1
|
Elozeiri AAE, Dykstra JE, Lammertink RGH, Rijnaarts HHM. Current Direction Regulates Ion Transport Across Layer-by-Layer One-Side-Coated Ion-Exchange Membranes in Electrodialysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22004-22013. [PMID: 40159084 PMCID: PMC11986911 DOI: 10.1021/acsami.5c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Polyelectrolyte multilayer (PEM) modified membranes can attain selective ion separations in electrodialysis with several potential applications, such as sustainable brine management. To understand the ion transport across PEM-coated membranes, we coated six different commercial cation-exchange membranes (CEMs) with PEM via the layer-by-layer technique. Coating one side of the membrane with a PEM leads to an asymmetric current-voltage response in case of solutions containing Mg2+ and Ca2+ ions. When the coating faces the counterion transport direction (FT), the coated membrane reaches a limiting current density which does not occur if the applied current is reversed. We investigated these phenomena via several electrochemical techniques. After coating, the total membrane resistance increases significantly at solutions of Mg2+ or Ca2+ (relative to the bare membrane resistance). Furthermore, the transport characteristics of the PEM coating are highly influenced by the base membrane resistance and fixed-charge density. Regarding the counterion type, the resistance of the coated membrane increases in the same order as the bare membrane: K+ < Na+< Ca2+ < Mg2+. The higher the bare membrane resistance is, the higher the PEM resistance is. The co-ion valency (i.e., monovalent Cl- or divalent SO42-) had limited to insignificant effects on the current-voltage response of the coated membranes. Therefore, dielectric exclusion is insignificant for these coated membranes at the tested concentrations, i.e., 0.25 M SO42-. Lastly, we employed an ion transport model to explain the observed effect of the current direction on the current-voltage response and analyze the effective properties of the PEM coating.
Collapse
Affiliation(s)
- Alaaeldin A. E. Elozeiri
- Environmental
Technology, Wageningen University &
Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jouke E. Dykstra
- Environmental
Technology, Wageningen University &
Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Rob G. H. Lammertink
- Membrane
Science and Technology, Faculty of Science and Technology (TNW), University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Huub H. M. Rijnaarts
- Environmental
Technology, Wageningen University &
Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
2
|
Lu G, Qiao Q, Zhang M, Zhang J, Li S, Jin C, Yuan H, Ju Z, Huang R, Liu Y, Luo J, Wang Y, Zhou G, Tao X, Nai J. High-voltage electrosynthesis of organic-inorganic hybrid with ultrahigh fluorine content toward fast Li-ion transport. SCIENCE ADVANCES 2024; 10:eado7348. [PMID: 39110803 PMCID: PMC11305396 DOI: 10.1126/sciadv.ado7348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Hybrid materials with a rational organic-inorganic configuration can offer multifunctionality and superior properties. This principle is crucial but challenging to be applied in designing the solid electrolyte interphase (SEI) on lithium metal anodes (LMAs), as it substantially affects Li+ transport from the electrolyte to the anode. Here, an artificial SEI with an ultrahigh fluorine content (as high as 70.12 wt %) can be successfully constructed on the LMA using a high-voltage electrosynthesis strategy. This SEI consists of ultrafine lithium fluoride nanocrystals embedded in a fluorinated organic matrix, exhibiting excellent passivation and mechanical strength. Notably, the organic-inorganic interface demonstrates a high dielectric constant that enables fast Li+ transport throughout the SEI. Consequently, LMA coated with this SEI substantially enhances the cyclability of both half-cells and full cells, even under rigorous conditions. This work demonstrates the potential of rationally designed hybrid materials via a unique electrosynthetic approach for advanced electrochemical systems.
Collapse
Affiliation(s)
- Gongxun Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiangqiang Qiao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jinsen Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengbin Jin
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Huadong Yuan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhijin Ju
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rong Huang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO), Suzhou 215123, China
| | - Yujing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianmin Luo
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianwei Nai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Wang R, Lin S. Membrane Design Principles for Ion-Selective Electrodialysis: An Analysis for Li/Mg Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38324772 PMCID: PMC10882969 DOI: 10.1021/acs.est.3c08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Selective electrodialysis (ED) is a promising membrane-based process to separate Li+ from Mg2+, which is the most critical step for Li extraction from brine lakes. This study theoretically compares the ED-based Li/Mg separation performance of different monovalent selective cation exchange membranes (CEMs) and nanofiltration (NF) membranes at the coupon scale using a unified mass transport model, i.e., a solution-friction model. We demonstrated that monovalent selective CEMs with a dense surface thin film like a polyamide film are more effective in enhancing the Li/Mg separation performance than those with a loose but highly charged thin film. Polyamide film-coated CEMs when used in ED have a performance similar to that of polyamide-based NF membranes when used in NF. NF membranes, when expected to replace monovalent selective CEMs in ED for Li/Mg separation, will require a thin support layer with low tortuosity and high porosity to reduce the internal concentration polarization. The coupon-scale performance analysis and comparison provide new insights into the design of composite membranes used for ED-based selective ion-ion separation.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
4
|
Ahmad M, Ahmed M. Characterization and applications of ion-exchange membranes and selective ion transport through them: a review. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
5
|
Melnikov S. Ion Transport and Process of Water Dissociation in Electromembrane System with Bipolar Membrane: Modelling of Symmetrical Case. MEMBRANES 2022; 13:47. [PMID: 36676854 PMCID: PMC9860903 DOI: 10.3390/membranes13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
A model is proposed that describes the transfer of ions and the process of water dissociation in a system with a bipolar membrane and adjacent diffusion layers. The model considers the transfer of four types of ions: the cation and anion of salt and the products of water dissociation-hydrogen and hydroxyl ions. To describe the process of water dissociation, a model for accelerating the dissociation reaction with the participation of ionogenic groups of the membrane is adopted. The boundary value problem is solved numerically using COMSOL® Multiphysics 5.5 software. An analysis of the results of a numerical experiment shows that, at least in a symmetric electromembrane system, there is a kinetic limitation of the water dissociation process, apparently associated with the occurrence of water recombination reaction at the of the bipolar region. An interpretation of the entropy factor (β) is given as a characteristic length, which shows the possibility of an ion that appeared because of the water dissociation reaction to be removed from the reaction zone without participating in recombination reactions.
Collapse
Affiliation(s)
- Stanislav Melnikov
- Physical Chemistry Department, Kuban State University, 350040 Krasnodar, Russia
| |
Collapse
|
6
|
Ugrozov VV, Filippov AN. Resistance of an Ion-Exchange Membrane with a Surface-Modified Charged Layer. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Gorobchenko AD, Gil VV, Nikonenko VV, Sharafan MV. Mathematical Modeling of the Selective Transport of Singly Charged Ions Through Multilayer Composite Ion-Exchange Membrane during Electrodialysis. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s251775162206004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
The deposition of several alternating anion- and cation-exchange surface layers (layer-by-layer method) is a promising technique for the modification of ion-exchange membranes, which makes it possible to essentially increase their selectivity to singly charged ions. This paper presents a one-dimensional model, which is based on the Nernst–Planck–Poisson equations and describes the competitive transfer of singly and doubly charged ions through a multilayer composite ion-exchange membrane. It has been revealed for the first time that, as in the earlier studied case of a bilayer membrane, the dependence of the specific permselectivity coefficient (P1/2) of a multilayer membrane on the electrical current density passes through a maximum $$\left( {P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}} \right).$$ It has been shown that an increase in the number of nanosized modification bilayers n leads to the growth of $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }},$$ but the flux of a preferably transferred ion decreases in this case. It has been established that $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}$$ is attained at underlimiting current densities and relatively low potential drop. The simulated dependences $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}$$(n) qualitatively agree with the known literature experimental and theoretical results.
Collapse
|
8
|
Kim D, Lee JS. Emulating the Signal Transmission in a Neural System Using Polymer Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42308-42316. [PMID: 36069456 DOI: 10.1021/acsami.2c12166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons are vital components of the brain. When stimulated by neurotransmitters at the dendrites, neurons deliver signals as changes in the membrane potential by ion movement. The signal transmission of a nervous system exhibits a high energy efficiency. These characteristics of neurons are being exploited to develop efficient neuromorphic computing systems. In this study, we develop chemical synapses for neuromorphic devices and emulate the signaling processes in a nervous system using a polymer membrane, in which the ionic permeability can be controlled. The polymer membrane comprises poly(diallyl-dimethylammonium chloride) and poly(3-sulfopropyl acrylate potassium salt), which have positive and negative charges, respectively. The ionic permeability of the polymer membrane is controlled by the injection of a neurotransmitter solution. This device emulates the signal transmission behavior of biological neurons depending on the concentration of the injected neurotransmitter solution. The proposed artificial neuronal signaling device can facilitate the development of bio-realistic neuromorphic devices.
Collapse
Affiliation(s)
- Dongshin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jang-Sik Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
9
|
Felder D, Femmer R, Bell D, Rall D, Pietzonka D, Henzler S, Linkhorst J, Wessling M. Coupled Ionic–Electronic Charge Transport in Organic Neuromorphic Devices. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel Felder
- DWI ‐ Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen 52074 Germany
- AVT.CVT ‐ Chair of Chemical Process Engineering RWTH Aachen University Forckenbeckstr. 51 Aachen 52074 Germany
| | - Robert Femmer
- AVT.CVT ‐ Chair of Chemical Process Engineering RWTH Aachen University Forckenbeckstr. 51 Aachen 52074 Germany
| | - Daniel Bell
- AVT.CVT ‐ Chair of Chemical Process Engineering RWTH Aachen University Forckenbeckstr. 51 Aachen 52074 Germany
| | - Deniz Rall
- DWI ‐ Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen 52074 Germany
- AVT.CVT ‐ Chair of Chemical Process Engineering RWTH Aachen University Forckenbeckstr. 51 Aachen 52074 Germany
| | - Dirk Pietzonka
- AVT.CVT ‐ Chair of Chemical Process Engineering RWTH Aachen University Forckenbeckstr. 51 Aachen 52074 Germany
| | - Sebastian Henzler
- AVT.CVT ‐ Chair of Chemical Process Engineering RWTH Aachen University Forckenbeckstr. 51 Aachen 52074 Germany
| | - John Linkhorst
- AVT.CVT ‐ Chair of Chemical Process Engineering RWTH Aachen University Forckenbeckstr. 51 Aachen 52074 Germany
| | - Matthias Wessling
- DWI ‐ Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen 52074 Germany
- AVT.CVT ‐ Chair of Chemical Process Engineering RWTH Aachen University Forckenbeckstr. 51 Aachen 52074 Germany
| |
Collapse
|
10
|
Tsygurina KA, Kirichenko EV, Kirichenko KA. Chronopotentiograms of MK-40 Cation Exchange Membrane Layer-by-Layer Modified with Polyallylamine and Sodium Polystyrene Sulfonate. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ortega A, Arenas LF, Pijpers JJ, Vicencio DL, Martínez JC, Rodríguez FA, Rivero EP. Modelling water dissociation, acid-base neutralization and ion transport in bipolar membranes for acid-base flow batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Luo T, Zhong Y, Xu D, Wang X, Wessling M. Combining Manning's theory and the ionic conductivity experimental approach to characterize selectivity of cation exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Achoh AR, Zabolotsky VI, Lebedev KA, Sharafan MV, Yaroslavtsev AB. Electrochemical Properties and Selectivity of Bilayer Ion-Exchange Membranes in Ternary Solutions of Strong Electrolytes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Pärnamäe R, Mareev S, Nikonenko V, Melnikov S, Sheldeshov N, Zabolotskii V, Hamelers H, Tedesco M. Bipolar membranes: A review on principles, latest developments, and applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118538] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Sarapulova VV, Pasechnaya EL, Titorova VD, Pismenskaya ND, Apel PY, Nikonenko VV. Electrochemical Properties of Ultrafiltration and Nanofiltration Membranes in Solutions of Sodium and Calcium Chloride. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620050066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Zabolotsky V, Achoh A, Lebedev K, Melnikov S. Permselectivity of bilayered ion-exchange membranes in ternary electrolyte. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Multi-scale membrane process optimization with high-fidelity ion transport models through machine learning. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Stenina I, Golubenko D, Nikonenko V, Yaroslavtsev A. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. Int J Mol Sci 2020; 21:E5517. [PMID: 32752236 PMCID: PMC7432390 DOI: 10.3390/ijms21155517] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
Nowadays, ion-exchange membranes have numerous applications in water desalination, electrolysis, chemistry, food, health, energy, environment and other fields. All of these applications require high selectivity of ion transfer, i.e., high membrane permselectivity. The transport properties of ion-exchange membranes are determined by their structure, composition and preparation method. For various applications, the selectivity of transfer processes can be characterized by different parameters, for example, by the transport number of counterions (permselectivity in electrodialysis) or by the ratio of ionic conductivity to the permeability of some gases (crossover in fuel cells). However, in most cases there is a correlation: the higher the flux density of the target component through the membrane, the lower the selectivity of the process. This correlation has two aspects: first, it follows from the membrane material properties, often expressed as the trade-off between membrane permeability and permselectivity; and, second, it is due to the concentration polarization phenomenon, which increases with an increase in the applied driving force. In this review, both aspects are considered. Recent research and progress in the membrane selectivity improvement, mainly including a number of approaches as crosslinking, nanoparticle doping, surface modification, and the use of special synthetic methods (e.g., synthesis of grafted membranes or membranes with a fairly rigid three-dimensional matrix) are summarized. These approaches are promising for the ion-exchange membranes synthesis for electrodialysis, alternative energy, and the valuable component extraction from natural or waste-water. Perspectives on future development in this research field are also discussed.
Collapse
Affiliation(s)
- Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Daniel Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| |
Collapse
|
19
|
Luo H, Agata WAS, Geise GM. Connecting the Ion Separation Factor to the Sorption and Diffusion Selectivity of Ion Exchange Membranes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02457] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongxi Luo
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| | - Wendy-Angela Saringi Agata
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| | - Geoffrey M. Geise
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| |
Collapse
|
20
|
Chandra PN, Mohan MK. Transport studies of ionic solutes through chitosan/chondroitin sulfate A (CHI/CS) polyelectrolyte multilayer membranes. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab9fd3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Nano scale assembling has led to the capability to directly control and enhance the capabilities and properties of a material through change of its structural makeup at the nano scale. A novel class of functional layers in which various properties can be tunable via in situ modifications of nanostructure through stimuli such as pH, capping, and salt addition provides a promising strategy to develop polyion responsive polyelectrolyte multilayer membranes (PEM’s). The concentration (diffusion dialysis) and pressure dependent (ultrafiltration) studies of solution containing polyvalent ions through the chitosan/chondroitin sulfate A (CHI/CS) multilayers fabricated on ultipore membrane have been studied. The characterization of the bilayer pair was done with analytical instruments like ATR-FTIR, spectroscopic ellipsometry, SEM, AFM and finally TGA for water holding capacity. The characterization of bilayer pairs demonstrated the stability and integrity of bilayer pair. An important bilayer property such as water holding capacity and ion permeability across it was examined and a positive correlation was found with increase in number of bilayers. The possibility of capping a fabricated bilayer with another polyelectrolyte, polyethylene glycol (PEG) was used to examine the extend of efficiency. The permeation rate of ions across bilayers increased with makeup salt concentration was observed with capping. An increase in selectivity was observed with increase in the number of bilayers for Na+/Cu2+, Na+/Ag+ and Na+/Mn3+. 12.5 hybrid CHI/CS-PEG membranes shows a selectivity of 38.52 for Cl−/PO4
3− with a permeation rate of 37.54 × 10–5 cms−1 and 4.23 × 10–5 cms−1 respectively for Cl− and PO4
3−. The transport profile of a model vitamin, ascorbic acid (AA) through CHI/CS multilayers showed the capability of bilayer membrane for selective solute transport.
Collapse
|
21
|
Maxwell-Stefan modeling and experimental study on the ionic resistance of cation-selective membranes in concentrated lye solutions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Mareev S, Evdochenko E, Wessling M, Kozaderova O, Niftaliev S, Pismenskaya N, Nikonenko V. A comprehensive mathematical model of water splitting in bipolar membranes: Impact of the spatial distribution of fixed charges and catalyst at bipolar junction. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Lysozyme uptake into pharmaceutical grade fucoidan/chitosan polyelectrolyte multilayers under physiological conditions. J Colloid Interface Sci 2020; 565:555-566. [DOI: 10.1016/j.jcis.2020.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/28/2023]
|
24
|
Roghmans F, Evdochenko E, Martí-Calatayud M, Garthe M, Tiwari R, Walther A, Wessling M. On the permselectivity of cation-exchange membranes bearing an ion selective coating. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Luo T, Roghmans F, Wessling M. Ion mobility and partition determine the counter-ion selectivity of ion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117645] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Martí-Calatayud M, Evdochenko E, Bär J, García-Gabaldón M, Wessling M, Pérez-Herranz V. Tracking homogeneous reactions during electrodialysis of organic acids via EIS. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Mathematical Modeling of the Effect of Water Splitting on Ion Transfer in the Depleted Diffusion Layer Near an Ion-Exchange Membrane. MEMBRANES 2020; 10:membranes10020022. [PMID: 32023962 PMCID: PMC7073578 DOI: 10.3390/membranes10020022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 11/22/2022]
Abstract
Water splitting (WS) and electroconvection (EC) are the main phenomena affecting ion transfer through ion-exchange membranes in intensive current regimes of electrodialysis. While EC enhances ion transport, WS, in most cases, is an undesirable effect reducing current efficiency and causing precipitation of sparingly soluble compounds. A mathematical description of the transfer of salt ions and H+ (OH−) ions generated in WS is presented. The model is based on the Nernst–Planck and Poisson equations; it takes into account deviation from local electroneutrality in the depleted diffusion boundary layer (DBL). The current transported by water ions is given as a parameter. Numerical and semi-analytical solutions are developed. The analytical solution is found by dividing the depleted DBL into three zones: the electroneutral region, the extended space charge region (SCR), and the quasi-equilibrium zone near the membrane surface. There is an excellent agreement between two solutions when calculating the concentration of all four ions, electric field, and potential drop across the depleted DBL. The treatment of experimental partial current–voltage curves shows that under the same current density, the surface space charge density at the anion-exchange membrane is lower than that at the cation-exchange membrane. This explains the negative effect of WS, which partially suppresses EC and reduces salt ion transfer. The restrictions of the analytical solution, namely, the local chemical equilibrium assumption, are discussed.
Collapse
|
28
|
Kim H, Jeong N, Yang S, Choi J, Lee MS, Nam JY, Jwa E, Kim B, Ryu KS, Choi YW. Nernst-Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential. WATER RESEARCH 2019; 165:114970. [PMID: 31426007 DOI: 10.1016/j.watres.2019.114970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
To properly design reverse electrodialysis (RED) stacks, modeling of ion transport and prediction of power generation on the single RED stack are very important. Currently, the Nernst-Planck equation is widely adopted to simulate ion transport through IEMs. However, applying typical Nernst-Planck equation is not proper to analyze ion transport through the heterogeneous thin-composite pore-filling membrane because of the non-conductive site in the membrane matrix. Herein, we firstly introduced modified Nernst-Planck equation by addressing conductive traveling length (CTL) to simulate the ion transport through the thin-composite pore-filling membranes and the performance of a single RED stack with the same membranes. Also, 100 cell-pairs of RED stacks were assembled to validate modified Nernst-Planck equation according to the flow rate and membrane types. Under the OCV condition, the conductivity of the effluents was measured to validate the modified Nernst-Planck equation, and differences between modeling and experiments were less than 1.5 mS/cm. Theoretical OCV and current density were estimated by using modified Nernst-Planck equation. In particular, hydrophobicity on the surface of the heterogeneous membrane was considered to describe ion transport through the pore-filling membranes. Moreover, power generation from RED stacks was calculated according to the flow rate and the number of cell pairs.
Collapse
Affiliation(s)
- Hanki Kim
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea.
| | - Namjo Jeong
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - SeungCheol Yang
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Jiyeon Choi
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Mi-Soon Lee
- Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research, 20-41, Sinjaesaengeneoji-ro, Haseo-myeon, Buan-gun, Jeollabuk-do, 56332, Republic of Korea
| | - Joo-Youn Nam
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Eunjin Jwa
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Byungki Kim
- System Convergence Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Kyung-Sang Ryu
- System Convergence Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Young-Woo Choi
- Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research, 20-41, Sinjaesaengeneoji-ro, Haseo-myeon, Buan-gun, Jeollabuk-do, 56332, Republic of Korea
| |
Collapse
|
29
|
Improved phosphoric acid recovery from sewage sludge ash using layer-by-layer modified membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Rybalkina O, Tsygurina K, Melnikova E, Mareev S, Moroz I, Nikonenko V, Pismenskaya N. Partial Fluxes of Phosphoric Acid Anions through Anion-Exchange Membranes in the Course of NaH 2PO 4 Solution Electrodialysis. Int J Mol Sci 2019; 20:E3593. [PMID: 31340475 PMCID: PMC6678999 DOI: 10.3390/ijms20143593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/23/2022] Open
Abstract
Electrodialysis (ED) with ion-exchange membranes is a promising method for the extraction of phosphates from municipal and other wastewater in order to obtain cheap mineral fertilizers. Phosphorus is transported through an anion-exchange membrane (AEM) by anions of phosphoric acid. However, which phosphoric acid anions carry the phosphorus in the membrane and the boundary solution, that is, the mechanism of phosphorus transport, is not yet clear. Some authors report an unexpectedly low current efficiency of this process and high energy consumption. In this paper, we report the partial currents of H2PO4-, HPO42-, and PO43- through Neosepta AMX and Fujifilm AEM Type X membranes, as well as the partial currents of H2PO4- and H+ ions through a depleted diffusion layer of a 0.02 M NaH2PO4 feed solution measured as functions of the applied potential difference across the membrane under study. It was shown that the fraction of the current transported by anions through AEMs depend on the total current density/potential difference. This was due to the fact that the pH of the internal solution in the membrane increases with the growing current due to the increasing concentration polarization (a lower electrolyte concentration at the membrane surface leads to higher pH shift in the membrane). The HPO42- ions contributed to the charge transfer even when a low current passed through the membrane; with an increasing current, the contribution of the HPO42- ions grew, and when the current was about 2.5 ilimLev (ilimLev was the theoretical limiting current density), the PO43- ions started to carry the charge through the membrane. However, in the feed solution, the pH was 4.6 and only H2PO4- ions were present. When H2PO4- ions entered the membrane, a part of them transformed into doubly and triply charged anions; the H+ ions were released in this transformation and returned to the depleted diffusion layer. Thus, the phosphorus total flux, jP (equal to the sum of the fluxes of all phosphorus-bearing species) was limited by the H2PO4- transport from the bulk of feed solution to the membrane surface. The value of jP was close to ilimLev/F (F is the Faraday constant). A slight excess of jP over ilimLev/F was observed, which is due to the electroconvection and exaltation effects. The visualization showed that electroconvection in the studied systems was essentially weaker than in systems with strong electrolytes, such as NaCl.
Collapse
Affiliation(s)
- Olesya Rybalkina
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Kseniya Tsygurina
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | | | - Semyon Mareev
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Ilya Moroz
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia.
| | | |
Collapse
|
31
|
Paltrinieri L, Poltorak L, Chu L, Puts T, van Baak W, Sudhölter EJ, de Smet LC. Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
1D Mathematical Modelling of Non-Stationary Ion Transfer in the Diffusion Layer Adjacent to an Ion-Exchange Membrane in Galvanostatic Mode. MEMBRANES 2018; 8:membranes8030084. [PMID: 30235846 PMCID: PMC6161193 DOI: 10.3390/membranes8030084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 11/29/2022]
Abstract
The use of the Nernst–Planck and Poisson (NPP) equations allows computation of the space charge density near solution/electrode or solution/ion-exchange membrane interface. This is important in modelling ion transfer, especially when taking into account electroconvective transport. The most solutions in literature use the condition setting a potential difference in the system (potentiostatic or potentiodynamic mode). However, very often in practice and experiment (such as chronopotentiometry and voltammetry), the galvanostatic/galvanodynamic mode is applied. In this study, a depleted stagnant diffusion layer adjacent to an ion-exchange membrane is considered. In this article, a new boundary condition is proposed, which sets a total current density, i, via an equation expressing the potential gradient as an explicit function of i. The numerical solution of the problem is compared with an approximate solution, which is obtained by a combination of numerical solution in one part of the diffusion layer (including the electroneutral region and the extended space charge region, zone (I) with an analytical solution in the other part (the quasi-equilibrium electric double layer (EDL), zone (II). It is shown that this approach (called the “zonal” model) allows reducing the computational complexity of the problem tens of times without significant loss of accuracy. An additional simplification is introduced by neglecting the thickness of the quasi-equilibrium EDL in comparison to the diffusion layer thickness (the “simplified” model). For the first time, the distributions of concentrations, space charge density and current density along the distance to an ion-exchange membrane surface are computed as functions of time in galvanostatic mode. The calculation of the transition time, τ, for an ion-exchange membrane agree with an experiment from literature. It is suggested that rapid changes of space charge density, and current density with time and distance, could lead to lateral electroosmotic flows delaying depletion of near-surface solution and increasing τ.
Collapse
|
33
|
Melnikova E, Pismenskaya N, Bazinet L, Mikhaylin S, Nikonenko V. Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Impact of heterogeneous cation-exchange membrane surface modification on chronopotentiometric and current–voltage characteristics in NaCl, CaCl2 and MgCl2 solutions. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
|
36
|
Suzuki Y, Seki K. Possible influence of the Kuramoto length in a photo-catalytic water splitting reaction revealed by Poisson–Nernst–Planck equations involving ionization in a weak electrolyte. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
de Valença J, Jõgi M, Wagterveld RM, Karatay E, Wood JA, Lammertink RGH. Confined Electroconvective Vortices at Structured Ion Exchange Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2455-2463. [PMID: 29345950 PMCID: PMC5822219 DOI: 10.1021/acs.langmuir.7b04135] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Indexed: 05/26/2023]
Abstract
In this paper, we investigate electroconvective ion transport at cation exchange membranes with different geometry square-wave structures (line undulations) experimentally and numerically. Electroconvective microvortices are induced by strong concentration polarization once a threshold potential difference is applied. The applied potential required to start and sustain electroconvection is strongly affected by the geometry of the membrane. A reduction in the resistance of approximately 50% can be obtained when the structure size is similar to the mixing layer (ML) thickness, resulting in confined vortices with less lateral motion compared to the case of flat membranes. From electrical, flow, and concentration measurements, ion migration, advection, and diffusion are quantified, respectively. Advection and migration are dominant in the vortex ML, whereas diffusion and migration are dominant in the stagnant diffusion layer. Numerical simulations, based on Poisson-Nernst-Planck and Navier-Stokes equations, show similar ion transport and flow characteristics, highlighting the importance of membrane topology on the resulting electrokinetic and electrohydrodynamic behavior.
Collapse
Affiliation(s)
- Joeri de Valença
- Soft
Matter, Fluidics and Interfaces Group, MESA Institute
of Nanotechnology, University of Twente, 7500AE Enschede, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, The Netherlands
| | - Morten Jõgi
- Wetsus, European
Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, The Netherlands
| | - R. Martijn Wagterveld
- Wetsus, European
Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, The Netherlands
| | - Elif Karatay
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffery A. Wood
- Soft
Matter, Fluidics and Interfaces Group, MESA Institute
of Nanotechnology, University of Twente, 7500AE Enschede, The Netherlands
| | - Rob G. H. Lammertink
- Soft
Matter, Fluidics and Interfaces Group, MESA Institute
of Nanotechnology, University of Twente, 7500AE Enschede, The Netherlands
| |
Collapse
|
38
|
Belashova E, Pismenskaya N, Nikonenko V, Sistat P, Pourcelly G. Current-voltage characteristic of anion-exchange membrane in monosodium phosphate solution. Modelling and experiment. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Ge L, Wu B, Yu D, Mondal AN, Hou L, Afsar NU, Li Q, Xu T, Miao J, Xu T. Monovalent cation perm-selective membranes (MCPMs): New developments and perspectives. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Chabi S, Wright AG, Holdcroft S, Freund MS. Transparent Bipolar Membrane for Water Splitting Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26749-26755. [PMID: 28762724 DOI: 10.1021/acsami.7b04402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study describes the use of a benzimidazolium-based anion exchange membrane for creating bipolar membranes and the assessment of their suitability for solar-driven water splitting. Bipolar membranes were prepared by laminating anion exchange membrane with Nafion NR-211 membrane without modification of the interface. Under acidic and basic conditions, proton and hydroxide ion conductivities of 103 and 102 mS cm-1 were obtained for Nafion and benzimidazolium-based membranes, respectively. The fabricated bipolar membranes have an average thickness of 90 μm and show high transmittance, up to 75% of the visible light. The findings suggest that the two membranes create a sharp hydrophilic interface with a space charge region of only a few nanometers, thereby generating a large electric field at the interface that enhances water dissociation.
Collapse
Affiliation(s)
- Sakineh Chabi
- Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard , Melbourne, Florida 32901, United States
| | - Andrew G Wright
- Department of Chemistry, Simon Fraser University , Burnaby, BC V5A 1S6, Canada
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University , Burnaby, BC V5A 1S6, Canada
| | - Michael S Freund
- Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard , Melbourne, Florida 32901, United States
| |
Collapse
|
41
|
Gai M, Kudryavtseva VL, Sukhorukov GB, Frueh J. Micro-Patterned Polystyrene Sheets as Templates for Interlinked 3D Polyelectrolyte Multilayer Microstructures. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0403-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
|
43
|
Liu X, Wang M, Jia YX. Surface-functionalized cation exchange membrane by covalent immobilization of polyelectrolyte multilayer for effective separation of mono- and multivalent cations. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1210643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Meng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Yu-xiang Jia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
44
|
Yaroshchuk A, Zhu Y, Bondarenko M, Bruening ML. Deviations from Electroneutrality in Membrane Barrier Layers: A Possible Mechanism Underlying High Salt Rejections. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2644-2658. [PMID: 26894470 DOI: 10.1021/acs.langmuir.5b04588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reverse osmosis and nanofiltration (NF) employ composite membranes whose ultrathin barrier layers are significantly more permeable to water than to salts. Although solution-diffusion models of salt transport through barrier layers typically assume ubiquitous electroneutrality, in the case of ultrathin selective skins and low ion partition coefficients, space-charge regions may occupy a significant fraction of the membrane barrier layer. This work investigates the implications of these deviations from electroneutrality on salt transport. Both immobile external surface charge and unequal cation and anion solvation energies in the barrier layer lead to regions with excess mobile charge, and the size of these regions increases with decreasing values of either feed concentrations or ion partition coefficients. Moreover, the low concentration of the more excluded ion in the space-charge region can greatly increase resistance to salt transport to enhance salt rejection during NF. These effects are especially pronounced for membranes with a fixed external surface charge density whose sign is the same as that of the more excluded ion in a salt. Because of the space-charge regions, the barrier-layer resistance to salt transport initially rises rapidly with increasing barrier thickness and then plateaus or even declines within a certain thickness range. This trend in resistance implies that thin, defect-free barrier layers will exhibit higher salt rejections than thicker layers during NF at a fixed transmembrane pressure. Deviations from electroneutrality are consistent with both changes in NF salt rejections that occur upon changing the sign of the membrane fixed external surface charge, and CaCl2 rejections that in some cases may first decrease, then increase and then decrease again with increasing CaCl2 concentrations in NF feed solutions.
Collapse
Affiliation(s)
- Andriy Yaroshchuk
- ICREA and Department of Chemical Engineering, Polytechnic University of Catalonia , av. Diagonal 647, 08028, Barcelona, Spain
| | - Yan Zhu
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Mykola Bondarenko
- Institute of Bio-Colloid Chemistry, National Academy of Sciences of Ukraine , Vernaddskiy av., 03142 Kyiv, Ukraine
| | - Merlin L Bruening
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
45
|
Cao Z, Gordiichuk PI, Loos K, Sudhölter EJR, de Smet LCPM. The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers. SOFT MATTER 2016; 12:1496-505. [PMID: 26658499 DOI: 10.1039/c5sm01655j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte (PE) adsorption processes are monitored real-time by optical reflectometry and a quartz crystal microbalance with dissipation monitoring (QCM-D). Compared to the reference PSS/PAH PEMs, the PSS/PAH-Gu PEMs show a lower amount of deposited PE materials, lower wet thickness, higher stability under alkaline conditions and higher rigidity. These differences are rationalized by the additional Gu-SO3(-) interactions, also affecting the conformation of the PE chains in the PEM. The interactions between the PEMs and various sodium salts (NaCl, NaNO3, Na2SO4 and NaH2PO4) are also monitored using QCM-D. From the changes in the frequency, dissipation responses and supportive Reflection Absorption Infrared Spectroscopy it is concluded that Gu-functionalized PEMs absorb more H2PO4(-) compared to the Gu-free reference PEMs. This can be understood by strong interactions between Gu and H2PO4(-), the differences in the anion hydration energy and the anion valency. It is anticipated that compounds like the presented Gu-functionalized PE may facilitate the further development of H2PO4(-) sensors and ion separation/recovery systems.
Collapse
Affiliation(s)
- Zheng Cao
- Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands.
| | | | | | | | | |
Collapse
|