1
|
Sakauchi K, Otaki JM. Imaging Plate Autoradiography for Ingested Anthropogenic Cesium-137 in Butterfly Bodies: Implications for the Biological Impacts of the Fukushima Nuclear Accident. Life (Basel) 2023; 13:life13051211. [PMID: 37240856 DOI: 10.3390/life13051211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The Fukushima nuclear accident in March 2011 caused biological impacts on the pale grass blue butterfly Zizeeria maha. At least some of the impacts are likely mediated by the host plant, resulting in "field effects". However, to obtain the whole picture of the impacts, direct exposure effects should also be evaluated. Here, we examined the distribution of experimentally ingested anthropogenic cesium-137 (137Cs) in adult butterfly bodies using imaging plate autoradiography. We showed that 137Cs ingested by larvae was incorporated into adult bodies and was biased to females, although the majority of ingested 137Cs was excreted in the pupal cuticle and excretory material during eclosion. 137Cs accumulation in adult bodies was the highest in the abdomen, followed by the thorax and other organs. These results suggest that 137Cs accumulation in reproductive organs may cause adverse transgenerational or maternal effects mediated by reactive oxygen species (ROS) on germ cells. 137Cs accumulation was detected in field individuals collected in September 2011 and September 2016 but not in May 2011, which is consistent with the abnormality dynamics known from previous studies. Taken together, these results contribute to an integrative understanding of the multifaceted biological effects of the Fukushima nuclear accident in the field.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
2
|
Otaki JM, Sakauchi K, Taira W. The second decade of the blue butterfly in Fukushima: Untangling the ecological field effects after the Fukushima nuclear accident. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1539-1550. [PMID: 35475314 DOI: 10.1002/ieam.4624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Many field observations of the biological effects of the Fukushima nuclear accident have been reported in the first decade after the accident. A series of observational and experimental studies have demonstrated causal adverse effects on the pale grass blue butterfly even at the low-level radiation exposure in the "field," contrary to the dosimetric view that insects are generally tolerant of radiation exposure. However, it has been demonstrated that the pale grass blue butterfly is tolerant of high oral doses of anthropogenic radioactive cesium (137 Cs) under "laboratory" conditions. This field-laboratory paradox can be explained by ecological field effects; for example, radiation stress in the field causes physiological and biochemical changes in the host plant, which then trophically affects butterfly larvae. The second decade of butterfly-based Fukushima research will be devoted to demonstrating how such adverse field effects occur. Changes in the host plant's nutritional contents likely affect butterfly physiology. The host plant may also upregulate secondary metabolites that affect herbivorous insects. The plant may be affected by changes in endophytic soil microbes in radioactively contaminated areas. If demonstrated, these results will reveal that the delicate ecological balances among the butterfly, its host plant, and soil microbes have been affected by radioactive pollution in Fukushima, which has important implications for environmental policies and human health. Integr Environ Assess Manag 2022;18:1539-1550. © SETAC.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- Research Planning Office, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
3
|
Ingestional Toxicity of Radiation-Dependent Metabolites of the Host Plant for the Pale Grass Blue Butterfly: A Mechanism of Field Effects of Radioactive Pollution in Fukushima. Life (Basel) 2022; 12:life12050615. [PMID: 35629283 PMCID: PMC9146399 DOI: 10.3390/life12050615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Biological effects of the Fukushima nuclear accident have been reported in various organisms, including the pale grass blue butterfly Zizeeria maha and its host plant Oxalis corniculata. This plant upregulates various secondary metabolites in response to low-dose radiation exposure, which may contribute to the high mortality and abnormality rates of the butterfly in Fukushima. However, this field effect hypothesis has not been experimentally tested. Here, using an artificial diet for larvae, we examined the ingestional toxicity of three radiation-dependent plant metabolites annotated in a previous metabolomic study: lauric acid (a saturated fatty acid), alfuzosin (an adrenergic receptor antagonist), and ikarugamycin (an antibiotic likely from endophytic bacteria). Ingestion of lauric acid or alfuzosin caused a significant decrease in the pupation, eclosion (survival), and normality rates, indicating toxicity of these compounds. Lauric acid made the egg-larval days significantly longer, indicating larval growth retardation. In contrast, ikarugamycin caused a significant increase in the pupation and eclosion rates, probably due to the protection of the diet from fungi and bacteria. These results suggest that at least some of the radiation-dependent plant metabolites, such as lauric acid, contribute to the deleterious effects of radioactive pollution on the butterfly in Fukushima, providing experimental evidence for the field effect hypothesis.
Collapse
|
4
|
Sakauchi K, Taira W, Otaki JM. Metabolomic Response of the Creeping Wood Sorrel Oxalis corniculata to Low-Dose Radiation Exposure from Fukushima's Contaminated Soil. Life (Basel) 2021; 11:990. [PMID: 34575139 PMCID: PMC8472241 DOI: 10.3390/life11090990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022] Open
Abstract
The biological consequences of the Fukushima nuclear accident have been intensively studied using the pale grass blue butterfly Zizeeria maha and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed metabolomic analyses of Oxalis leaves from Okinawa to examine the plant metabolites that were upregulated or downregulated in response to low-dose radiation exposure from Fukushima's contaminated soil. The cumulative dose of radiation to the plants was 5.7 mGy (34 μGy/h for 7 days). The GC-MS analysis revealed a systematic tendency of downregulation among the metabolites, some of which were annotated as caproic acid, nonanoic acid, azelaic acid, and oleic acid. Others were annotated as fructose, glucose, and citric acid, involved in the carbohydrate metabolic pathways. Notably, the peak annotated as lauric acid was upregulated. In contrast, the LC-MS analysis detected many upregulated metabolites, some of which were annotated as either antioxidants or stress-related chemicals involved in defense pathways. Among them, only three metabolite peaks had a single annotation, one of which was alfuzosin, an antagonist of the α1-adrenergic receptor. We conclude that this Oxalis plant responded metabolically to low-dose radiation exposure from Fukushima's contaminated soil, which may mediate the ecological "field effects" of the developmental deterioration of butterflies in Fukushima.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Center for Research Advancement and Collaboration, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| |
Collapse
|
5
|
Nutrient Imbalance of the Host Plant for Larvae of the Pale Grass Blue Butterfly May Mediate the Field Effect of Low-Dose Radiation Exposure in Fukushima: Dose-Dependent Changes in the Sodium Content. INSECTS 2021; 12:insects12020149. [PMID: 33572324 PMCID: PMC7916146 DOI: 10.3390/insects12020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
The pale grass blue butterfly Zizeeria maha is sensitive to low-dose radioactive pollution from the Fukushima nuclear accident in the field but is also highly tolerant to radioactive cesium (137Cs) in an artificial diet in laboratory experiments. To resolve this field-laboratory paradox, we hypothesize that the butterfly shows vulnerability in the field through biochemical changes in the larval host plant, the creeping wood sorrel Oxalis corniculata, in response to radiation stress. To test this field-effect hypothesis, we examined nutrient contents in the host plant leaves from Tohoku (mostly polluted areas including Fukushima), Niigata, and Kyushu, Japan. Leaves from Tohoku showed significantly lower sodium and lipid contents than those from Niigata. In the Tohoku samples, the sodium content (but not the lipid content) was significantly negatively correlated with the radioactivity concentration of cesium (137Cs) in leaves and with the ground radiation dose. The sodium content was also correlated with other nutrient factors. These results suggest that the sodium imbalance of the plant may be caused by radiation stress and that this nutrient imbalance may be one of the reasons that this monophagous butterfly showed high mortality and morphological abnormalities in the field shortly after the accident in Fukushima.
Collapse
|
6
|
Hiyama A, Otaki JM. Dispersibility of the Pale Grass Blue Butterfly Zizeeria m aha (Lepidoptera: Lycaenidae) Revealed by One-Individual Tracking in the Field: Quantitative Comparisons between Subspecies and between Sexes. INSECTS 2020; 11:insects11020122. [PMID: 32074952 PMCID: PMC7073966 DOI: 10.3390/insects11020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022]
Abstract
The pale grass blue butterfly Zizeeria maha (Lepidoptera: Lycaenidae) has been used as an environmental indicator species for radioactive pollution after the Fukushima nuclear accident. Here, based on the one-individual tracking method in the field, we examined dispersal-associated and other behavioral traits of this butterfly, focusing on two subspecies, Z. maha argia in mainland Japan and Z. maha okinawana in Okinawa. The accumulated distances in the adult lifespan were 18.9 km and 38.2 km in mainland and Okinawa males, respectively, and 15.0 km and 7.8 km in mainland and Okinawa females, respectively. However, the mean distance from the starting point was only 24.2 m and 21.1 m in the mainland and Okinawa males, respectively, and 13.7 m and 7.4 m in the mainland and Okinawa females, respectively. Some quantitative differences in resting and feeding were found between subspecies and between sexes. The ARIMA (autoregressive integrated moving average) model indicated that the dispersal distance was 52.3 m (99% confidence interval value of 706.6 m) from the starting point in mainland males. These results support the idea that despite some behavioral differences, both subspecies of this butterfly are suitable as an environmental indicator because of the small dispersal ranges.
Collapse
Affiliation(s)
- Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
- Laboratory of Conservation Ecology, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
- Japan Butterfly Conservation Society, Tokyo 140-0014, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
- Correspondence: ; Tel.: +81-98-895-8557
| |
Collapse
|
7
|
Overwintering States of the Pale Grass Blue Butterfly Zizeeria maha (Lepidoptera: Lycaenidae) at the Time of the Fukushima Nuclear Accident in March 2011. INSECTS 2019; 10:insects10110389. [PMID: 31690046 PMCID: PMC6920751 DOI: 10.3390/insects10110389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
The Fukushima nuclear accident in March 2011 caused the massive release of anthropogenic radioactive materials from the Fukushima Dai-ichi Nuclear Power Plant to its surrounding environment. Its biological effects have been studied using the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), but the overwintering states of this butterfly remain elusive. Here, we conducted a series of field surveys in March 2018, March 2019, and April 2019 in Fukushima and its vicinity to clarify the overwintering states of this butterfly at the time of the Fukushima nuclear accident. We discovered overwintering individuals in situ associated with the host plant Oxalis corniculata under natural straw mulch as first-instar to fourth-instar larvae in March 2018 and 2019. No other developmental stages were found. The body length and width were reasonably correlated with the accumulated temperature. On the basis of a linear regression equation between body size and accumulated temperature, together with other data, we deduced that the pale grass blue butterfly occurred as fourth-instar larvae in Fukushima and its vicinity at the time of the accident. This study paves the way for subsequent dosimetric analyses that determine the radiation doses absorbed by the butterfly after the accident.
Collapse
|
8
|
Developmental and hemocytological effects of ingesting Fukushima's radiocesium on the cabbage white butterfly Pieris rapae. Sci Rep 2019; 9:2625. [PMID: 30796244 PMCID: PMC6385249 DOI: 10.1038/s41598-018-37325-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
High morphological abnormality and mortality rates have been reported in the pale grass blue butterfly, Zizeeria maha, since the Fukushima nuclear accident. However, it remains uncertain if these effects are restricted to this butterfly. Here, we evaluated the effects of ingesting cabbage leaves grown with contaminated soils from Fukushima on the development and hemocytes of the cabbage white butterfly, Pieris rapae. Contaminated cabbage leaves containing various low levels of anthropogenic 134Cs and 137Cs radioactivity (less than natural 40K radioactivity) were fed to larvae from Okinawa, the least contaminated locality in Japan. Negative developmental and morphological effects were detected in the experimental groups. The cesium (but not potassium) radioactivity concentration was negatively correlated with the granulocyte percentage in hemolymph, and the granulocyte percentage was positively correlated with the pupal eclosion rate, the adult achievement rate, and the total normality rate. These results demonstrated that ingesting low-level radiocesium contaminants in Fukushima (but not natural radiopotassium) imposed biologically negative effects on the cabbage white butterfly, as in the pale grass blue butterfly, at both cellular and organismal levels.
Collapse
|
9
|
Otaki JM, Taira W. Current Status of the Blue Butterfly in Fukushima Research. J Hered 2018; 109:178-187. [PMID: 28431090 DOI: 10.1093/jhered/esx037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/12/2017] [Indexed: 11/14/2022] Open
Abstract
Adverse biological impacts of the Fukushima nuclear accident have been revealed using the pale grass blue butterfly, Zizeeria maha, since 2012, which were often considered incompatible with the conventional understanding of radiation biology. This discrepancy likely originates from different system conditions and methodologies. In this article, we first respond to comments from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) regarding our study; "technical errors" in unit usage and mathematical models noted by UNSCEAR are not errors but reflect our research philosophy not to introduce theoretical assumptions associated with unit conversion and mathematical fit. Second, we review our recent studies to support the original 2012 conclusions. Because the high morphological abnormality rate and small body size detected in Fukushima in 2011 have already ceased, likely through adaptive evolution, their present geographical distributions were investigated throughout Japan. Local populations showing relatively high abnormality rates and small body sizes were rare and basically restricted to Miyagi and its northern populations excluding the Fukushima populations, supporting the causal involvement of the accident. Lastly, we stress the importance of understanding the whole picture of the biological impacts of the Fukushima accident. In addition to the direct radiation impacts, indirect impacts through unknown radiation-associated mechanisms, such as immunological responses to insoluble particulate matter and nutritional deficiencies in plants and animals, would be in effect. Further environmental studies beyond conventional radiation biology and physics are necessary to understand the complex responses of organisms, including humans, to the Fukushima nuclear accident.
Collapse
Affiliation(s)
- Joji M Otaki
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, Japan
| | - Wataru Taira
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
10
|
Nohara C, Hiyama A, Taira W, Otaki JM. Robustness and Radiation Resistance of the Pale Grass Blue Butterfly from Radioactively Contaminated Areas: A Possible Case of Adaptive Evolution. J Hered 2018; 109:188-198. [PMID: 28199653 DOI: 10.1093/jhered/esx012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The pale grass blue butterfly, Zizeeria maha, has been used to evaluate biological impacts of the Fukushima nuclear accident in March 2011. Here, we examined the possibility that butterflies have adapted to be robust in the contaminated environment. Larvae (n = 2432) were obtained from adult butterflies (n = 20) collected from 7 localities with various contamination levels in May 2012, corresponding to the 7th generation after the accident. When the larvae were reared on non-contaminated host plant leaves from Okinawa, the normality rates of natural exposure without artificial irradiation (as an indication of robustness) were high not only in the least contaminated locality but also in the most contaminated localities. The normality rates were similarly obtained when the larvae were reared on non-contaminated leaves with external irradiation or on contaminated leaves from Fukushima to deliver internal irradiation. The normality rate of natural exposure and that of external or internal exposure were correlated, suggesting that radiation resistance (or susceptibility) likely reflects general state of health. The normality rate of external or internal exposure was divided by the relative normality rate of natural exposure, being defined as the resistance value. The resistance value was the highest in the populations of heavily contaminated localities and was inversely correlated with the distance from the Fukushima Dai-ichi nuclear power plant. These results suggest that the butterfly population might have adapted to the contaminated environment within approximately 1 year after the accident. The present study may partly explain the decrease in mortality and abnormality rates later observed in the contaminated areas.
Collapse
Affiliation(s)
- Chiyo Nohara
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Atsuki Hiyama
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Wataru Taira
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Joji M Otaki
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
11
|
Pan ZX, Hong F, Jiang GF. Morphometrics reveal correlation between morphology and bioclimatic factors and population mixture in Tetrix japonica
(Orthoptera: Tetrigidae). ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhi-Xiang Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing Jiangsu Province China
- School of Life Sciences; Taizhou University; Taizhou Zhejiang Province China
| | - Fang Hong
- College of Oceanology and Food Sciences; Quanzhou Normal University; Quanzhou Fujian Province China
| | - Guo-Fang Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing Jiangsu Province China
- College of Oceanology and Food Sciences; Quanzhou Normal University; Quanzhou Fujian Province China
| |
Collapse
|
12
|
Strand P, Sundell-Bergman S, Brown JE, Dowdall M. On the divergences in assessment of environmental impacts from ionising radiation following the Fukushima accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 169-170:159-173. [PMID: 28119209 DOI: 10.1016/j.jenvrad.2016.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
The accident at the Fukushima-Daiichi Nuclear Power Station on March 11, 2011, led to significant contamination of the surrounding terrestrial and marine environments. Whilst impacts on human health remain the primary concern in the aftermath of such an accident, recent years have seen a significant body of work conducted on the assessment of the accident's impacts on both the terrestrial and marine environment. Such assessments have been undertaken at various levels of biological organisation, for different species, using different methodologies and coming, in many cases, to divergent conclusions as to the effects of the accident on the environment. This article provides an overview of the work conducted in relation to the environmental impacts of the Fukushima accident, critically comparing and contrasting methodologies and results with a view towards finding reasons for discrepancies, should they indeed exist. Based on the outcomes of studies conducted to date, it would appear that in order to avoid the fractured and disparate conclusions drawn in the aftermath of previous accidents, radioactive contaminants and their effects can no longer simply be viewed in isolation with respect to the ecosystems these effects may impact. A combination of laboratory based and field studies with a focus on ecosystem functioning and effects could offer the best opportunities for coherence in the interpretation of the results of studies into the environmental impacts of ionising radiation.
Collapse
Affiliation(s)
- P Strand
- CERAD, Norwegian University of Life Sciences, 1430 Ås, Norway.
| | - S Sundell-Bergman
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, 750 07 Uppsala, Sweden
| | - J E Brown
- Norwegian Radiation Protection Authority, Grini næringspark 13, 1332 Østerås, Norway
| | - M Dowdall
- Norwegian Radiation Protection Authority, Grini næringspark 13, 1332 Østerås, Norway
| |
Collapse
|
13
|
Otaki JM. Fukushima's lessons from the blue butterfly: A risk assessment of the human living environment in the post-Fukushima era. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2016; 12:667-672. [PMID: 27640413 DOI: 10.1002/ieam.1828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/11/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
A series of studies on the pale grass blue butterfly that were carried out to assess the biological effects of the Fukushima nuclear accident teach 3 important lessons. First, it is necessary to have an environmental indicator species, such as the pale grass blue butterfly in Japan, that is common (not endangered), shares a living environment (air, water, and soil) with humans, and is amenable to laboratory experiments. The monitoring of such indicator species before and immediately after a nuclear accident likely reflects acute impacts caused by initial exposure. To assess transgenerational and chronic effects, continuous monitoring over time is encouraged. Second, it is important to understand the actual health status of a polluted region and comprehend the whole picture of the pollution impacts, rather than focusing on the selected effects of radiation alone. In our butterfly experiments, plant leaves from Fukushima were fed to larval butterflies to access whole-body effects, focusing on survival rate and morphological abnormalities (rather than focusing on a specific disease or biochemical marker). Our results revealed that ionizing radiation is unlikely to be the exclusive source of environmental disturbances. Airborne particulate matter from a nuclear reactor, regardless of its radioactivity, is likely equally important. Finally, our butterfly experiments demonstrate that there is considerable variation in sensitivities to nuclear pollution within a single species or even within a local population. Based on these results, it is speculated that high pollution sensitivity in humans may be caused not only by low levels of functional DNA repair enzymes but also by immunological responses to particulate matter in the respiratory tract. These lessons from the pale grass blue butterfly should be integrated in studying future nuclear pollution events and decision making on nuclear and environmental policies at the local and international levels in the postFukushima era. Integr Environ Assess Manag 2016;12:667-672. © 2016 SETAC.
Collapse
Affiliation(s)
- Joji M Otaki
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
14
|
Gurung RD, Iwata M, Hiyama A, Taira W, Degnan B, Degnan S, Otaki JM. Comparative Morphological Analysis of the Immature Stages of the Grass Blue Butterflies Zizeeria and Zizina (Lepidoptera: Lycaenidae). Zoolog Sci 2016; 33:384-400. [PMID: 27498798 DOI: 10.2108/zs150171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pale grass blue butterfly has been used to assess the biological effects of the Fukushima nuclear accident. Zizeeria and Zizina are two closely related genera of grass blue butterflies that are widely distributed in tropical to temperate Asia, Australia, and Africa, making them suitable environmental indicators for these areas. However, the morphological features of the immature stages have been examined only in fragmentary fashion. Here, we reared Zizeeria maha argia, Zizeeria maha okinawana, Zizeeria karsandra karsandra, Zizina emelina emelina, Zizina otis labradus, and Zizina otis riukuensis using a standard rearing method that was developed for Zizeeria maha, and comparatively identified morphological traits to effectively classify the immature stages of species or subspecies. Morphological information on these and other subspecies including Zizeeria knysna knysna and Zizina otis antanossa from Africa was also collected from literature. The subspecies were all reared successfully. The subspecies all had dorsal nectary and tentacle organs with similar morphology. For the subspecies of Zizeeria maha, only minor morphological differences were noted. Similarly, the subspecies of Zizina otis shared many traits. Most importantly, Zizeeria and Zizina differed in the shape of the sensory hairs that accompany the dorsal nectary organ; Zizeeriahad pointed hairs, and Zizina had blunt or rounded hairs. However, Zizina emelina exhibited several intermediate features between these two genera. Overall, the morphological traits did not completely reflect the conventional systematic relationships. This comparative study describes the efficient rearing of the grass blue butterflies and provides a morphological basis for the use of these species as environmental indicators.
Collapse
Affiliation(s)
- Raj D Gurung
- 1 The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science,Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Masaki Iwata
- 1 The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science,Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Atsuki Hiyama
- 1 The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science,Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Wataru Taira
- 1 The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science,Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Bernard Degnan
- 2 Faculty of Science, School of Biological Sciences, University of Queensland,St. Lucia, Brisbane, QLD 4072, Australia
| | - Sandie Degnan
- 2 Faculty of Science, School of Biological Sciences, University of Queensland,St. Lucia, Brisbane, QLD 4072, Australia
| | - Joji M Otaki
- 1 The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science,Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
15
|
Taira W, Hiyama A, Nohara C, Sakauchi K, Otaki JM. Ingestional and transgenerational effects of the Fukushima nuclear accident on the pale grass blue butterfly. JOURNAL OF RADIATION RESEARCH 2015; 56 Suppl 1:i2-i18. [PMID: 26661851 PMCID: PMC4732531 DOI: 10.1093/jrr/rrv068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/14/2015] [Accepted: 10/04/2015] [Indexed: 06/01/2023]
Abstract
One important public concern in Japan is the potential health effects on animals and humans that live in the Tohoku-Kanto districts associated with the ingestion of foods contaminated with artificial radionuclides from the collapsed Fukushima Dai-ichi Nuclear Power Plant. Additionally, transgenerational or heritable effects of radiation exposure are also important public concerns because these effects could cause long-term changes in animal and human populations. Here, we concisely review our findings and implications related to the ingestional and transgenerational effects of radiation exposure on the pale grass blue butterfly, Zizeeria maha, which coexists with humans. The butterfly larval ingestion of contaminated leaves found in areas of human habitation, even at low doses, resulted in morphological abnormalities and death for some individuals, whereas other individuals were not affected, at least morphologically. This variable sensitivity serves as a basis for the adaptive evolution of radiation resistance. The distribution of abnormality and mortality rates from low to high doses fits well with a Weibull function model or a power function model. The offspring generated by morphologically normal individuals that consumed contaminated leaves exhibited high mortality rates when fed contaminated leaves; importantly, low mortality rates were restored when they were fed non-contaminated leaves. Our field monitoring over 3 years (2011-2013) indicated that abnormality and mortality rates peaked primarily in the fall of 2011 and decreased afterwards to normal levels. These findings indicate high impacts of early exposure and transgenerationally accumulated radiation effects over a specific period; however, the population regained normality relatively quickly after ∼15 generations within 3 years.
Collapse
Affiliation(s)
- Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Chiyo Nohara
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|