issazadeh-Navikas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David C Rubinsztein
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom.,UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
mir-234 controls neuropeptide release at the Caenorhabditis elegans neuromuscular junction. Mol Cell Neurosci 2019; 98:70-81. [PMID: 31200102 DOI: 10.1016/j.mcn.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/16/2023] Open
Abstract
miR-137 is a highly conserved microRNA (miRNA) that is associated with the control of brain function and the etiology of psychiatric disorders including schizophrenia and bipolar disorder. The Caenorhabditis elegans genome encodes a single miR-137 ortholog called mir-234, the function of which is unknown. Here we show that mir-234 is expressed in a subset of sensory, motor and interneurons in C. elegans. Using a mir-234 deletion strain, we systematically examined the development and function of these neurons in addition to global C. elegans behaviors. We were however unable to detect phenotypes associated with loss of mir-234, possibly due to genetic redundancy. To circumvent this issue, we overexpressed mir-234 in mir-234-expressing neurons to uncover possible phenotypes. We found that mir-234-overexpression endows resistance to the acetylcholinesterase inhibitor aldicarb, suggesting modification of neuromuscular junction (NMJ) function. Further analysis revealed that mir-234 controls neuropeptide levels, therefore positing a cause of NMJ dysfunction. Together, our data suggest that mir-234 functions to control the expression of target genes that are important for neuropeptide maturation and/or transport in C. elegans. SIGNIFICANCE STATEMENT: The miR-137 family of miRNAs is linked to the control of brain function in humans. Defective regulation of miR-137 is associated with psychiatric disorders that include schizophrenia and bipolar disorder. Previous studies have revealed that miR-137 is required for the development of dendrites and for controlling the release of fast-acting neurotransmitters. Here, we analyzed the function a miR-137 family member (called mir-234) in the nematode animal model using anatomical, behavioral, electrophysiological and neuropeptide analysis. We reveal for the first time that mir-234/miR-137 is required for the release of slow-acting neuropeptides, which may also be of relevance for controlling human brain function.
Collapse
|
10
|
The mir-35 Family Links Maternal Germline Sex to Embryonic Viability in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2019; 9:901-909. [PMID: 30679246 PMCID: PMC6404603 DOI: 10.1534/g3.118.200863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The germline sex determination pathway in C. elegans determines whether germ cells develop as oocytes or sperm, with no previously known effect on viability. The mir-35 family of microRNAs are expressed in the C. elegans germline and embryo and are essential for both viability and normal hermaphroditic sex determination, preventing aberrant male gene expression in XX hermaphrodite embryos. Here we show that combining feminizing mutations with partial loss of function of the mir-35 family results in enhanced penetrance embryonic lethality that preferentially kills XO animals. This lethal phenotype is due to altered signaling through the germline sex determination pathway, and maternal germline feminization is sufficient to induce enhanced lethality. These findings reveal a surprising pleiotropy of sperm-fate promoting pathways on organismal viability. Overall, our results demonstrate an unexpectedly strong link between sex determination and embryonic viability, and suggest that in wild type animals, mir-35 family members buffer against misregulation of pathways outside the sex determination program, allowing for clean sex reversal rather than deleterious effects of perturbing sex determination genes.
Collapse
|
11
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
12
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
13
|
mir-355 Functions as An Important Link between p38 MAPK Signaling and Insulin Signaling in the Regulation of Innate Immunity. Sci Rep 2017; 7:14560. [PMID: 29109437 PMCID: PMC5673931 DOI: 10.1038/s41598-017-15271-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
We performed a systematic identification of microRNAs (miRNAs) involved in the control of innate immunity. We identified 7 novel miRNA mutants with altered survival, colony forming in the body, and expression pattern of putative antimicrobial genes after Pseudomonas aeruginosa infection. Loss-of-function mutation of mir-45, mir-75, mir-246, mir-256, or mir-355 induced resistance to P. aeruginosa infection, whereas loss-of-function mutation of mir-63 or mir-360 induced susceptibility to P. aeruginosa infection. DAF-2 in the insulin signaling pathway acted as a target for intestinal mir-355 to regulate innate immunity. mir-355 functioned as an important link between p38 MAPK signaling pathway and insulin signaling pathway in the regulation of innate immunity. Our results provide an important molecular basis for further elucidation of the functions of various miRNAs in the regulation of innate immunity.
Collapse
|
14
|
McJunkin K, Ambros V. A microRNA family exerts maternal control on sex determination in C. elegans. Genes Dev 2017; 31:422-437. [PMID: 28279983 PMCID: PMC5358761 DOI: 10.1101/gad.290155.116] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/06/2017] [Indexed: 12/29/2022]
Abstract
Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 (sup-26) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 (nhl-2), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions.
Collapse
Affiliation(s)
- Katherine McJunkin
- Program in Molecular Medicine, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Victor Ambros
- Program in Molecular Medicine, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
15
|
Sherrard R, Luehr S, Holzkamp H, McJunkin K, Memar N, Conradt B. miRNAs cooperate in apoptosis regulation during C. elegans development. Genes Dev 2017; 31:209-222. [PMID: 28167500 PMCID: PMC5322734 DOI: 10.1101/gad.288555.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022]
Abstract
Sherrard et al. demonstrate that, during embryogenesis, miR-35 and miR-58 bantam family miRNAs cooperate to prevent the precocious death of mothers of cells programmed to die by repressing the gene egl-1, which encodes a proapoptotic BH3-only protein. Programmed cell death occurs in a highly reproducible manner during Caenorhabditis elegans development. We demonstrate that, during embryogenesis, miR-35 and miR-58 bantam family microRNAs (miRNAs) cooperate to prevent the precocious death of mothers of cells programmed to die by repressing the gene egl-1, which encodes a proapoptotic BH3-only protein. In addition, we present evidence that repression of egl-1 is dependent on binding sites for miR-35 and miR-58 family miRNAs within the egl-1 3′ untranslated region (UTR), which affect both mRNA copy number and translation. Furthermore, using single-molecule RNA fluorescent in situ hybridization (smRNA FISH), we show that egl-1 is transcribed in the mother of a cell programmed to die and that miR-35 and miR-58 family miRNAs prevent this mother from dying by keeping the copy number of egl-1 mRNA below a critical threshold. Finally, miR-35 and miR-58 family miRNAs can also dampen the transcriptional boost of egl-1 that occurs specifically in a daughter cell that is programmed to die. We propose that miRNAs compensate for lineage-specific differences in egl-1 transcriptional activation, thus ensuring that EGL-1 activity reaches the threshold necessary to trigger death only in daughter cells that are programmed to die.
Collapse
Affiliation(s)
- Ryan Sherrard
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Sebastian Luehr
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Heinke Holzkamp
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Katherine McJunkin
- Program in Molecular Medicine, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01606, USA
| | - Nadin Memar
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Barbara Conradt
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| |
Collapse
|