1
|
Bragança J, Pinto R, Silva B, Marques N, Leitão HS, Fernandes MT. Charting the Path: Navigating Embryonic Development to Potentially Safeguard against Congenital Heart Defects. J Pers Med 2023; 13:1263. [PMID: 37623513 PMCID: PMC10455635 DOI: 10.3390/jpm13081263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.
Collapse
Affiliation(s)
- José Bragança
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rute Pinto
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Bárbara Silva
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Nuno Marques
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- School of Health, University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Cashman TJ, Trivedi CM. Human 3p14.3: A Regulatory Region in Transposition of the Great Arteries. Circ Res 2022; 130:181-183. [PMID: 35050689 PMCID: PMC8852236 DOI: 10.1161/circresaha.121.320624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Timothy J Cashman
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA,Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Chinmay M. Trivedi
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA,Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA,Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA,Correspondence to: Chinmay M. Trivedi, MD, PhD, The Albert Sherman Center, AS7-1047, 368 Plantation St, Worcester, MA 01605
| |
Collapse
|
3
|
Jiang X, Li T, Liu S, Fu Q, Li F, Chen S, Sun K, Xu R, Xu Y. Variants in a cis-regulatory element of TBX1 in conotruncal heart defect patients impair GATA6-mediated transactivation. Orphanet J Rare Dis 2021; 16:334. [PMID: 34332615 PMCID: PMC8325851 DOI: 10.1186/s13023-021-01981-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background TBX1 (T-box transcription factor 1) is a major candidate gene that likely contributes to the etiology of velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Although the haploinsufficiency of TBX1 in both mice and humans results in congenital cardiac malformations, little has been elucidated about its upstream regulation. We aimed to explore the transcriptional regulation and dysregulation of TBX1. Methods Different TBX1 promoter reporters were constructed. Luciferase assays and electrophoretic mobility shift assays (EMSAs) were used to identify a cis-regulatory element within the TBX1 promoter region and its trans-acting factor. The expression of proteins was identified by immunohistochemistry and immunofluorescence. Variants in the cis-regulatory element were screened in conotruncal defect (CTD) patients. In vitro functional assays were performed to show the effects of the variants found in CTD patients on the transactivation of TBX1. Results We identified a cis-regulatory element within intron 1 of TBX1 that was found to be responsive to GATA6 (GATA binding protein 6), a transcription factor crucial for cardiogenesis. The expression patterns of GATA6 and TBX1 overlapped in the pharyngeal arches of human embryos. Transfection experiments and EMSA indicated that GATA6 could activate the transcription of TBX1 by directly binding with its GATA cis-regulatory element in vitro. Furthermore, sequencing analyses of 195 sporadic CTD patients without the 22q11.2 deletion or duplication identified 3 variants (NC_000022.11:g.19756832C > G, NC_000022.11:g.19756845C > T, and NC_000022.11:g. 19756902G > T) in the non-coding cis-regulatory element of TBX1. Luciferase assays showed that all 3 variants led to reduced transcription of TBX1 when incubated with GATA6. Conclusions Our findings showed that TBX1 might be a direct transcriptional target of GATA6, and variants in the non-coding cis-regulatory element of TBX1 disrupted GATA6-mediated transactivation. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01981-4.
Collapse
Affiliation(s)
- Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Tingting Li
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Sijie Liu
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, 200127, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yuejuan Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Feng C, Wang Q, Cao Z, Guan H, Xu ZF. WNT10A rs147680216 G>A mutation indicates a higher risk for non-syndromic oral cleft in a northeastern Chinese population. Br J Oral Maxillofac Surg 2019; 57:572-577. [DOI: 10.1016/j.bjoms.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
5
|
Zhang RR, Cai K, Liu L, Yang Q, Zhang P, Gui YH, Wang F. A regulatory variant in TBX2 promoter is related to the decreased susceptibility of congenital heart disease in the Han Chinese population. Mol Genet Genomic Med 2018; 7:e00530. [PMID: 30525309 PMCID: PMC6393683 DOI: 10.1002/mgg3.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/30/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Background Tbx2 plays a vital role in the cardiac cushion development. In this study, we aimed to determine the relationship between common genetic variants in the promoter region of TBX2 gene and the risk of congenital heart disease (CHD). Methods Blood samples of 516 CHD patients and 587 control subjects were enrolled. Sanger sequencing and SNaPshot analysis were performed for genotyping in our case–control cohort. Luciferase and electrophoretic mobility shift assay (EMSA) were conducted to uncover the potential modulatory mechanism of the related variants. Results Variant rs4455026(c.‐1028G>C) in TBX2 promoter region was found to be associated with significantly lower CHD susceptibility. The risk of CHD in C allele carriers (GC and CC genotypes) decreased by 30% compared to the wild‐type GG genotype subjects (OR = 0.70, 95% CI = 0.55–0.89, p = 0.0038). It was revealed that G to C variation resulted in a decrease in the transcriptional activity of luciferase gene, and a potential change in binding affinity with certain nucleoproteins in EMSA data. Conclusion The minor C allele of rs4455026 in TBX2 promoter region was related with lower CHD susceptibility in the Han Chinese population via repressing its transcriptional activity.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China.,Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ke Cai
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Lian Liu
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Yang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Ping Zhang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Yong-Hao Gui
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
The role of histone modification and a regulatory single-nucleotide polymorphism (rs2071166) in the Cx43 promoter in patients with TOF. Sci Rep 2017; 7:10435. [PMID: 28874875 PMCID: PMC5585261 DOI: 10.1038/s41598-017-10756-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
Abnormal level of Cx43 expression could result in CHD. Epigenetic modification and disease-associated, non-coding SNPs might influence gene transcription and expression. Our study aimed to determine the role of histone modification and an rSNP (rs2071166) in the Cx43 promoter in patients with TOF. Our results indicate that H3K18ac bind to Cx43 promoter and that their levels are reduced in TOF patients relative to controls. The relationship between the non-coding SNP in the Cx43 gene and TOF patients was evaluated in 158 patients and 300 controls. The C allele of rs2071166 was confirmed to result in an increased risk of TOF (OR = 1.586, 95%CI 1.149–2.189). Individuals with the CC genotype at rs2071166 also showed a significant susceptibility to TOF (OR = 2.961, 95%CI 1.452–6.038). The mRNA level in TOF who were CC genotype was lower than that in patients with the AA/AC genotype. Functional analysis in cells and transgenic zebrafish models showed that rs2071166 decreased the activity of the promoter and could block the interaction between RXRα and RARE. This is the first study to illustrate that epigenetic modification and an rSNP in the Cx43 promoter region play a critical role in TOF by impacting the transcriptional activity and expression level of Cx43.
Collapse
|
7
|
Mild decrease in TBX20 promoter activity is a potentially protective factor against congenital heart defects in the Han Chinese population. Sci Rep 2016; 6:23662. [PMID: 27034249 PMCID: PMC4817057 DOI: 10.1038/srep23662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
Congenital heart defects (CHDs) are one of the most common human birth defects worldwide. TBX20 is a crucial transcription factor for the development of embryonic cardiovascular system. Previous studies have demonstrated that mutations in the TBX20 coding region contribute to familial and sporadic CHD occurrence. However, it remains largely unknown whether variants in the TBX20 regulatory region are also related to CHDs. In this study, we sequenced the 2 kb region upstream of the TBX20 transcription start site in 228 CHD patients and 292 controls in a Han Chinese population. Among the 8 single nucleotide polymorphisms (SNPs) identified, six SNPs are in strong linkage disequilibrium and the minor alleles are associated with lower CHD risk (for rs10235849 chosen as tag SNP, p = 0.0069, OR (95% CI) = 0.68 (0.51–0.90)). Functional analysis showed that the minor alleles have lower transcriptional activity than major alleles in both human heart tissues and three cell lines. The electrophoretic mobility shift assay suggested that TBX20 minor alleles may exhibit higher binding affinity with certain transcription repressors. Our results indicate that a moderately lower TBX20 activity potentially reduces CHD risk in the Han Chinese population, providing new insight in the study of CHD etiology.
Collapse
|