Chen C, Förster MW, Foley SF, Liu Y. Massive carbon storage in convergent margins initiated by subduction of limestone.
Nat Commun 2021;
12:4463. [PMID:
34294696 PMCID:
PMC8298627 DOI:
10.1038/s41467-021-24750-0]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
Remobilization of sedimentary carbonate in subduction zones modulates arc volcanism emissions and thus Earth’s climate over geological timescales. Although limestones (or chalk) are thought to be the major carbon reservoir subducted to subarc depths, their fate is still unclear. Here we present high-pressure reaction experiments between impure limestone (7.4 wt.% clay) and dunite at 1.3–2.7 GPa to constrain the melting behaviour of subducted natural limestone in contact with peridotite. The results show that although clay impurities significantly depress the solidus of limestone, melting will not occur whilst limestones are still part of the subducting slab. Buoyancy calculations suggest that most of these limestones would form solid-state diapirs intruding into the mantle wedge, resulting in limited carbon flux to the deep mantle (< ~10 Mt C y−1). Less than 20% melting within the mantle wedge indicates that most limestones remain stable and are stored in subarc lithosphere, resulting in massive carbon storage in convergent margins considering their high carbon flux (~21.4 Mt C y−1). Assimilation and outgassing of these carbonates during arc magma ascent may dominate the carbon flux in volcanic arcs.
Experiments and buoyancy calculations reveal that subduction of limestone results in massive carbon storage in arc lithosphere, forming an important carbon reservoir in convergent margins. Remobilization of this carbon reservoir during arc magma ascent may dominate carbon emissions at volcanic arcs.
Collapse