1
|
Ung CY, Correia C, Li H, Adams CM, Westendorf JJ, Zhu S. Multiorgan locked-state model of chronic diseases and systems pharmacology opportunities. Drug Discov Today 2024; 29:103825. [PMID: 37967790 PMCID: PMC11109989 DOI: 10.1016/j.drudis.2023.103825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
With increasing human life expectancy, the global medical burden of chronic diseases is growing. Hence, chronic diseases are a pressing health concern and will continue to be in decades to come. Chronic diseases often involve multiple malfunctioning organs in the body. An imminent question is how interorgan crosstalk contributes to the etiology of chronic diseases. We conceived the locked-state model (LoSM), which illustrates how interorgan communication can give rise to body-wide memory-like properties that 'lock' healthy or pathological conditions. Next, we propose cutting-edge systems biology and artificial intelligence strategies to decipher chronic multiorgan locked states. Finally, we discuss the clinical implications of the LoSM and assess the power of systems-based therapies to dismantle pathological multiorgan locked states while improving treatments for chronic diseases.
Collapse
Affiliation(s)
- Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Shizhen Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639. [PMID: 37380015 PMCID: PMC11448314 DOI: 10.1016/j.metabol.2023.155639] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of sarcopenic obesity.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
3
|
Gokuladhas S, Zaied RE, Schierding W, Farrow S, Fadason T, O'Sullivan JM. Integrating Multimorbidity into a Whole-Body Understanding of Disease Using Spatial Genomics. Results Probl Cell Differ 2022; 70:157-187. [PMID: 36348107 DOI: 10.1007/978-3-031-06573-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multimorbidity is characterized by multidimensional complexity emerging from interactions between multiple diseases across levels of biological (including genetic) and environmental determinants and the complex array of interactions between and within cells, tissues and organ systems. Advances in spatial genomic research have led to an unprecedented expansion in our ability to link alterations in genome folding with changes that are associated with human disease. Studying disease-associated genetic variants in the context of the spatial genome has enabled the discovery of transcriptional regulatory programmes that potentially link dysregulated genes to disease development. However, the approaches that have been used have typically been applied to uncover pathological molecular mechanisms occurring in a specific disease-relevant tissue. These forms of reductionist, targeted investigations are not appropriate for the molecular dissection of multimorbidity that typically involves contributions from multiple tissues. In this perspective, we emphasize the importance of a whole-body understanding of multimorbidity and discuss how spatial genomics, when integrated with additional omic datasets, could provide novel insights into the molecular underpinnings of multimorbidity.
Collapse
Affiliation(s)
| | - Roan E Zaied
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Sophie Farrow
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Tayaza Fadason
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| |
Collapse
|
4
|
Yang L, Yang L, Wang X, Xing H, Zhao H, Xing Y, Zhou F, Wang C, Song G, Ma H. Exploring the Multi-Tissue Crosstalk Relevant to Insulin Resistance Through Network-Based Analysis. Front Endocrinol (Lausanne) 2021; 12:756785. [PMID: 35116003 PMCID: PMC8805208 DOI: 10.3389/fendo.2021.756785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Insulin resistance (IR) is a precursor event that occurs in multiple organs and underpins many metabolic disorders. However, due to the lack of effective means to systematically explore and interpret disease-related tissue crosstalk, the tissue communication mechanism in pathogenesis of IR has not been elucidated yet. To solve this issue, we profiled all proteins in white adipose tissue (WAT), liver, and skeletal muscle of a high fat diet induced IR mouse model via proteomics. A network-based approach was proposed to explore IR related tissue communications. The cross-tissue interface was constructed, in which the inter-tissue connections and also their up and downstream processes were particularly inspected. By functional quantification, liver was recognized as the only organ that can output abnormal carbohydrate metabolic signals, clearly highlighting its central role in regulation of glucose homeostasis. Especially, the CD36-PPAR axis in liver and WAT was identified and verified as a potential bridge that links cross-tissue signals with intracellular metabolism, thereby promoting the progression of IR through a PCK1-mediated lipotoxicity mechanism. The cross-tissue mechanism unraveled in this study not only provides novel insights into the pathogenesis of IR, but also is conducive to development of precision therapies against various IR associated diseases. With further improvement, our network-based cross-tissue analytic method would facilitate other disease-related tissue crosstalk study in the near future.
Collapse
Affiliation(s)
- Linlin Yang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Linquan Yang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Xing Wang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Hanying Xing
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Hang Zhao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Yuling Xing
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Fei Zhou
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Guangyao Song
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Huijuan Ma, ; Guangyao Song,
| | - Huijuan Ma
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Huijuan Ma, ; Guangyao Song,
| |
Collapse
|
5
|
Segarra AB, Prieto I, Banegas I, Martínez-Cañamero M, de Gasparo M, Vanderheyden P, Zorad S, Ramírez-Sánchez M. The Type of Fat in the Diet Influences the Behavior and the Relationship Between Cystinyl and Alanyl Aminopeptidase Activities in Frontal Cortex, Liver, and Plasma. Front Mol Biosci 2020; 7:94. [PMID: 32500082 PMCID: PMC7242642 DOI: 10.3389/fmolb.2020.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022] Open
Abstract
Insulin-regulated aminopeptidase (IRAP, cystinyl aminopeptidase, CysAP) and aminopeptidase M (alanyl aminopeptidase, AlaAP) are closely related enzymes involved in cognitive, metabolic, and cardiovascular functions. These functions may be modulated by the type of fat used in the diet. In order to analyze a possible coordinated response of both enzymes we determined simultaneously their activities in frontal cortex, liver, and plasma of adult male rats fed diets enriched with fats differing in their percentages of saturated, mono or polyunsaturated fatty acids such as sesame, sunflower, fish, olive, Iberian lard, and coconut. The systolic blood pressure, food intake, body and liver weight as well as glucose and total cholesterol levels in plasma were measured. The type of fat in the diet influences the enzymatic activities depending on the enzyme and its location. These results suggest cognitive improvement properties for diets with predominance of polyunsaturated fatty acids. Physiological parameters such as systolic blood pressure, food intake, and biochemical factors such as cholesterol and glucose in plasma were also modified depending on the type of diet, supporting beneficial properties for diets rich in mono and polyunsaturated fatty acids. Inter-tissue correlations between the analyzed parameters were also modified depending on the type of diet. If the type of fat used in the diet modifies the behavior and relationship between CysAP and AlaAP in and between frontal cortex, liver and plasma, the functions in which they are involved could also be modified.
Collapse
Affiliation(s)
| | - Isabel Prieto
- Department of Health Sciences, University of Jaen, Jaen, Spain
| | | | | | - Marc de Gasparo
- Cardiovascular & Metabolic Syndrome Adviser, Rossemaison, Switzerland
| | - Patrick Vanderheyden
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Zorad
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | |
Collapse
|
6
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|
7
|
Chevrier N. Decoding the Body Language of Immunity: Tackling the Immune System at the Organism Level. ACTA ACUST UNITED AC 2019; 18:19-26. [PMID: 32490290 DOI: 10.1016/j.coisb.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The immune system is a dynamic mesh of molecules, cells and tissues spanning the entire organism. Despite a wealth of knowledge about the components of the immune system, little is known about the general rules governing the organismal circuitry of immunity. Deciphering the immune system at the scale of the whole organism is crucial to understanding fundamental problems in immunobiology and physiology, and to manipulate immunity for maintaining health and preventing disease. Here I discuss the emerging principles of inter-organ communications during immune responses by focusing on three common themes that are the regulation of the (i) composition, (ii) condition and (iii) coordination of communicating organs by molecular and cellular factors. Based on these common principles, I emphasize fundamental gaps in our knowledge of organismal immune processes and the outlook to tackle immunity at the scale of the whole organism.
Collapse
Affiliation(s)
- Nicolas Chevrier
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
De Jong A, Verzilli D, Chanques G, Futier E, Jaber S. [Preoperative risk and perioperative management of obese patients]. Rev Mal Respir 2019; 36:985-1001. [PMID: 31521434 DOI: 10.1016/j.rmr.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
The obese patient is at an increased risk of perioperative complications. Most importantly, these include difficult access to the airways (intubation, difficult or impossible ventilation), and post-extubation respiratory distress secondary to the development of atelectasis or obstruction of the airways, sometimes associated with the use of morphine derivatives. The association of obstructive sleep apnea syndrome (OSA) with obesity is very common, and induces a high risk of peri- and postoperative complications. Preoperative OSA screening is crucial in the obese patient, as well as its specific management: use of continuous positive pre, per and postoperative pressure. For any obese patient, the implementation of protocols for mask ventilation and/or difficult intubation and the use of protective ventilation, morphine-sparing strategies and a semi-seated positioning throughout the care, is recommended, combined with close monitoring postoperatively. The dosage of anesthetic drugs should be based on the theoretical ideal weight and then titrated, rather than dosed to the total weight. Monitoring of neuromuscular blocking should be used where appropriate, as well as monitoring of the depth of anesthesia. The occurrence of intraoperative recall is indeed more frequent in the obese patient than in the non-obese patient. Appropriate prophylaxis against venous thromboembolic disease and early mobilization are recommended, as thromboembolic disease is increased in the obese patient. The use of non-invasive ventilation to prevent the occurrence of acute post-operative respiratory failure and for its treatment is particularly effective in obese patients. In case of admission to ICU, an individualized ventilatory management based on pathophysiology and careful monitoring should be initiated.
Collapse
Affiliation(s)
- A De Jong
- PhyMedExp, University of Montpellier, Inserm, CNRS, CHU Montpellier, 371 avenue du doyen Gaston Giraud, 34080 Montpellier, France; Département d'Anesthésie-Réanimation, hôpital Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex, France
| | - D Verzilli
- Département d'Anesthésie-Réanimation, hôpital Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex, France
| | - G Chanques
- PhyMedExp, University of Montpellier, Inserm, CNRS, CHU Montpellier, 371 avenue du doyen Gaston Giraud, 34080 Montpellier, France; Département d'Anesthésie-Réanimation, hôpital Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex, France
| | - E Futier
- CHU de Clermont-Ferrand, Department of Perioperative Medicine, GReD, UMR/CNRS6293, University, Clermont Auvergne, Inserm, U1103, Clermont-Ferrand, France
| | - S Jaber
- PhyMedExp, University of Montpellier, Inserm, CNRS, CHU Montpellier, 371 avenue du doyen Gaston Giraud, 34080 Montpellier, France; Département d'Anesthésie-Réanimation, hôpital Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex, France.
| |
Collapse
|
9
|
Leite F, Ribeiro L. Dopaminergic Pathways in Obesity-Associated Inflammation. J Neuroimmune Pharmacol 2019; 15:93-113. [PMID: 31317376 DOI: 10.1007/s11481-019-09863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
|
10
|
Can obesity-induced inflammation in skeletal muscle and intramuscular adipose tissue accurately detect liver fibrosis? JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:509-524. [PMID: 30511955 PMCID: PMC6313048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Obesity is characterized by a chronic, low grade, systemic inflammation. However, little is known about the role of skeletal muscle, which represents an active metabolic organ whose activities need to be determined. The purpose of our study was to detect relationships between skeletal muscle and adipose tissue inflammation with nonalcoholic fatty liver disease (NAFLD) and diabetes, as well as to explore associations with clinicopathological parameters. METHODS Our study population consisted of 50 morbidly obese patients undergoing planned bariatric surgery. Biopsies were taken from visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), skeletal muscle (SM), extramyocellular adipose tissue (EMAT) and liver. The expression of CD68 and CD3 was assessed by immunohistochemistry. RESULTS Our findings suggest a complex inter- and intra-tissue co-expression network that links obesity-induced inflammation in adipose depots and skeletal muscle with NAFLD. A novel finding is the intricate cross-talk between SM, EMAT and the liver and the probable correlation between SM, EMAT inflammation and the presence of liver fibrosis. CONCLUSIONS Although the mechanisms of obesity-induced inflammation and its association with NAFLD and liver fibrosis are incompletely understood, our findings indicate an extensive and complex tissue network that needs to be further investigated.
Collapse
|
11
|
Sharma G, Prossnitz ER. G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1043:427-453. [PMID: 29224106 DOI: 10.1007/978-3-319-70178-3_20] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, and Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
12
|
Lutfi E, Babin PJ, Gutiérrez J, Capilla E, Navarro I. Caffeic acid and hydroxytyrosol have anti-obesogenic properties in zebrafish and rainbow trout models. PLoS One 2017; 12:e0178833. [PMID: 28570659 PMCID: PMC5453583 DOI: 10.1371/journal.pone.0178833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/19/2017] [Indexed: 12/18/2022] Open
Abstract
Some natural products, known sources of bioactive compounds with a wide range of properties, may have therapeutic values in human health and diseases, as well as agronomic applications. The effect of three compounds of plant origin with well-known dietary antioxidant properties, astaxanthin (ATX), caffeic acid (CA) and hydroxytyrosol (HT), on zebrafish (Danio rerio) larval adiposity and rainbow trout (Onchorynchus mykiss) adipocytes was assessed. The zebrafish obesogenic test (ZOT) demonstrated the anti-obesogenic activity of CA and HT. These compounds were able to counteract the obesogenic effect produced by the peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (RGZ). CA and HT suppressed RGZ-increased PPARγ protein expression and lipid accumulation in primary-cultured rainbow trout adipocytes. HT also significantly reduced plasma triacylglycerol concentrations, as well as mRNA levels of the fasn adipogenic gene in the adipose tissue of HT-injected rainbow trout. In conclusion, in vitro and in vivo approaches demonstrated the anti-obesogenic potential of CA and HT on teleost fish models that may be relevant for studying their molecular mode of action. Further studies are required to evaluate the effect of these bioactive components as food supplements for modulating adiposity in farmed fish.
Collapse
Affiliation(s)
- Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Patrick J. Babin
- Maladies Rares: Génétique et Métabolisme (MRGM), University of Bordeaux, INSERM, U12211, Pessac, France
- * E-mail: (IN); (PJB)
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail: (IN); (PJB)
| |
Collapse
|
13
|
De Jong A, Carreira S, Na N, Carillion A, Jiang C, Beuvin M, Lacorte JM, Bonnefont-Rousselot D, Riou B, Coirault C. Diaphragmatic function is enhanced in fatty and diabetic fatty rats. PLoS One 2017; 12:e0174043. [PMID: 28328996 PMCID: PMC5362060 DOI: 10.1371/journal.pone.0174043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/02/2017] [Indexed: 11/24/2022] Open
Abstract
Background Obesity is associated with a decrease in mortality in the intensive care unit (ICU) (the "obesity paradox"). We hypothesized that obesity may paradoxically improve diaphragmatic function. Methods Diaphragm contractility was prospectively recorded in vitro in adult male Zucker lean (control), fatty, and diabetic fatty rats, at rest, after 12h mechanical ventilation and after fatigue. We analyzed diaphragm morphology, cytokines, and protein expression of the protein kinase signaling pathways. Results Diaphragm active-force (AF) was higher in fatty (96±7mN.mm-2,P = 0.02) but not in diabetic fatty rats (90±17mN.mm-2) when compared with controls (84±8mN.mm-2). Recovery from fatigue was improved in fatty and diabetic fatty groups compared with controls. Ventilator-induced diaphragmatic dysfunction was observed in each group, but AF remained higher in fatty (82±8mN.mm-2,P = 0.03) compared with controls (70±8mN.mm-2). There was neutral lipid droplet accumulation in fatty and diabetic fatty. There were shifts towards a higher cross-sectional-area (CSA) of myosin heavy chain isoforms (MyHC)-2A fibers in fatty and diabetic fatty compared with control rats (P = 0.002 and P<0.001, respectively) and a smaller CSA of MyHC-2X in fatty compared with diabetic fatty and control rats (P<0.001 and P<0.001, respectively). The phosphorylated total-protein-kinase-B (pAKT)/AKT ratio was higher in fatty (182±58%,P = 0.03), but not in diabetic fatty when compared with controls and monocarboxylate-transporter-1 was higher in diabetic fatty (147±36%,P = 0.04), but not in fatty. Conclusions Diaphragmatic force is increased in Zucker obese rats before and after mechanical ventilation, and is associated with activation of AKT pathway signaling and complex changes in morphology.
Collapse
Affiliation(s)
- Audrey De Jong
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- Department of Anesthesia and Critical Care B, Hôpital Saint-Eloi, CHU de Montpellier, France
- * E-mail:
| | - Serge Carreira
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Na Na
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Emergency Medicine and Surgery, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Aude Carillion
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Cheng Jiang
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Emergency Department, Zonghnan University Hospital, Wuhan University, Wuhan, The People’s Republic of China
| | - Maud Beuvin
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| | - Jean-Marc Lacorte
- Department of Endocrinologic and Oncologic Biochemistry, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dominique Bonnefont-Rousselot
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Metabolic Biochemistry, Hôpital Pitié-Salpêtrière, APHP, Paris, France
- Université Paris Descartes, Faculty of Pharmacy, Paris, France
| | - Bruno Riou
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Emergency Medicine and Surgery, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Catherine Coirault
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| |
Collapse
|
14
|
Bu D, Bionaz M, Wang M, Nan X, Ma L, Wang J. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows. PLoS One 2017; 12:e0173082. [PMID: 28291785 PMCID: PMC5349457 DOI: 10.1371/journal.pone.0173082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules.
Collapse
Affiliation(s)
- Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- CAAS-ICRAF Joint Laboratory on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China
- Synergetic Innovation Center of Food Safety and Nutrition, Harbin, China
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, United States of America
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, P.R. China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
15
|
Inter-Tissue Gene Co-Expression Networks between Metabolically Healthy and Unhealthy Obese Individuals. PLoS One 2016; 11:e0167519. [PMID: 27907186 PMCID: PMC5132173 DOI: 10.1371/journal.pone.0167519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Obesity is associated with severe co-morbidities such as type 2 diabetes and nonalcoholic steatohepatitis. However, studies have shown that 10-25 percent of the severely obese individuals are metabolically healthy. To date, the identification of genetic factors underlying the metabolically healthy obese (MHO) state is limited. Systems genetics approaches have led to the identification of genes and pathways in complex diseases. Here, we have used such approaches across tissues to detect genes and pathways involved in obesity-induced disease development. METHODS Expression data of 60 severely obese individuals was accessible, of which 28 individuals were MHO and 32 were metabolically unhealthy obese (MUO). A whole genome expression profile of four tissues was available: liver, muscle, subcutaneous adipose tissue and visceral adipose tissue. Using insulin-related genes, we used the weighted gene co-expression network analysis (WGCNA) method to build within- and inter-tissue gene networks. We identified genes that were differentially connected between MHO and MUO individuals, which were further investigated by homing in on the modules they were active in. To identify potentially causal genes, we integrated genomic and transcriptomic data using an eQTL mapping approach. RESULTS Both IL-6 and IL1B were identified as highly differentially co-expressed genes across tissues between MHO and MUO individuals, showing their potential role in obesity-induced disease development. WGCNA showed that those genes were clustering together within tissues, and further analysis showed different co-expression patterns between MHO and MUO subnetworks. A potential causal role for metabolic differences under similar obesity state was detected for PTPRE, IL-6R and SLC6A5. CONCLUSIONS We used a novel integrative approach by integration of co-expression networks across tissues to elucidate genetic factors related to obesity-induced metabolic disease development. The identified genes and their interactions give more insight into the genetic architecture of obesity and the association with co-morbidities.
Collapse
|
16
|
Moyes KM, Sørensen P, Bionaz M. The Impact of Intramammary Escherichia coli Challenge on Liver and Mammary Transcriptome and Cross-Talk in Dairy Cows during Early Lactation Using RNAseq. PLoS One 2016; 11:e0157480. [PMID: 27336699 PMCID: PMC4919052 DOI: 10.1371/journal.pone.0157480] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/30/2016] [Indexed: 11/18/2022] Open
Abstract
Our objective was to identify the biological response and the cross-talk between liver and mammary tissue after intramammary infection (IMI) with Escherichia coli (E. coli) using RNAseq technology. Sixteen cows were inoculated with live E. coli into one mammary quarter at ~4–6 weeks in lactation. For all cows, biopsies were performed at -144, 12 and 24 h relative to IMI in liver and at 24 h post-IMI in infected and non-infected (control) mammary quarters. For a subset of cows (n = 6), RNA was extracted from both liver and mammary tissue and sequenced using a 100 bp paired-end approach. Ingenuity Pathway Analysis and the Dynamic Impact Approach analysis of differentially expressed genes (overall effect False Discovery Rate≤0.05) indicated that IMI induced an overall activation of inflammation at 12 h post-IMI and a strong inhibition of metabolism, especially related to lipid, glucose, and xenobiotics at 24 h post-IMI in liver. The data indicated in mammary tissue an overall induction of inflammatory response with little effect on metabolism at 24 h post-IMI. We identified a large number of up-stream regulators potentially involved in the response to IMI in both tissues but a relatively small core network of transcription factors controlling the response to IMI for liver whereas a large network in mammary tissue. Transcriptomic results in liver and mammary tissue were supported by changes in inflammatory and metabolic mediators in blood and milk. The analysis of potential cross-talk between the two tissues during IMI uncovered a large communication from the mammary tissue to the liver to coordinate the inflammatory response but a relatively small communication from the liver to the mammary tissue. Our results indicate a strong induction of the inflammatory response in mammary tissue and impairment of liver metabolism 24h post-IMI partly driven by the signaling from infected mammary tissue.
Collapse
Affiliation(s)
- K. M. Moyes
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (KMM); (MB)
| | - P. Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (KMM); (MB)
| |
Collapse
|