1
|
Tzfadia O, Gijsbers A, Vujkovic A, Snobre J, Vargas R, Dewaele K, Meehan CJ, Farhat M, Hakke S, Peters PJ, de Jong BC, Siroy A, Ravelli RBG. Single nucleotide variation catalog from clinical isolates mapped on tertiary and quaternary structures of ESX-1-related proteins reveals critical regions as putative Mtb therapeutic targets. Microbiol Spectr 2024; 12:e0381623. [PMID: 38874407 PMCID: PMC11302016 DOI: 10.1128/spectrum.03816-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 06/15/2024] Open
Abstract
Proteins encoded by the ESX-1 genes of interest are essential for full virulence in all Mycobacterium tuberculosis complex (Mtbc) lineages, the pathogens causing the highest mortality worldwide. Identifying critical regions in these ESX-1-related proteins could provide preventive or therapeutic targets for Mtb infection, the game changer needed for tuberculosis control. We analyzed a compendium of whole genome sequences of clinical Mtb isolates from all lineages from >32,000 patients and identified single nucleotide polymorphisms. When mutations corresponding to all non-synonymous single nucleotide polymorphisms were mapped on structural models of the ESX-1 proteins, fully conserved regions emerged. Some could be assigned to known quaternary structures, whereas others could be predicted to be involved in yet-to-be-discovered interactions. Some mutants had clonally expanded (found in >1% of the isolates); these mutants were mostly located at the surface of globular domains, remote from known intra- and inter-molecular protein-protein interactions. Fully conserved intrinsically disordered regions of proteins were found, suggesting that these regions are crucial for the pathogenicity of the Mtbc. Altogether, our findings highlight fully conserved regions of proteins as attractive vaccine antigens and drug targets to control Mtb virulence. Extending this approach to the whole Mtb genome as well as other microorganisms will enhance vaccine development for various pathogens. IMPORTANCE We mapped all non-synonymous single nucleotide polymorphisms onto each of the experimental and predicted ESX-1 proteins' structural models and inspected their placement. Varying sizes of conserved regions were found. Next, we analyzed predicted intrinsically disordered regions within our set of proteins, finding two putative long stretches that are fully conserved, and discussed their potential essential role in immunological recognition. Combined, our findings highlight new targets for interfering with Mycobacterium tuberculosis complex virulence.
Collapse
Affiliation(s)
- Oren Tzfadia
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Abril Gijsbers
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alexandra Vujkovic
- Clinical Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- ADReM Data Lab, University of Antwerp, Antwerp, Belgium
| | - Jihad Snobre
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Roger Vargas
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Klaas Dewaele
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sneha Hakke
- Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Peter J. Peters
- Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Bouke C. de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Axel Siroy
- Unité de soutien à l'Institut Européen de Chimie et Biologie (IECB), CNRS, INSERM, IECB, US1, Université de Bordeaux, Pessac, France
| | - Raimond B. G. Ravelli
- Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Abstract
The phrase "gain of function" (GOF) has recently acquired a negative connotation in experimental biology by its association with risky science. Whereas much of the discussion on the relative merits of GOF-type experiments has focused on their risk-benefit equation, relatively little has been said about their epistemic value. In this article, we recount how GOF experiments were critical for establishing DNA as the genetic material, the identification of cellular receptors, and the role of oncogenes in cancer research. Today, many of the products of the biomedical revolution such as synthetic insulin, growth factors, and monoclonal antibodies are the result of GOF experiments where cells were given the new function of synthesizing medically important products. GOF experiments and complementary loss of function experiments are epistemically powerful tools for establishing causality in biology.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ferric C. Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Malakar B, Chauhan K, Sanyal P, Naz S, Kalam H, Vivek-Ananth RP, Singh LV, Samal A, Kumar D, Nandicoori VK. Phosphorylation of CFP10 modulates Mycobacterium tuberculosis virulence. mBio 2023; 14:e0123223. [PMID: 37791794 PMCID: PMC10653824 DOI: 10.1128/mbio.01232-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Secreted virulence factors play a critical role in bacterial pathogenesis. Virulence effectors not only help bacteria to overcome the host immune system but also aid in establishing infection. Mtb, which causes tuberculosis in humans, encodes various virulence effectors. Triggers that modulate the secretion of virulence effectors in Mtb are yet to be fully understood. To gain mechanistic insight into the secretion of virulence effectors, we performed high-throughput proteomic studies. With the help of system-level protein-protein interaction network analysis and empirical validations, we unravelled a link between phosphorylation and secretion. Taking the example of the well-known virulence factor of CFP10, we show that the dynamics of CFP10 phosphorylation strongly influenced bacterial virulence and survival ex vivo and in vivo. This study presents the role of phosphorylation in modulating the secretion of virulence factors.
Collapse
Affiliation(s)
- Basanti Malakar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Komal Chauhan
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Priyadarshini Sanyal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Centre for Cellular and Molecular Biology Campus, Hyderabad, India
| | - Saba Naz
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Haroon Kalam
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - R. P. Vivek-Ananth
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Lakshya Veer Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Dhiraj Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vinay Kumar Nandicoori
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Centre for Cellular and Molecular Biology Campus, Hyderabad, India
| |
Collapse
|
4
|
Structural Analysis of the Partially Disordered Protein EspK from Mycobacterium Tuberculosis. CRYSTALS 2020. [DOI: 10.3390/cryst11010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For centuries, tuberculosis has been a worldwide burden for human health, and gaps in our understanding of its pathogenesis have hampered the development of new treatments. ESX-1 is a complex machinery responsible for the secretion of virulence factors that manipulate the host response. Despite the importance of these secreted proteins for pathogenicity, only a few of them have been structurally and functionally characterised. Here, we describe a structural study of the ESX-secretion associated protein K (EspK), a 74 kDa protein known to be essential for the secretion of other substrates and the cytolytic effects of ESX-1. Small-Angle X-ray Scattering (SAXS) data show that EspK is a long molecule with a maximal dimension of 228 Å. It consists of two independent folded regions at each end of the protein connected by a flexible unstructured region driving the protein to coexist as an ensemble of conformations. Limited proteolysis identified a 26 kDa globular domain at the C-terminus of the protein consisting of a mixture of α-helices and β-strands, as shown by circular dichroism (CD) and SAXS. In contrast, the N-terminal portion is mainly helical with an elongated shape. Sequence conservation suggests that this architecture is preserved amongst the different mycobacteria species, proposing specific roles for the N- and C-terminal domains assisted by the middle flexible linker.
Collapse
|
5
|
Abo-Kadoum MA, Assad M, Dai Y, Lambert N, Moure UAE, Eltoukhy A, Nzaou SAE, Moaaz A, Xie J. Mycobacterium tuberculosis Raf kinase inhibitor protein (RKIP) Rv2140c is involved in cell wall arabinogalactan biosynthesis via phosphorylation. Microbiol Res 2020; 242:126615. [PMID: 33189070 DOI: 10.1016/j.micres.2020.126615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis Rv2140c is a function unknown conserved phosphatidylethanolamine-binding protein (PEBP), homologous to Raf kinase inhibitor protein (RKIP) in human beings. To delineate its function, we heterologously expressed Rv2140c in a non-pathogenic M. smegmatis. Quantitative phosphoproteomic analysis between two recombinant strains Ms_Rv2140c and Ms_vec revealed that Rv2140c differentially regulate 425 phosphorylated sites representing 282 proteins. Gene ontology GO, and a cluster of orthologous groups COG analyses showed that regulated phosphoproteins by Rv2140c were mainly associated with metabolism and cellular processes. Rv2140c significantly repressed phosphoproteins involved in signaling, including serine/threonine-protein kinases and two-component system, and the arabinogalactan biosynthesis pathway phosphoproteins were markedly up-regulated, suggesting a role of Rv2140c in modulating cell wall. Consistent with phosphoproteomic data, Rv2140c altered some phenotypic properties of M. smegmatis such as colony morphology, cell wall permeability, survival in acidic conditions, and active lactose transport. In summary, we firstly demonstrated the role of PEBP protein Rv2140c, especially in phosphorylation of mycobacterial arabinogalactan biosynthesis proteins.
Collapse
Affiliation(s)
- M A Abo-Kadoum
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch, Egypt
| | - Mohammed Assad
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yongdong Dai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Nzungize Lambert
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch, Egypt; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Stech A E Nzaou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Asmaa Moaaz
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Baena A, Cabarcas F, Alvarez-Eraso KLF, Isaza JP, Alzate JF, Barrera LF. Differential determinants of virulence in two Mycobacterium tuberculosis Colombian clinical isolates of the LAM09 family. Virulence 2020; 10:695-710. [PMID: 31291814 PMCID: PMC6650194 DOI: 10.1080/21505594.2019.1642045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The heterogeneity of the clinical outcome of Mycobacterium tuberculosis (Mtb) infection may be due in part to different strategies used by circulating strains to cause disease. This heterogeneity is one of the main limitations to eradicate tuberculosis disease. In this study, we have compared the transcriptional response of two closely related Colombian clinical isolates (UT127 and UT205) of the LAM family under two axenic media conditions. These clinical isolates are phenotypically different at the level of cell death, cytokine production, growth kinetics upon in vitro infection of human tissue macrophages, and membrane vesicle secretion upon culture in synthetic medium. Using RNA-seq, we have identified different pathways that account for two different strategies to cope with the stressful condition of a carbon-poor media such as Sauton’s. We showed that the clinical isolate UT205 focus mainly in the activation of virulence systems such as the ESX-1, synthesis of diacyl-trehalose, polyacyl-trehalose, and sulfolipids, while UT127 concentrates its efforts mainly in the survival mode by the activation of the DNA replication, cell division, and lipid biosynthesis. This is an example of two Mtb isolates that belong to the same family and lineage, and even though they have a very similar genome, its transcriptional regulation showed important differences. This results in summary highlight the necessity to reach a better understanding of the heterogeneity in the behavior of these circulating Mtb strains which may help us to design better treatments and vaccines and to identify new targets for drugs.
Collapse
Affiliation(s)
- Andres Baena
- a Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,b Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Felipe Cabarcas
- c Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,d Grupo SISTEMIC, Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia , Medellín , Colombia
| | - Karen L F Alvarez-Eraso
- a Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Juan Pablo Isaza
- c Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Juan F Alzate
- b Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,c Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,e Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Luis F Barrera
- a Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,f Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| |
Collapse
|
7
|
Chatterjee A, Pandey S, Dhamija E, Jaiswal S, Yabaji SM, Srivastava KK. ATP synthase, an essential enzyme in growth and multiplication is modulated by protein tyrosine phosphatase in Mycobacterium tuberculosis H37Ra. Biochimie 2019; 165:156-160. [PMID: 31377193 DOI: 10.1016/j.biochi.2019.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase (PtpA) has so far been known to control intracellular survival of mycobacteria; whereas the ATP synthase which is essential for mycobacterial growth has recently been contemplated in developing a breakthrough anti-TB drug, diarylquinoline. Since both of these enzymes have been established as validated drug targets; we report a robust and functional relationship between these two enzymes through a series of experiments using Mtb H37Ra. In the present study we report that the mycobacterial ATP synthase alpha subunit is regulated by PtpA. We generated gene knock-out for the enzyme PtpA and subjected to determine the mycobacterial replication and the proteome profile of wild type, mutant (ΔptpA) and complemented (ΔptpA:ptpA) strains of Mtb H37Ra. A substantial amount of decrease in the protein level of ATP synthase alpha subunit (AtpA) in case of mutant H37Ra was observed, while the levels of the enzyme were either increased or remained unchanged, in wild type and in the complemented strains.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sapna Pandey
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ekta Dhamija
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Swati Jaiswal
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shivraj M Yabaji
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kishore K Srivastava
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
8
|
Characterisation of genes differentially expressed in macrophages by virulent and attenuated Mycobacterium tuberculosis through RNA-Seq analysis. Sci Rep 2019; 9:4027. [PMID: 30858471 PMCID: PMC6411972 DOI: 10.1038/s41598-019-40814-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/21/2019] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis (TB) remains a global healthcare issue. Understanding the host-pathogen interactions in TB is vital to develop strategies and therapeutic tools for the control of Mycobacterium tuberculosis (Mtb). In this study, transcriptome analyses of macrophages infected with either the virulent Mtb strain H37Rv (Rv) or the avirulent Mtb strain H37Ra (Ra) were carried out and 750 differentially expressed genes (DEGs) were identified. As expected, the DEGs were mainly involved in the induction of innate immune responses against mycobacterial infections. Among the DEGs, solute carrier family 7 member 2 (Slc7a2) was more strongly expressed in Ra-infected macrophages. Induction of SLC7A2 was important for macrophages to control the intracellular survival of Mtb. Our results imply that SLC7A2 plays an important role in macrophages during Mtb infection. Our findings could prove useful for the development of new therapeutic strategies to control TB infection.
Collapse
|
9
|
Dual phosphorylation in response regulator protein PrrA is crucial for intracellular survival of mycobacteria consequent upon transcriptional activation. Biochem J 2017; 474:4119-4136. [PMID: 29101285 DOI: 10.1042/bcj20170596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/05/2023]
Abstract
The remarkable ability of Mycobacterium tuberculosis (Mtb) to survive inside human macrophages is attributed to the presence of a complex sensory and regulatory network. PrrA is a DNA-binding regulatory protein, belonging to an essential two-component system (TCS), PrrA/B, which is required for early phase intracellular replication of Mtb. Despite its importance, the mechanism of PrrA/B-mediated signaling is not well understood. In the present study, we demonstrate that the binding of PrrA on the promoter DNA and its consequent activation is cumulatively controlled via dual phosphorylation of the protein. We have further characterized the role of terminal phospho-acceptor domain in the physical interaction of PrrA with its cognate kinase PrrB. The genetic deletion of prrA/B in Mycobacterium smegmatis was possible only in the presence of ectopic copies of the genes, suggesting the essentiality of this TCS in fast-growing mycobacterial strains as well. The overexpression of phospho-mimetic mutant (T6D) altered the growth of M. smegmatis in an in vitro culture and affected the replication of Mycobacterium bovis BCG in mouse peritoneal macrophages. Interestingly, the Thr6 site was found to be conserved in Mtb complex, whereas it was altered in some fast-growing mycobacterial strains, indicating that this unique phosphorylation might be predominant in employing the regulatory circuit in M. bovis BCG and presumably also in Mtb complex.
Collapse
|
10
|
Verma R, Pinto SM, Patil AH, Advani J, Subba P, Kumar M, Sharma J, Dey G, Ravikumar R, Buggi S, Satishchandra P, Sharma K, Suar M, Tripathy SP, Chauhan DS, Gowda H, Pandey A, Gandotra S, Prasad TSK. Quantitative Proteomic and Phosphoproteomic Analysis of H37Ra and H37Rv Strains of Mycobacterium tuberculosis. J Proteome Res 2017; 16:1632-1645. [DOI: 10.1021/acs.jproteome.6b00983] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Renu Verma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- School
of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sneha Maria Pinto
- YU-IOB
Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575020, India
| | - Arun Hanumana Patil
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- School
of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Pratigya Subba
- YU-IOB
Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575020, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | | | - Shashidhar Buggi
- Intermediate
Reference Laboratory, State Tuberculosis Training and Demonstration Centre, Someshwaranagar, SDSTRC and RGICD Campus, Bangalore 560029, India
- Department
of Cardio Thoracic Surgery, Super Specialty State Referral Hospital for Chest Diseases, Someshwaranagar First Main Road, Dharmaram College
Post, Bangalore 560029, India
| | | | - Kusum Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Mrutyunjay Suar
- School
of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Srikanth Prasad Tripathy
- National Institute
for Research in Tuberculosis (Indian Council of Medical Research), Chennai 600031, India
| | - Devendra Singh Chauhan
- Department of Microbiology, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (Indian Council of Medical Research), Agra 282004, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- YU-IOB
Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575020, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Sheetal Gandotra
- CSIR-Institute of Genomics & Integrative Biology, SukhdevVihar, New Delhi 110020, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- YU-IOB
Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575020, India
| |
Collapse
|
11
|
Protein kinase C-δ inhibitor, Rottlerin inhibits growth and survival of mycobacteria exclusively through Shikimate kinase. Biochem Biophys Res Commun 2016; 478:721-6. [DOI: 10.1016/j.bbrc.2016.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
|
12
|
Shah S, Briken V. Modular Organization of the ESX-5 Secretion System in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2016; 6:49. [PMID: 27200304 PMCID: PMC4852179 DOI: 10.3389/fcimb.2016.00049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/18/2016] [Indexed: 11/30/2022] Open
Abstract
Mycobacteria utilize type VII secretion systems (T7SS) to export many of their important virulence proteins. The T7SS encompasses five homologous secretion systems (ESX-1 to ESX-5). Most pathogenic mycobacterial species, including the human pathogen Mycobacterium tuberculosis, possess all five ESX systems. The ESX-1, -3, and -5 systems are important for virulence of mycobacteria but the molecular mechanisms of their secretion apparatus and the identity and activity of secreted effector proteins are not well characterized. The different ESX systems show similarities in gene composition due to their common phylogenetic origin but recent studies demonstrate mechanistic as well as functional variations between the systems. For example, the ESX-1 system is involved in lysis of the phagosomal membrane and phagosomal escape of the bacteria while the ESX-5 system is required for mycobacterial cell wall stability and host cell lysis. Mechanistically, the ESX-1 substrates show interdependence during secretion while the ESX-5 system may use a duplicated four-gene region (ESX-5a) as an accessory system for transport of a subset of proteins of the ESX-5 secretome. In the present review we will provide an overview of the molecular components of the T7SS and their function with a particular focus on the ESX-5 system.
Collapse
Affiliation(s)
- Swati Shah
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| |
Collapse
|