1
|
Chang Y, Wang Y, Li W, Wei Z, Tang S, Chen R. Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5471. [PMID: 37107752 PMCID: PMC10138381 DOI: 10.3390/ijerph20085471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Airborne viruses, such as COVID-19, cause pandemics all over the world. Virus-containing particles produced by infected individuals are suspended in the air for extended periods, actually resulting in viral aerosols and the spread of infectious diseases. Aerosol collection and detection devices are essential for limiting the spread of airborne virus diseases. This review provides an overview of the primary mechanisms and enhancement techniques for collecting and detecting airborne viruses. Indoor virus detection strategies for scenarios with varying ventilations are also summarized based on the excellent performance of existing advanced comprehensive devices. This review provides guidance for the development of future aerosol detection devices and aids in the control of airborne transmission diseases, such as COVID-19, influenza and other airborne transmission viruses.
Collapse
Affiliation(s)
- Yuqing Chang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Wen Li
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| |
Collapse
|
2
|
Zhang H, Laššáková S, Yan Z, Wang X, Šenkyřík P, Gaňová M, Chang H, Korabecna M, Neuzil P. Digital polymerase chain reaction duplexing method in a single fluorescence channel. Anal Chim Acta 2022; 1238:340243. [DOI: 10.1016/j.aca.2022.340243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
|
3
|
Dennis EK, Chaturvedi S, Chaturvedi V. So Many Diagnostic Tests, So Little Time: Review and Preview of Candida auris Testing in Clinical and Public Health Laboratories. Front Microbiol 2021; 12:757835. [PMID: 34691009 PMCID: PMC8529189 DOI: 10.3389/fmicb.2021.757835] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
The recognition of a new yeast, Candida auris, in 2009 in East Asia, and its rapid global spread, was a reminder of the threats posed by multidrug-resistant fungal pathogens. C. auris had likely remained unrecognized for a long time as accurate tests were not available. The laboratory community responded to the C. auris challenge by publishing 35 new or revised diagnostic methods between 2014 and early 2021. The commercial sector also modified existing diagnostic devices. These C. auris diagnostic tests run the gamut from traditional culture-based differential and selective media, biochemical assimilations, and rapid protein profiles, as well as culture-independent DNA-based diagnostics. We provide an overview of these developments, especially the tests with validation data that were subsequently adopted for common use. We share a workflow developed in our laboratory to process over 37,000 C. auris surveillance samples and 5,000 C. auris isolates from the outbreak in the New York metropolitan area. Our preview covers new devices and diagnostic approaches on the horizon based on microfluidics, optics, and nanotechnology. Frontline laboratories need rapid, cheap, stable, and easy-to-implement tests to improve C. auris diagnosis, surveillance, patient isolation, admission screening, and environmental control. Among the urgent needs is a lateral flow assay or similar device for presumptive C. auris identification. All laboratories will benefit from devices that allow rapid antifungal susceptibility testing, including detection of mutations conferring drug resistance. Hopefully, multiplex test panels are on the horizon for synergy of C. auris testing with ongoing surveillance of other healthcare-associated infections. C. auris genome analysis has a proven role for outbreak investigations, and diagnostic laboratories need quick access to regional and national genome analysis networks.
Collapse
Affiliation(s)
- Emily K Dennis
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany, Albany, NY, United States
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| |
Collapse
|
4
|
Zhang H, Yan Z, Wang X, Gaňová M, Chang H, Laššáková S, Korabecna M, Neuzil P. Determination of Advantages and Limitations of qPCR Duplexing in a Single Fluorescent Channel. ACS OMEGA 2021; 6:22292-22300. [PMID: 34497918 PMCID: PMC8412922 DOI: 10.1021/acsomega.1c02971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Real-time (quantitative) polymerase chain reaction (qPCR) has been widely applied in molecular diagnostics due to its immense sensitivity and specificity. qPCR multiplexing, based either on fluorescent probes or intercalating dyes, greatly expanded PCR capability due to the concurrent amplification of several deoxyribonucleic acid sequences. However, probe-based multiplexing requires multiple fluorescent channels, while intercalating dye-based multiplexing needs primers to be designed for amplicons having different melting temperatures. Here, we report a single fluorescent channel-based qPCR duplexing method on a model containing the sequence of chromosomes 21 (Chr21) and 18 (Chr18). We combined nonspecific intercalating dye EvaGreen with a 6-carboxyfluorescein (FAM) probe specific to either Chr21 or Chr18. The copy number (cn) of the target linked to the FAM probe could be determined in the entire tested range from the denaturation curve, while the cn of the other one was determined from the difference between the denaturation and elongation curves. We recorded the amplitude of fluorescence at the end of denaturation and elongation steps, thus getting statistical data set to determine the limit of the proposed method in detail in terms of detectable concentration ratios of both targets. The proposed method eliminated the fluorescence overspilling that happened in probe-based qPCR multiplexing and determined the specificity of the PCR product via melting curve analysis. Additionally, we performed and verified our method using a commercial thermal cycler instead of a self-developed system, making it more generally applicable for researchers. This quantitative single-channel duplexing method is an economical substitute for a conventional rather expensive probe-based qPCR requiring different color probes and hardware capable of processing these fluorescent signals.
Collapse
Affiliation(s)
- Haoqing Zhang
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Zhiqiang Yan
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Xinlu Wang
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Martina Gaňová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Honglong Chang
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Soňa Laššáková
- Institute
of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital
in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Marie Korabecna
- Institute
of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital
in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Pavel Neuzil
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- School
of Electrical Engineering and Computer Technology, Brno University of Technology, Technická 10, 612 00 Brno, Czech Republic
| |
Collapse
|
5
|
Castelli G, Bruno F, Reale S, Catanzaro S, Valenza V, Vitale F. Molecular Diagnosis of Leishmaniasis: Quantification of Parasite Load by a Real-Time PCR Assay with High Sensitivity. Pathogens 2021; 10:pathogens10070865. [PMID: 34358015 PMCID: PMC8308825 DOI: 10.3390/pathogens10070865] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Real-time PCR was developed to quantify Leishmania infantum kinetoplast DNA and optimized to achieve a sensitivity of 1 parasite/mL. For this purpose, we cloned the conserved kDNA fragment of 120 bp into competent cells and correlated them with serial dilutions of DNA extracted from reference parasite cultures calculating that a parasite cell contains approximately 36 molecules of kDNA. This assay was applied to estimate parasite load in clinical samples from visceral, cutaneous leishmaniasis patients and infected dogs and cats comparing with conventional diagnosis. The study aimed to propose a real-time PCR for the detection of Leishmania DNA from clinical samples trying to solve the diagnostic problems due to the low sensitivity of microscopic examination or the low predictive values of serology and resolve problems related to in vitro culture. The quantitative PCR assay in this study allowed detection of Leishmania DNA and quantification of considerably low parasite loads in samples that had been diagnosed negative by conventional techniques. In conclusion, this quantitative PCR can be used for the diagnosis of both human, canine and feline Leishmaniasis with high sensitivity and specificity, but also for evaluating treatment and the endpoint determination of leishmaniasis.
Collapse
Affiliation(s)
- Germano Castelli
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (G.C.); (S.C.); (V.V.); (F.V.)
| | - Federica Bruno
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (G.C.); (S.C.); (V.V.); (F.V.)
- Correspondence: ; Tel.: +39-0916565368
| | - Stefano Reale
- Laboratorio di Tecnologie Diagnostiche Innovative (TDI), Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy;
| | - Simone Catanzaro
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (G.C.); (S.C.); (V.V.); (F.V.)
| | - Viviana Valenza
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (G.C.); (S.C.); (V.V.); (F.V.)
| | - Fabrizio Vitale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (G.C.); (S.C.); (V.V.); (F.V.)
| |
Collapse
|
6
|
Gaňová M, Zhang H, Zhu H, Korabečná M, Neužil P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens Bioelectron 2021; 181:113155. [PMID: 33740540 DOI: 10.1016/j.bios.2021.113155] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/13/2021] [Accepted: 03/06/2021] [Indexed: 01/30/2023]
Abstract
The digital polymerase chain reaction (dPCR) multiplexing method can simultaneously detect and quantify closely related deoxyribonucleic acid sequences in complex mixtures. The dPCR concept is continuously improved by the development of microfluidics and micro- and nanofabrication, and different complex techniques are introduced. In this review, we introduce dPCR techniques based on sample compartmentalization, droplet- and chip-based systems, and their combinations. We then discuss dPCR multiplexing methods in both laboratory research settings and advanced or routine clinical applications. We focus on their strengths and weaknesses with regard to the character of biological samples and to the required precision of such analysis, as well as showing recently published work based on those methods. Finally, we envisage possible future achievements in this field.
Collapse
Affiliation(s)
- Martina Gaňová
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Haoqing Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Hanliang Zhu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Marie Korabečná
- 1st Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital, 12800, Prague, Czech Republic
| | - Pavel Neužil
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; The Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Zhang H, Gaňová M, Yan Z, Chang H, Neužil P. PCR Multiplexing Based on a Single Fluorescent Channel Using Dynamic Melting Curve Analysis. ACS OMEGA 2020; 5:30267-30273. [PMID: 33251461 PMCID: PMC7689941 DOI: 10.1021/acsomega.0c04766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Since its invention in 1986, the polymerase chain reaction (PCR), has become a well-established method for the detection and amplification of deoxyribonucleic acid (DNA) with a specific sequence. Incorporating fluorescent probes, known as TaqMan probes, or DNA intercalating dyes, such as SYBR Green, into the PCR mixture allows real-time monitoring of the reaction progress and extraction of quantitative information. Previously reported real-time PCR product detection using intercalating dyes required melting curve analysis (MCA) to be performed following thermal cycling. Here, we propose a technique to perform dynamic MCA during each thermal cycle, based on a continuous fluorescence monitoring method, providing qualitative and quantitative sample information. We applied the proposed method in multiplexing detection of hepatitis B virus DNA and complementary DNA of human immunodeficiency virus as well as glyceraldehyde 3-phosphate dehydrogenase in different concentration ratios. We extracted the DNA melting curve and its derivative from each PCR cycle during the transition from the elongation to the denaturation temperature with a set heating rate of 0.8 K·s-1and then used the data to construct individual PCR amplification curves for each gene to determine the initial concentration of DNA in the sample. Our proposed method allows researchers to look inside the PCR in each thermal cycle, determining the PCR product specificity in real time instead of waiting until the end of the PCR. Additionally, the slow transition rate from elongation to denaturation provides a dynamic multiplexing assay, allowing the detection of at least three genes in real time.
Collapse
Affiliation(s)
- Haoqing Zhang
- Ministry
of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department
of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Martina Gaňová
- Ministry
of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department
of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - ZhiQiang Yan
- Ministry
of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department
of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Honglong Chang
- Ministry
of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department
of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Pavel Neužil
- Ministry
of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department
of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Department
of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic
| |
Collapse
|
8
|
Zhu H, Podesva P, Liu X, Zhang H, Teply T, Xu Y, Chang H, Qian A, Lei Y, Li Y, Niculescu A, Iliescu C, Neuzil P. IoT PCR for pandemic disease detection and its spread monitoring. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 303:127098. [PMID: 32288256 PMCID: PMC7125887 DOI: 10.1016/j.snb.2019.127098] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 05/05/2023]
Abstract
During infectious disease outbreaks, the centers for disease control need to monitor particular areas. Considerable effort has been invested in the development of portable, user-friendly, and cost-effective systems for point-of-care (POC) diagnostics, which could also create an Internet of Things (IoT) for healthcare via a global network. However, at present IoT based on a functional POC instrument is not available. Here we show a fast, user-friendly, and affordable IoT system based on a miniaturized polymerase chain reaction device. We demonstrated the system's capability by amplification of complementary deoxyribonucleic acid (cDNA) of the dengue fever virus. The resulting data were then automatically uploaded via a Bluetooth interface to an Android-based smartphone and then wirelessly sent to a global network, instantly making the test results available anywhere in the world. The IoT system presented here could become an essential tool for healthcare centers to tackle infectious disease outbreaks identified either by DNA or ribonucleic acid.
Collapse
Affiliation(s)
- Hanliang Zhu
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Pavel Podesva
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaocheng Liu
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Haoqing Zhang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tomas Teply
- Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic
| | - Ying Xu
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Airong Qian
- School of Life Science, Northwesstern Polytechnical University, Xi'an 710072, PR China
| | - Yingfeng Lei
- Air Force Military Medical University, 169 Changle West Road, Xi'an, Shaanxi, 710032, PR China
| | - Yu Li
- School of Life Science, Northwesstern Polytechnical University, Xi'an 710072, PR China
| | - Andreea Niculescu
- Institute for Infocomm Research, ASTAR, 1 Fusionopolis Way, #21-01 Connexis (South Tower), 138632, Singapore
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, Bucharest 077190, Romania
| | - Pavel Neuzil
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
- Brno University of Technology, Central European Institute of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
9
|
Day K, Campbell H, Fisher A, Gibb K, Hill B, Rose A, Jarman SN. Development and validation of an environmental DNA test for the endangered Gouldian finch. ENDANGER SPECIES RES 2019. [DOI: 10.3354/esr00987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
|
11
|
Significant Expansion of Real-Time PCR Multiplexing with Traditional Chemistries using Amplitude Modulation. Sci Rep 2019; 9:1053. [PMID: 30705333 PMCID: PMC6355831 DOI: 10.1038/s41598-018-37732-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
The real time polymerase chain reaction (rtPCR) is an essential method for detecting nucleic acids that has a wide range of clinical and research applications. Current multiplexed rtPCR is capable of detecting four to six nucleic acid targets in a single sample. However, advances in clinical medicine are driving the need to measure many more targets at once. We demonstrate a novel method which significantly increases the multiplexing capability of any existing rtPCR instrument without new hardware, software, or chemistry. The technique works by varying the relative TaqMan probe concentrations amongst targets that are measured in a single fluorometric channel. Our fluorescent amplitude modulation method generates a unique rtPCR signature for every combination of targets present in a reaction. We demonstrate this technique by measuring nine different targets across three color channels with TaqMan reporting probes, yielding a detection accuracy of 98.9% across all combinations of targets. In principle this method could be extended to measure 6 or more targets per color channel across any number of color channels without loss in specificity.
Collapse
|
12
|
An X, Song Y, Bu S, Ma H, Gao K, Hou J, Wang S, Lei Z, Cao B. Association of polymorphisms at the microRNA binding site of the caprine KITLG 3'-UTR with litter size. Sci Rep 2016; 6:25691. [PMID: 27168023 PMCID: PMC4863368 DOI: 10.1038/srep25691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/21/2016] [Indexed: 01/23/2023] Open
Abstract
This study identified three novel single nucleotide polymorphisms (SNPs) (c.1389C > T, c.1457A > C and c.1520G > A) in the caprine KITLG 3'-UTR through DNA sequencing. The three SNP loci were closely linked in Guanzhong dairy (GD) goats. Two alleles of the c.1457A > C SNP introduced two miRNA sites (chi-miR-204-5p and chi-miR-211). Individuals with combined genotype TT-CC-AA had a higher litter size compared with those with combined genotypes CC-AA-GG, TC-CC-GA and CC-AC-GG (P < 0.05). Luciferase assays showed that chi-miR-204-5p and chi-miR-211 suppressed luciferase expression in the presence of allele 1457A compared with negative control (NC) and allele 1457C (P < 0.05). Western blot revealed that KITLG significantly decreased in the granulosa cells (GCs) of genotype AA compared with that in the GCs of genotype CC and NC (P < 0.05). The KITLG mRNA levels of the CC-AA-GG carriers significantly decreased compared with those of the TT-CC-AA, TC-CC-GA and CC-AC-GG carriers. In addition, cell proliferation was reduced in haplotype C-A-G GCs compared with that in haplotype T-C-A GCs. These results suggest that SNPs c.1389C > T, c.1457A > C and c.1520G > A account for differences in the litter size of GD goats because chi-miR-204-5p and chi-miR-211 could change the expression levels of the KITLG gene and reduce GC proliferation.
Collapse
Affiliation(s)
- Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shuhai Bu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Haidong Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jinxing Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhang Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
13
|
Abstract
Here we report one of the smallest real-time polymerase chain reaction (PCR) systems to date with an approximate size of 100 mm × 60 mm × 33 mm. The system is an autonomous unit requiring an external 12 V power supply. Four simultaneous reactions are performed in the form of virtual reaction chambers (VRCs) where a ≈200 nL sample is covered with mineral oil and placed on a glass cover slip. Fast, 40 cycle amplification of an amplicon from the H7N9 gene was used to demonstrate the PCR performance. The standard curve slope was -3.02 ± 0.16 cycles at threshold per decade (mean ± standard deviation) corresponding to an amplification efficiency of 0.91 ± 0.05 per cycle (mean ± standard deviation). The PCR device was capable of detecting a single deoxyribonucleic acid (DNA) copy. These results further suggest that our handheld PCR device may have broad, technologically-relevant applications extending to rapid detection of infectious diseases in small clinics.
Collapse
Affiliation(s)
| | - Bojan Robert Ilic
- National Institute of Standard and Technology (NIST), Center for Nanoscale Science and Technology, 100 Bureau Drive, MS 6201, Gaithersburg, MD 20899-6201, USA
| | - Andreas Manz
- KIST-Europe, Microfluidics Group, Campus E7.1, 66111 Saarbrücken, Germany.
| | - Pavel Neužil
- KIST-Europe, Microfluidics Group, Campus E7.1, 66111 Saarbrücken, Germany. and Brno University of Technology (BUT), Central European Institute of Technology (CEITEC), Technická 3058/10, CZ-616 00 Brno, Czech Republic
| |
Collapse
|