1
|
Su Y, Yu G, Li D, Lu Y, Ren C, Xu Y, Yang Y, Zhang K, Ma T, Li Z. Identification of mitophagy-related biomarkers in human osteoporosis based on a machine learning model. Front Physiol 2024; 14:1289976. [PMID: 38260098 PMCID: PMC10800828 DOI: 10.3389/fphys.2023.1289976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Osteoporosis (OP) is a chronic bone metabolic disease and a serious global public health problem. Several studies have shown that mitophagy plays an important role in bone metabolism disorders; however, its role in osteoporosis remains unclear. Methods: The Gene Expression Omnibus (GEO) database was used to download GSE56815, a dataset containing low and high BMD, and differentially expressed genes (DEGs) were analyzed. Mitochondrial autophagy-related genes (MRG) were downloaded from the existing literature, and highly correlated MRG were screened by bioinformatics methods. The results from both were taken as differentially expressed (DE)-MRG, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Protein-protein interaction network (PPI) analysis, support vector machine recursive feature elimination (SVM-RFE), and Boruta method were used to identify DE-MRG. A receiver operating characteristic curve (ROC) was drawn, a nomogram model was constructed to determine its diagnostic value, and a variety of bioinformatics methods were used to verify the relationship between these related genes and OP, including GO and KEGG analysis, IP pathway analysis, and single-sample Gene Set Enrichment Analysis (ssGSEA). In addition, a hub gene-related network was constructed and potential drugs for the treatment of OP were predicted. Finally, the specific genes were verified by real-time quantitative polymerase chain reaction (RT-qPCR). Results: In total, 548 DEGs were identified in the GSE56815 dataset. The weighted gene co-expression network analysis(WGCNA) identified 2291 key module genes, and 91 DE-MRG were obtained by combining the two. The PPI network revealed that the target gene for AKT1 interacted with most proteins. Three MRG (NELFB, SFSWAP, and MAP3K3) were identified as hub genes, with areas under the curve (AUC) 0.75, 0.71, and 0.70, respectively. The nomogram model has high diagnostic value. GO and KEGG analysis showed that ribosome pathway and cellular ribosome pathway may be the pathways regulating the progression of OP. IPA showed that MAP3K3 was associated with six pathways, including GNRH Signaling. The ssGSEA indicated that NELFB was highly correlated with iDCs (cor = -0.390, p < 0.001). The regulatory network showed a complex relationship between miRNA, transcription factor(TF) and hub genes. In addition, 4 drugs such as vinclozolin were predicted to be potential therapeutic drugs for OP. In RT-qPCR verification, the hub gene NELFB was consistent with the results of bioinformatics analysis. Conclusion: Mitophagy plays an important role in the development of osteoporosis. The identification of three mitophagy-related genes may contribute to the early diagnosis, mechanism research and treatment of OP.
Collapse
Affiliation(s)
- Yu Su
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Gangying Yu
- Department of International Ward (Orthopedic), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongchen Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yao Lu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Cheng Ren
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yibo Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yanling Yang
- Basic Medical College of Yan’an University, Yan’an, China
| | - Kun Zhang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Teng Ma
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Kaewlert W, Sakonsinsiri C, Lert-itthiporn W, Ungarreevittaya P, Pairojkul C, Pinlaor S, Murata M, Thanan R. Overexpression of Insulin Receptor Substrate 1 (IRS1) Relates to Poor Prognosis and Promotes Proliferation, Stemness, Migration, and Oxidative Stress Resistance in Cholangiocarcinoma. Int J Mol Sci 2023; 24:ijms24032428. [PMID: 36768755 PMCID: PMC9916965 DOI: 10.3390/ijms24032428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Cholangiocarcinoma (CCA) is one of the oxidative stress-driven carcinogenesis through chronic inflammation. Insulin receptor substrate 1 (IRS1), an adaptor protein of insulin signaling pathways, is associated with the progression of many inflammation-related cancers. This study hypothesized that oxidative stress regulates IRS1 expression and that up-regulation of IRS1 induces CCA progression. The localizations of IRS1 and an oxidative stress marker (8-oxodG) were detected in CCA tissues using immunohistochemistry (IHC). The presence of IRS1 in CCA tissues was confirmed using immortal cholangiocyte cells (MMNK1), a long-term oxidative-stress-induced cell line (ox-MMNK1-L), and five CCA cell lines as cell culture models. IRS1 was overexpressed in tumor cells and this was associated with a shorter patient survival time and an increase in 8-oxodG. IRS1 expression was higher in ox-MMNK1-L cells than in MMNK1 cells. Knockdown of IRS1 by siRNA in two CCA cell lines led to inhibition of proliferation, cell cycle progression, migration, invasion, stemness, and oxidative stress resistance properties. Moreover, a transcriptomics study demonstrated that suppressing IRS1 in the KKU-213B CCA cell line reduced the expression levels of several genes and pathways involved in the cellular functions. The findings indicate that IRS1 is a key molecule in the connection between oxidative stress and CCA progression. Therefore, IRS1 and its related genes can be used as prognostic markers and therapeutic targets for CCA therapy.
Collapse
Affiliation(s)
- Waleeporn Kaewlert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Worachart Lert-itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-43-363-265
| |
Collapse
|
3
|
Zhang Y, Yu Y, Cao X, Chen P. Role of lncRNA FAM83H antisense RNA1 (FAM83H-AS1) in the progression of non-small cell lung cancer by regulating the miR-545-3p/heparan sulfate 6-O-sulfotransferase (HS6ST2) axis. Bioengineered 2022; 13:6476-6489. [PMID: 35260044 PMCID: PMC8973780 DOI: 10.1080/21655979.2022.2031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial regulators of cancer pathogenesis and are potentially useful diagnostic and prognostic biomarker tools. FAM83H antisense RNA1 (FAM83H-AS1) has been reported to be a vital regulator of different cancers; however, little attention has been paid to its significance in lung cancer. Non-tumorigenic lung cell line BEAS-2B and adenocarcinoma lung cancer cell lines NCI-H1299 and HCC827 were used in the present study. In addition, RNA immunoprecipitation, Western blotting, quantitative reverse transcription-PCR (qRT-PCR), and luciferase reporter assays were used to dissect the role of FAM83H-AS1 in lung cancer progression. The results revealed that FAM83H-AS1 is highly expressed in lung cancer tissues, and its knockdown inhibits lung cancer cell invasion and proliferation reducing tumor growth in vivo. Besides, we found that FAM83H-AS1 targets miR-545-3p, and a negative correlation exists between their expression in lung cancer tissues. Simultaneously, miR-545-3p negatively regulates heparan sulfate 6-O-sulfotransferase (HS6ST2). Moreover, inhibition of miR-545-3p promoted HS6ST2 protein expression and lung cancer cell invasion. FAM83H-AS1 favors non-small cell lung cancer by targeting the miR-545-3p/HS6ST2 axis, supporting the possibility of developing FAM83H-AS1 as a target for NSCLC intervention.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Mammography Surgery, The First Affiliated Hospital of HeBei North University, Zhangjiakou, Hebei, China
| | - Yue Yu
- The First Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xuchen Cao
- The First Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
4
|
EGFR-AS1 Promotes Nonsmall Cell Lung Cancer (NSCLC) Progression via Downregulating the miR-524-5p/DRAM1 Axis and Inhibiting Autophagic Lysosomal Degradation. JOURNAL OF ONCOLOGY 2022; 2022:4402536. [PMID: 35222643 PMCID: PMC8866007 DOI: 10.1155/2022/4402536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) accounts for the majority of lung cancers. Studies have revealed the regulatory role of lncRNAs in cancer pathogenesis and their potential use as diagnostic and prognostic biomarkers. The epidermal growth factor receptor antisense RNA 1 (EGFR-AS1) has been reported to be upregulated in NSCLC tissues, while its detailed mechanism in lung cancer needs to be explored. DNA damage-regulated autophagy modulator 1 (DRAM1) has been known to act as a tumor suppressor in NSCLC, and miR-524-5p has been reported to be a biomarker in idiopathic pulmonary fibrosis and different lung disorders. Our investigation revealed that EGFR-AS1 is highly expressed in lung cancer tissues, and its knockdown inhibited lung cancer cell invasion and viability and reduced tumor growth in vivo. We also found that EGFR-AS1 targets miR-524-5p, and there was a negative correlation between their expressions in lung cancer tissues. Simultaneously, miR-524-5p has been found to promote DRAM1 expression. In addition, the inhibition of miR-524-5p diminished DRAM1 protein expression and promoted lung cancer cell invasion. Our study has revealed that EGFR-AS1 contributes to the pathogenesis of NSCLC by inhibiting autophagic-lysosomal degradation via targeting the miR-524-5p/DRAM1 axis. This finding elucidated for the first time the role of EGFR-AS1 in lung cancer progression and the positive regulatory function of miR-524-5p in regulating DRAM1 protein and suppressing lung cancer progression. This novel mechanism provided a better insight into the pathogenesis of lung cancer and presented a better strategy for the treatment of lung cancer.
Collapse
|
5
|
Tang R, Liu X, Wang W, Hua J, Xu J, Liang C, Meng Q, Liu J, Zhang B, Yu X, Shi S. Identification of the Roles of a Stemness Index Based on mRNA Expression in the Prognosis and Metabolic Reprograming of Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:643465. [PMID: 33912458 PMCID: PMC8071957 DOI: 10.3389/fonc.2021.643465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are widely thought to contribute to the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC). CSCs share biological features with adult stem cells, such as longevity, self-renewal capacity, differentiation, drug resistance, and the requirement for a niche; these features play a decisive role in cancer progression. A prominent characteristic of PDAC is metabolic reprogramming, which provides sufficient nutrients to support rapid tumor cell growth. However, whether PDAC stemness is correlated with metabolic reprogramming remains unknown. METHOD RNA sequencing data of PDAC, including read counts and fragments per kilobase of transcript per million mapped reads (FPKM), were collected from The Cancer Genome Atlas-Pancreatic Adenocarcinoma (TCGA-PAAD) database. Single-sample gene set enrichment analysis (GSEA) was used to calculate the relative activities of metabolic pathways in each PDAC sample. Quantitative real-time PCR was performed to validate the expression levels of genes of interest. RESULTS The overall survival (OS) of patients with high mRNA expression-based stemness index (mRNAsi) values was significantly worse than that of their counterparts with low mRNAsi values (P = 0.003). This survival disadvantage was independent of baseline clinical characteristics. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and GSEA showed that the differentially expressed genes between patients with high and low mRNAsi values were mainly enriched in oncogenic and metabolic pathways. Weighted gene coexpression network analysis (WGCNA) revealed 8 independent gene modules that were significantly associated with mRNAsi and 12 metabolic pathways. Unsupervised clustering based on the key genes in each module identified two PDAC subgroups characterized by different mRNAsi values and metabolic activities. Univariate Cox regression analysis identified 14 genes beneficial to OS from 95 key genes selected from the eight independent gene modules from WGCNA. Among them, MAGEH1, MAP3K3, and PODN were downregulated in both pancreatic tissues and cell lines. CONCLUSION The present study showed that PDAC samples with high mRNAsi values exhibited aberrant activation of multiple metabolic pathways, and the patients from whom these samples were obtained had a poor prognosis. Future studies are expected to investigate the underlying mechanism based on the crosstalk between PDAC stemness and metabolic rewiring.
Collapse
Affiliation(s)
- Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaomeng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Zhang L, Zhang Y, Wang S, Tao L, Pang L, Fu R, Fu Y, Liang W, Li F, Jia W. MiR-212-3p suppresses high-grade serous ovarian cancer progression by directly targeting MAP3K3. Am J Transl Res 2020; 12:875-888. [PMID: 32269720 PMCID: PMC7137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/09/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs that have been reported to play an important role in the tumorigenesis of many cancers. In addition, miRNAs might serve as new promising biomarkers for diagnosis and prognosis and as effective therapeutic targets for patients with such malignancies. Accordingly, the dysregulation of miR-212-3p has been reported in a variety of human cancers. However, its biological functions and molecular mechanisms high-grade serous ovarian cancer (HGSOG) remain unknown. In this study, we demonstrated that miR-212-3p interacts with MAP3K3 based on bioinformatics-based predictions. Further, MAP3K3 was identified as a direct target gene of miR-212-3p in HGSOC. In addition, overexpression of miR-212-3p in HGSOC inhibited cell proliferation, colony formation, invasion, and migration. In contrast MAP3K3 mitigated the suppressive effects of miR-212-3p on HGSOC cell proliferation, invasion, and migration. Furthermore, miR-212-3p was significantly downregulated in HGSOC tissues compared to expression in normal fallopian tube tissues and was inversely associated with MAP3K3 levels. Accordingly, low miR-212-3p expression was also correlated with poor prognosis for HGSOC patients. In conclusion, miR-212-3p might act as a suppressor of HGSOC carcinogenesis by directly targeting MAP3K3. Therefore, this miRNA could be a novel and effective target for the treatment of patients with HGSOC.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Ying Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Shasha Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Lin Tao
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Lijuan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Ruiting Fu
- Department of Obestetrics and Gynecology, The First Affiliated Hospital School of Medicine, Shihezi UniversityShihezi, China
| | - Yu Fu
- Department of Obestetrics and Gynecology, The First Affiliated Hospital School of Medicine, Shihezi UniversityShihezi, China
| | - Weihua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Feng Li
- Department of Pathology, Beijing Chaoyang HospitalBeijing, China
| | - Wei Jia
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| |
Collapse
|
7
|
Dong R, Liu J, Sun W, Ping W. Comprehensive Analysis of Aberrantly Expressed Profiles of lncRNAs and miRNAs with Associated ceRNA Network in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Pathol Oncol Res 2020; 26:1935-1945. [PMID: 31898160 DOI: 10.1007/s12253-019-00780-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer (LC) continues to be the leading cause of cancer-related deaths worldwide and the prognosis remains poor worldwide. At present, the long non-coding RNAs (lncRNAs) was considered as a part of competing endogenous RNA (ceRNA) network act as natural microRNA (miRNA) sponges to regulate protein-coding gene expression. However, functional roles of lncRNA-mediated ceRNAs in LC are insufficiently understood. To classify the specific mechanism of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), we comprehensively compared the expression profiles of mRNAs, lncRNAs and miRNAs obtained from 509 LUAD, 473 LUSC tissues and 49 adjacent non-cancerous lung tissues, based on The Cancer Genome Atlas (TCGA). After screening for differently expressed (DE) mRNAs, DEmiRNAs, DElncRNAs and weighted gene co-expression network analysis (WGCNA) (|log2FC| > 2.0 and an adjusted p value <0.05), a total of 4478 DEmRNAs, 526 DElncRNAs and 75 DEmiRNAs in LUAD, while 6237 DEmRNAs, 843 DElncRNAs and 117 DEmiRNAs in LUSC were discovered. Interaction (PPI) network analysis was performed to identify 656 nodes and 2987 edges (minimum required interaction score > 0.9), as well as 8 different protein-protein interactions. Gene ontology (GO) analysis mainly associated with cell proliferation. KEGG pathway enrichment analyses most partly associated with metabolism pathway and cytokine-cytokine receptor interaction. Finally, the dysregulated lncRNA-miRNA-ceRNA network was constructed based on correlation analyses and a total of 62 dysregulated lncRNAs, 28 DEmRNAs and 18 DEmiRNAs were involved. The most significant lncRNAs included DElncRNAs, LINC00641 and AC004947.2, miRNAs included miR-6860, miR-1285-3p, miR-767-3p and miR-7974, mRNAs included MAP3K3, FGD3 and ATP1B2. Then we analyzed and described the potential characteristics of biological function and pathological roles of the LUAD and LUSC ceRNA co-regulatory network. Our findings revealed ceRNA network will be beneficial for promoting the understanding of lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of LUAD and LUSC.
Collapse
Affiliation(s)
- Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiawei Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Zhang Y, Wang SS, Tao L, Pang LJ, Zou H, Liang WH, Liu Z, Guo SL, Jiang JF, Zhang WJ, Jia W, Li F. Overexpression of MAP3K3 promotes tumour growth through activation of the NF-κB signalling pathway in ovarian carcinoma. Sci Rep 2019; 9:8401. [PMID: 31182739 PMCID: PMC6558032 DOI: 10.1038/s41598-019-44835-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinase kinase kinase 3 (MAP3K3), a member of the serine/threonine protein kinase family, is ubiquitously expressed and acts as an oncogene. However, the expression and exact molecular mechanism of MAP3K3 in ovarian carcinoma (OC) remain unclear. Here, we found that MAP3K3 protein was highly expressed in 70.5% of high-grade serous ovarian carcinoma (HGSOC) samples. MAP3K3 overexpression was significantly associated with the FIGO stage and chemotherapy response. Additionally, MAP3K3 overexpression was associated with reduced disease-free survival and overall survival. In vitro experiments showed that MAP3K3 overexpression promoted cell proliferation, inhibited apoptosis, and enhanced the migration and invasion of OC cells. Moreover, in vivo tumourigenesis experiments confirmed that silencing MAP3K3 significantly reduced the growth rate and volume of transplanted tumours in nude mice. Drug sensitivity experiments demonstrated that differential expression of MAP3K3 in OC cell lines correlates with chemotherapy resistance. Functionally, the MAP3K3 gene regulated the malignant biological behaviour of OC cells by mediating NF-κB signalling pathways, affecting the downstream epithelial-mesenchymal transition and cytoskeletal protein expression. Our results unveiled the role of MAP3K3 in mediating NF-κB signalling to promote the proliferation, invasion, migration, and chemotherapeutic resistance of OC cells, highlighting a potential new therapeutic and prognostic target.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Sha-Sha Wang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Lin Tao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Li-Juan Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Hong Zou
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Wei-Hua Liang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Zheng Liu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Su-Liang Guo
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jin-Fang Jiang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Wen-Jie Zhang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Wei Jia
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
| | - Feng Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
9
|
Tang H, Lv W, Sun W, Bi Q, Hao Y. miR‑505 inhibits cell growth and EMT by targeting MAP3K3 through the AKT‑NFκB pathway in NSCLC cells. Int J Mol Med 2018; 43:1203-1216. [PMID: 30628663 PMCID: PMC6365022 DOI: 10.3892/ijmm.2018.4041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, which generally regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs has been reported in numerous cancer types, including lung cancer. In the present study, the role of miR-505 in non-small cell lung cancer (NSCLC) cells was investigated. miR-505 served a tumor suppressor role in NSCLC cells. By reverse transcriptase-quantitative polymerase chain reaction detection, it was demonstrated that miR-505 was downregulated in NSCLC tissues and cell lines, which is negatively associated with large tumor size, Tumor-Node-Metastasis stage and distant metastasis in patients with NSCLC. Functional studies revealed that miR-505 inhibited cell proliferation, migration, invasion and epithelial-mesenchymal transition progress in vitro and tumor growth in vivo. Mechanically, mitogen-activated protein kinase kinase kinase 3 (MAP3K3) was identified as a direct target of miR-505 by binding to its 3′untranslated region and demonstrated to mediate the tumor suppressor roles of miR-505 in NSCLC cells. The effect of miR-505 on the activation of AKT/nuclear factor-κB (NFκB) pathway, which was downstream targets of MAP3K3, was further analyzed by western blot analysis and immunofluorescence analyses. The data demonstrated the inhibition of the AKT/NFκB pathway upon overexpressing miR-505 and the activation of AKT/NFκB pathway upon silencing miR-505. Collectively, the data revealed the novel role and target of miR-505 in NSCLC cells, which may provide novel insights regarding its role in the carcinogenesis of NSCLC and its potential values for clinical applications.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Weihong Lv
- Department of Medical, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Wenxin Sun
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Qiaojie Bi
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Yueqin Hao
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
10
|
Yin W, Shi L, Mao Y. MiR-194 regulates nasopharyngeal carcinoma progression by modulating MAP3K3 expression. FEBS Open Bio 2018; 9:43-52. [PMID: 30652073 PMCID: PMC6325580 DOI: 10.1002/2211-5463.12545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Despite the recent development of treatment strategies for nasopharyngeal carcinoma, the effective management of this disease remains a challenging clinical problem. A better understanding of the regulatory roles of miR‐194 and mitogen‐activated protein kinase kinase kinase 3 (MAP3K3) in the nasopharyngeal‐carcinoma‐related gene network is required to address this issue. Here, we measured relative expression of miR‐194 in human nasopharyngeal carcinoma tissues and normal epithelial tissues by quantitative real time PCR. We transfected cultured CNE‐1 and C666‐1 cells with miR‐194 mimics, and then examined the effects on cell proliferation, cell migration and invasion. Luciferase reporter assay was used to validate the putative binding between miR‐194 and MAP3K3. We then examined the effect of knockdown and overexpression of MAP3K3 on cell tumorigenesis. Expression of miR‐194 is significantly down‐regulated in nasopharyngeal carcinoma specimens and tumor cell lines when compared with normal controls. In addition, miR‐194 suppressed tumor cell proliferation and viability, as well as migration and invasion of carcinoma cells. We found that miR‐194 binds the 3′ untranslated region of MAP3K3, and knockdown of miR‐194 inhibited nasopharyngeal carcinoma cell proliferation, migration and invasion. In accordance, overexpression of MAP3K3 reversed the inhibitory effects of miR‐194 in carcinoma cells. This study suggests that expression of miR‐194 is down‐regulated in nasopharyngeal carcinoma, and that miR‐194 can directly target MAP3K3 to regulate tumor progression. Given the pivotal involvement of MAP3K3 in nasopharyngeal carcinoma development, targeting miR‐194 may be a novel strategy for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Wei Yin
- Hangzhou Cancer Hospital China
| | - Lei Shi
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | | |
Collapse
|
11
|
Weinberg FD, Ramnath N. Targeting IL22: a potential therapeutic approach for Kras mutant lung cancer? Transl Lung Cancer Res 2018; 7:S243-S247. [PMID: 30393613 DOI: 10.21037/tlcr.2018.09.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Frank D Weinberg
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Nithya Ramnath
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Taniuchi K, Furihata M, Naganuma S, Saibara T. ARHGEF4 predicts poor prognosis and promotes cell invasion by influencing ERK1/2 and GSK-3α/β signaling in pancreatic cancer. Int J Oncol 2018; 53:2224-2240. [PMID: 30226582 DOI: 10.3892/ijo.2018.4549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/05/2018] [Indexed: 11/06/2022] Open
Abstract
Rho guanine nucleotide exchange factor 4 (ARHGEF4) is a guanine nucleotide exchange factor that is specific for Rac1 and Cdc42. The aim of the present study was to investigate the role of ARHGEF4 in the motility and invasiveness of pancreatic cancer cells. Evaluation of an immunohistochemical staining of 102 resected pancreatic cancer samples demonstrated that high ARHGEF4 expression was correlated with an independent predictor of worse overall survival in univariate and multivariate analyses. Immunofluorescence analyses and Matrigel invasion assays demonstrated that suppression of ARHGEF4 inhibited the formation of membrane protrusions, and in turn inhibited cell motility and invasion. A phosphoprotein array analysis demonstrated that knockdown of ARHGEF4 decreased phosphorylated extracellular signal-regulated kinase (ERK)1/2 and glycogen synthase kinase-3 (GSK-3)α/β in pancreatic cancer cells, and ERK1/2 and GSK-3α/β were associated with ARHGEF4-related motility and invasiveness through an increase in cell protrusions. These results suggested that ARHGEF4 stimulates ERK1/2 and GSK-3α/β, and provided evidence that ARHGEF4 promotes cell motility and invasiveness. Inhibition of ARHGEF4 may be a novel approach to a targeted molecular therapy, as any such therapy would limit the motility and invasiveness of pancreatic cancer cells.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- Departments of Endoscopic Diagnostics and Therapeutics, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Mutsuo Furihata
- Departments of Pathology, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Seiji Naganuma
- Departments of Pathology, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Departments of Endoscopic Diagnostics and Therapeutics, Kochi University, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
13
|
Luo X, Hou N, Chen X, Xu Z, Xu J, Wang L, Yang S, Liu S, Xu L, Chen Y, Xiong L, Wang J, Fan W, Xu J. High expression of NDRG3 associates with unfavorable overall survival in non-small cell lung cancer. Cancer Biomark 2018; 21:461-469. [PMID: 29171988 DOI: 10.3233/cbm-170711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE N-myc downstream-regulated gene 3 (NDRG3) is one of the important members of the NDRG family which crucially take part in cell proliferation, differentiation and other biological processes. METHODS In this present study, western-blotting analysis was performed to evaluate NDRG3 expression in NSCLC cell lines. One-step quantitative reverse transcription-polymerase chain reaction (qPCR) with 16 fresh-frozen NSCLC samples and immunohistochemistry (IHC) analysis in 100 NSCLC cases were conducted to explore the relationship between NDRG3 expression and the clinicopathological characteristics of NSCLC. RESULTS NDRG3 expression levels were statistically higher in NSCLC cell lines and tissue samples, compared with that of in non-cancerous cell line and tissue samples (p< 0.05). The IHC data demonstrated that the NDRG3 expression was significantly correlated with pathological grade (p= 0.038), N (p= 0.020) and TNM stage (p= 0.002). Survival analysis and Kaplan-Meier curve indicated that NDRG3 expression (p= 0.002) and T (p= 0.047) were independently associated with the unfavorable overall survival of patients with NSCLC. CONCLUSIONS The data implied that NDRG3 expression may be identified as a new predictor in NSCLC prognosis.
Collapse
Affiliation(s)
- Xianyuan Luo
- Department of Internal Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China.,Department of Internal Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China
| | - Nan Hou
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China.,Department of Hematology and Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Internal Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China
| | - Xiaohua Chen
- Department of Internal Medicine, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu, China
| | - Zhiping Xu
- Department of Internal Medicine, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu, China
| | - Juqing Xu
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Lin Wang
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Shu Yang
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Suyao Liu
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Xiong
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Weifei Fan
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Jiaren Xu
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China.,Department of Hematology and Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Zheng Y, Liu H, Kong Y. miR-188 promotes senescence of lineage-negative bone marrow cells by targeting MAP3K3 expression. FEBS Lett 2017. [PMID: 28640956 DOI: 10.1002/1873-3468.12720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Zheng
- Department of Cardiothoracic Surgery; Shanghai Chest Hospital; Shanghai Jiao Tong University; China
| | - Hua Liu
- Department of Cardiology; Shanghai Chest Hospital; Shanghai Jiao Tong University; China
| | - Ye Kong
- Department of Cardiothoracic Surgery; Shanghai Chest Hospital; Shanghai Jiao Tong University; China
| |
Collapse
|
15
|
Wang Y, Li N, Che S, Jin T, Piao J, Liu S, Lin Z. HBXIP suppression reduces cell proliferation and migration and its overexpression predicts poor prognosis in non-small-cell lung cancer. Tumour Biol 2017; 39:1010428317709675. [DOI: 10.1177/1010428317709675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging evidence has demonstrated that the high expression of HBXIP has been correlated with many cancers. With evaluation of the functional role of HBXIP in non-small-cell lung cancer, the primary aim of this study is to investigate the correlation between HBXIP expression and the prognosis of non-small-cell lung cancer patients. The protein levels of HBXIP were detected using western blotting in non-small-cell lung cancer cells. Cell proliferation and migration assays were measured to evaluate the function of HBXIP in non-small-cell lung cancer cells. A total of 120 non-small-cell lung cancer patients with strict follow-up and 60 adjacent non-tumor lung tissues were selected for immunohistochemical staining of the HBXIP protein. The localization of the HBXIP protein was detected in A549 non-small-cell lung cancer cells using immunofluorescence staining. The correlation between HBXIP expression and the clinicopathological features of non-small-cell lung cancer patients was analyzed by a chi-squared and Fisher’s exact test. The overall survival rates of all of the non-small-cell lung cancer patients were calculated using the Kaplan–Meier method, and univariate and multivariate analyses were performed using the Cox proportional hazards regression model. In function, we showed that suppression of HBXIP decreased A549 cell proliferation and migration. HBXIP protein showed a mainly cytoplasmic staining pattern in non-small-cell lung cancer using immunohistochemical staining in paraffin-embedded non-small-cell lung cancer tissues and immunofluorescence staining in A549 cells. The HBXIP protein had strong positive staining in the non-small-cell lung cancer tissues, which was significantly higher than the percentage of adjacent non-tumor tissues. The overexpression of HBXIP was closely correlated with histological grade, clinical stage, lymph node metastasis, and lower overall survival rates of patients with non-small-cell lung cancer. Moreover, multivariate analysis suggested that HBXIP emerged as a significant independent prognostic factor along with clinical stage in patients with non-small-cell lung cancer. In conclusion, a high level of expression of HBXIP is associated with the progression of non-small-cell lung cancer and may be a useful biomarker for poor prognostic evaluation and a potential molecular therapy target for patients with non-small-cell lung cancer.
Collapse
Affiliation(s)
- Yixuan Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Nan Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Shuanlong Che
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji, China
| | - Tiefeng Jin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Junjie Piao
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Shuangping Liu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Zhenhua Lin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| |
Collapse
|
16
|
Zhang J, Feng S, Su W, Bai S, Xiao L, Wang L, Thomas DG, Lin J, Reddy RM, Carrott PW, Lynch WR, Chang AC, Beer DG, Guo YM, Chen G. Overexpression of FAM83H-AS1 indicates poor patient survival and knockdown impairs cell proliferation and invasion via MET/EGFR signaling in lung cancer. Sci Rep 2017; 7:42819. [PMID: 28198463 PMCID: PMC5309882 DOI: 10.1038/srep42819] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022] Open
Abstract
Whole transcriptome analyses of next generation RNA sequencing (RNA-Seq) data from human cancer samples reveled thousands of uncharacterized non-coding RNAs including long non-coding RNA (lncRNA). Recent studies indicated that lncRNAs are emerging as crucial regulators in cancer processes and potentially useful as biomarkers for cancer diagnosis and prognosis. To delineate dysregulated lncRNAs in lung cancer, we analyzed RNA-Seq data from 461 lung adenocarcinomas (LUAD) and 156 normal lung tissues. FAM83H-AS1, one of the top dysregulated lncRNAs, was found to be overexpressed in tumors relative to normal lung and significantly associated with worse patient survival in LUAD. We verified this diagnostic/prognostic potential in an independent cohort of LUAD by qRT-PCR. Cell proliferation, migration and invasion were decreased after FAM83H-AS1 knockdown using siRNAs in lung cancer cells. Flow cytometry analysis indicated the cell cycle was arrested at the G2 phase after FAM83H-AS1 knockdown. Mechanistically, we found that MET/EGFR signaling was regulated by FAM83H-AS1. Our study indicated that FAM83H-AS1 plays an important role in lung tumor progression and may be potentially used as diagnostic/prognostic marker. Further characterization of this lncRNA may provide a novel therapeutic target impacting MET/EGFR signaling.
Collapse
Affiliation(s)
- Jie Zhang
- Xian Jiaotong University, Xi’an, China
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Wenmei Su
- Guangdong Medical University, Zhanjiang, China
| | | | - Lei Xiao
- Xinjiang Medical University, Urumqi, China
| | - Lihui Wang
- Guangxi Medical University, Nanning, China
| | | | - Jules Lin
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Philip W. Carrott
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - William R. Lynch
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew C. Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - David G. Beer
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Guoan Chen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Rengaraj D, Truong AD, Ban J, Lillehoj HS, Hong YH. Distribution and differential expression of microRNAs in the intestinal mucosal layer of necrotic enteritis induced Fayoumi chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1037-1047. [PMID: 28111433 PMCID: PMC5495664 DOI: 10.5713/ajas.16.0685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Despite an increasing number of investigations into the pathophysiology of necrotic enteritis (NE) disease, etiology of NE-associated diseases, and gene expression profiling of NE-affected tissues, the microRNA (miRNA) profiles of NE-affected poultry have been poorly studied. The aim of this study was to induce NE disease in the genetically disparate Fayoumi chicken lines, and to perform non-coding RNA sequencing in the intestinal mucosal layer. METHODS NE disease was induced in the Fayoumi chicken lines (M5.1 and M15.2), and non-coding RNA sequencing was performed in the intestinal mucosal layer of both NE-affected and uninfected chickens to examine the differential expression of miRNAs. Next, quantitative real-time polymerase chain reaction (real-time qPCR) was performed to further examine four miRNAs that showed the highest fold differences. Finally, bioinformatics analyses were performed to examine the four miRNAs target genes involvement in the signaling pathways, and to examine their interaction. RESULTS According to non-coding RNA sequencing, total 50 upregulated miRNAs and 26 downregulated miRNAs were detected in the NE-induced M5.1 chickens. While 32 upregulated miRNAs and 11 downregulated miRNAs were detected in the NE-induced M15.2 chickens. Results of real-time qPCR analysis on the four miRNAs (gga-miR-9-5p, gga-miR-20b-5p, gga-miR-196-5p, and gga-let-7d) were mostly correlated with the results of RNAseq. Overall, gga-miR-20b-5p was significantly downregulated in the NE-induced M5.1 chickens and this was associated with the upregulation of its top-ranking target gene, mitogen-activated protein kinase, kinase 2. Further bioinformatics analyses revealed that 45 of the gene targets of gga-miR-20b-5p were involved in signal transduction and immune system-related pathways, and 35 of these targets were predicted to interact with each other. CONCLUSION Our study is a novel report of miRNA expression in Fayoumi chickens, and could be very useful in understanding the role of differentially expressed miRNAs in a NE disease model.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jihye Ban
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
18
|
MAP3K3 overexpression is associated with poor survival in ovarian carcinoma. Hum Pathol 2015; 50:162-9. [PMID: 26997451 DOI: 10.1016/j.humpath.2015.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinase kinase kinase 3 (MAP3K3) is ubiquitously expressed in numerous tissues and is activated by various extracellular stimuli to regulate processes, such as cell proliferation and differentiation. Recent studies have identified potentially pathologic conditions of MAP3K3 as an oncogene that promotes tumor progression and metastasis in a number of malignancies. However, the clinical significance of MAP3K3 expression in ovarian carcinoma (OC) remains unclear. In this study, the correlation between MAP3K3 expression and OC prognosis was assessed by immunohistochemistry. MAP3K3 overexpression was observed in 59.1% (55/93) of OCs and was significantly associated with histological type and grade, chemotherapy response, and challenge model (P < .05, respectively). MAP3K3 overexpression was also used as an independent prognostic marker for decreased disease-free survival and overall survival. In OC cell lines, MAP3K3 expression was evaluated by Western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence. High MAP3K3 expression is significantly detected in SKOV3, C13*, and A2780 cells. All these findings suggested that MAP3K3 overexpression is an independent poor prognostic indicator of OC and can be a clinically effective biomarker of OC.
Collapse
|
19
|
SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep 2015; 5:17940. [PMID: 26658802 PMCID: PMC4674702 DOI: 10.1038/srep17940] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023] Open
Abstract
SUN2, a key component of LINC (linker of nucleoskeleton and cytoskeleton) complex located at the inner nuclear membrane, plays unknown role in lung cancer. We found that SUN2 expression was decreased in lung cancer tissue compared with paired normal tissues and that higher SUN2 levels predicted better overall survival and first progression survival. Overexpression of SUN2 inhibits cell proliferation, colony formation and migration in lung cancer, whereas knockdown of SUN2 promotes cell proliferation and migration. Additionally, SUN2 increases the sensitivity of lung cancer to cisplatin by inducing cell apoptosis. Mechanistically, we showed that SUN2 exerts its tumor suppressor functions by decreasing the expression of GLUT1 and LDHA to inhibit the Warburg effect. Finally, our results provided evidence that SIRT5 acts, at least partly, as a negative regulator of SUN2.Taken together, our findings indicate that SUN2 is a key component in lung cancer progression by inhibiting the Warburg effect and that the novel SIRT5/SUN2 axis may prove to be useful for the development of new strategies for treating the patients with lung cancer.
Collapse
|