1
|
Zhou T, Cai H, Wu L, Chen J, Zhou L, Liu J. Bioinformatics analysis and identification of underlying biomarkers potentially linking allergic rhinitis and autophagy. Sci Rep 2024; 14:27624. [PMID: 39528529 PMCID: PMC11555423 DOI: 10.1038/s41598-024-78375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Allergic rhinitis (AR) resulted in impairing human health and quality of life seriously. There is currently no definitive remedy for AR. Recent studies have shown that autophagy may regulate airway inflammation. Our comprehension of autophagy and its molecular mechanism in the field of AR condition remains incomplete. Our research endeavors to bridge this knowledge deficit by investigating the correlation between AR and autophagy. The AR-related gene expression profile GSE50223 was screened and downloaded. The "limma" package of R software was utilized to identify differentially expressed genes associated with autophagy. GO, KEGG, and Gene set enrichment analyses were conducted. A PPI network of differentially expressed autophagy-related genes were established and further identified through the CytoHubba algorithm. A receiver operating characteristic curve analysis was employed to evaluate the diagnostic effectiveness of the hub genes and to examine the relationship between autophagy-related genes and AR. Finally, qRT-PCR was carried out to confirm the chosen autophagy-related genes using clinical samples. 21 autophagy-related genes in allergic rhinitis were identified. BECN1, PIK3C3, GABARAPL2, ULK2, and UVRAG were considered as significant differentially expressed autophagy-related genes. However, additional molecular biological experiments will be necessary to elucidate the underlying mechanism connecting autophagy and AR.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hua Cai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Lisha Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Jun Liu
- Department of Otorhinolaryngology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
2
|
Ding C, Gai S, Ma Z, Yang L, Fu Z. The role of potassium ion channels in chronic sinusitis. Front Pharmacol 2024; 15:1431330. [PMID: 39015366 PMCID: PMC11249563 DOI: 10.3389/fphar.2024.1431330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Chronic sinusitis is a common inflammatory disease of the nasal and sinus mucosa, leading to symptoms such as nasal congestion, runny nose, decreased sense of smell, and headache. It often recurs and seriously affects the quality of life of patients. However, its pathological and physiological mechanisms are not fully understood. In recent years, the role of potassium ion channels in the regulation of mucosal barrier function and inflammatory cell function has received increasing attention. In chronic sinusitis, there are often changes in the expression and function of potassium channels, leading to mucosal damage and a stronger inflammatory response. However, the related research is still in its early stages. This article will review the role of the potassium channel in the pathological and physiological changes of chronic sinusitis. The studies revealed that BK/TREK-1 potassium channel play a protective role in the nasal mucosal function through p38-MAPK pathway, and KCa3.1/Kv1.3 enhance the inflammatory response of Chronic rhinosinusitis by regulating immune cell function, intracellular Ca2+ signaling and ERK/MAPK/NF-κB pathway. Because ion channels are surface proteins of cell membranes, they are easier to intervene with drugs, and the results of these studies may provide new effective targets for the prevention and treatment of chronic sinusitis.
Collapse
Affiliation(s)
- Changhui Ding
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Senxi Gai
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhiyong Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lizhuo Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhijie Fu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
3
|
Chen HW, Liu FC, Kuo HM, Tang SH, Niu GH, Zhang MM, Tsou LK, Sung PJ, Wen ZH. Immunomodulatory and anti-angiogenesis effects of excavatolide B and its derivatives in alleviating atopic dermatitis. Biomed Pharmacother 2024; 172:116279. [PMID: 38368838 DOI: 10.1016/j.biopha.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition primarily driven by T helper 2 (Th2) cytokines, resulting in skin barrier defects, angiogenesis, and inflammatory responses. The marine natural product excavatolide B (EXCB), isolated from the Formosan Gorgonian coral Briareum stechei, exhibits anti-inflammatory and analgesic properties. To enhance solubility, EXCB is chemically modified into the derivatives EXCB-61 salt and EXCB-79. The study aims to investigate the therapeutic effects of these compounds on dinitrochlorbenzene (DNCB)-induced skin damage and to elucidate the underlying anti-inflammatory and anti-angiogenesis mechanism. In vitro, using lipopolysaccharide (LPS)-induced RAW 264.7 cells, all compounds at 10 μM significantly inhibited expression of inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2), vascular endothelial growth factor (VEGF), and cytokines (interleukin (IL)-1β, IL-6, and IL-17A). In vivo, topical application of these compounds on DNCB-induced AD mice alleviated skin symptoms, reduced serum levels of IgE, IL-4, IL-13, IL-17, and interferon-γ, and moderated histological phenomena such as hyperplasia, inflammatory cell infiltration, and angiogenesis. The three compounds restored the expression of skin barrier-related proteins (loricrin, filaggrin, and claudin-1) and reduced the expression of angiogenesis-related proteins (VEGF and platelet endothelial cell adhesion molecule-CD31) in the tissues. This is the first study to indicate that EXCB, EXCB-61 salt, and EXCB-79 can treat AD disease by reducing inflammation and angiogenesis. Hence, they may be considered potential candidates for the development of new drugs for AD.
Collapse
Affiliation(s)
- Hsiu-Wen Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Shih-Hsuan Tang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Guang-Hao Niu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan.
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
4
|
Jiang Y, Pan Q, Zhu X, Liu J, Liu Z, Deng Y, Liu W, Liu Y. Knockdown of CCR3 gene inhibits Proliferation, migration and degranulation of eosinophils in mice by downregulating the PI3K/Akt pathway. Int Immunopharmacol 2022; 113:109439. [DOI: 10.1016/j.intimp.2022.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
|
5
|
Qi LJ, Wang RZ, Gao S, Chen XJ, Zhang X, Zhang YP. Molecular Mechanisms Underlying the Effects of Bimin Kang Mixture on Allergic Rhinitis: Network Pharmacology and RNA Sequencing Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7034078. [PMID: 36337846 PMCID: PMC9635970 DOI: 10.1155/2022/7034078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Background Allergic rhinitis (AR) is a highly prevalent chronic inflammatory disease of the respiratory tract. Previous studies have demonstrated that Bimin Kang Mixture (BMK) is effective in alleviating AR symptoms and reducing the secretion of inflammatory factors and mucin; however, the precise mechanisms underlying these effects remain unclear. Methods We built target networks for each medication component using a network pharmacology technique and used RNA-seq transcriptome analysis to screen differentially expressed genes (DEGs) for AR patients and control groups. The overlapping targets in the two groups were assessed using PPI networks, GO, and KEGG enrichment analyses. The binding ability of essential components to dock with hub target genes was investigated using molecular docking. Finally, we demonstrate how BMK can treat AR by regulating the NF-κB signaling pathway through animal experiments. Results Effective targets from network pharmacology were combined with DEGs from RNA-seq, with 20 intersections as key target genes. The construction of the PPI network finally identified 5 hub target genes, and all hub target genes were in the NF-κB signaling pathway. Molecular docking suggests that citric acid, deoxyandrographolide, quercetin, luteolin, and kaempferol are structurally stable and can spontaneously attach to IL-1β, CXCL2, CXCL8, CCL20, and PTGS2 receptors. Animal experiments have shown that BMK inhibits NF-κB transcription factor activation, reduces the expression of proinflammatory cytokines and chemokines IL-1β, CXCL2, IL-8, and COX-2, and exerts anti-inflammatory and anti-allergic effects. Conclusion BMK by regulating the NF-κB signaling pathway improves inflammatory cell infiltration, regulates mucosal immune balance, and reduces airway hypersensitivity. These findings provide theoretical support for the clinical efficacy of BMK for AR treatment.
Collapse
Affiliation(s)
- Li-Jie Qi
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Ren-Zhong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Shang Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xiang-Jing Chen
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xin Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Yi-Peng Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| |
Collapse
|
6
|
Lei Z, Feng G, Wang Z, Ning Z. Noncoding RNAs and Virus and Treatment in Allergic Rhinitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1979447. [PMID: 36285160 PMCID: PMC9588333 DOI: 10.1155/2022/1979447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Allergic rhinitis (AR) is a type I hypersensitivity reaction disease caused by inhaled allergens and immunoglobulin E (IgE)-mediated. Noncoding RNA (ncRNA) is an important regulator involved in gene expression and can be detected in the cytoplasm or extracellular fluid, which mainly includes microRNAs (miRNA, length 22-24 nucleotides), long noncoding RNAs (lncRNA, length >200 nucleotides), and circRNAs. LncRNA and miRNA both participate in the regulation of immune function. Some respiratory viral infections can aggravate allergic rhinitis, such as a respiratory syncytial virus (RSV) and human metapneumovirus (hMPV). However, the interaction between viral infection and allergy is complex and the mechanism is still unclear. In this review, we summarized the interactions of noncoding RNAs and viruses in the occurrence and development of AR, along with the treatments focusing on the noncoding RNAs in the past five years.
Collapse
Affiliation(s)
- Zhu Lei
- Otolaryngology Department, Xianning First People's Hospital, Xianning 437100, Hubei, China
| | - Guangrui Feng
- Cardiovascular Medicine Department, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Zhiguo Wang
- Dermatology Department, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Zhifeng Ning
- Human Anatomy Department, Basic Medicine College, Hubei University of Science and Technology, Xianning 437100, Hubei, China
| |
Collapse
|
7
|
Lin Y, Zhao YJ, Zhang HL, Hao WJ, Zhu RD, Wang Y, Hu W, Zhou RP. Regulatory role of KCa3.1 in immune cell function and its emerging association with rheumatoid arthritis. Front Immunol 2022; 13:997621. [PMID: 36275686 PMCID: PMC9580404 DOI: 10.3389/fimmu.2022.997621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.
Collapse
Affiliation(s)
- Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-Lin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Juan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ren-Di Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| |
Collapse
|
8
|
Cheng J, Zhang M, Zheng Y, Wang J, Wang Q. Integrative analysis of network pharmacology and proteomics to identify key targets of Tuomin-Zhiti-Decoction for allergic rhinitis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115448. [PMID: 35680038 DOI: 10.1016/j.jep.2022.115448] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown. AIM OF THE STUDY The aim of this study was to confirm the anti-AR effects and the underlying mechanism of TZD. Integrative analysis of network pharmacology and proteomics to explore the common mechanism of TZD treating AR. MATERIALS AND METHODS Mice were subjected to serial intranasal challenge with ovalbumin (OVA), we examinaed the nasal symptoms, histopathology and Th1/Th2-related cytokines after TZD treatments. Active compounds, potential targets and underlying mechanisms of TZD against AR were systematically clarified by integrating network pharmacology and proteomics analysis. Then we validated the binding affinity between the key potential targets and matching active compounds using molecular docking evaluation. RESULTS TZD controlled allergy by reduction of OVA-specific immunoglobulin E (IgE) and histamine release. In nasal tissue, TZD decreased nasal rubbing, sneezing and reduced AR-induced damage to nasal mucosa, accordingly, the nasal symptoms were also clearly ameliorated. Moreover, TZD modulated the balance of Th1/Th2/Th17. The proteomics analysis recognized 41 differentially expressed proteins (DEPs). Integrative analysis of network pharmacology and proteomics, we found IL-6 and CD40 could be potential protein targets of TZD against AR, quercetin and wogonin may play more effective roles in AR. Active core compounds of TZD could bind closely to the key targets by molecular docking. CONCLUSION TZD may have therapeutic potential for treating AR, integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD, which provides a scientific method for the sensible development of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jinjun Cheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Meiling Zhang
- DongZhiMen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
9
|
Matsuoka I, Yoshida K, Ito MA. Purinergic regulation of mast cell function: P2X4 receptor-mediated enhancement of allergic responses. J Pharmacol Sci 2022; 150:94-99. [PMID: 36055757 DOI: 10.1016/j.jphs.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022] Open
Abstract
Adenosine triphosphate (ATP) initially attracted attention as a neurotransmitter, with much research conducted on the regulation of neurotransmission in the autonomic and central nervous systems. ATP is also abundant as an energy currency in all living cells and is released into extracellular spaces by various regulated mechanisms. The role of ATP and related purine and pyrimidine nucleotides as extracellular signaling molecules in the regulation of immune cell functions has been reported as evidence for purinergic signaling and has become the focus of attention as therapeutic targets for various diseases. Mast cells (MCs) are distributed in tissues in contact with the outside environment and are the first immune cells to respond to non-microbial environmental antigens. Although extracellular ATP is known as an activator of MCs, the details remain to be investigated. Based on our series of studies, this review describes the unique features of ionotropic P2X4 receptor signals in MC functions. The role of purinergic signaling may exist in combination with various physiological, chemical and physical stimuli. The characteristics of P2X4 receptor-mediated action in MCs described in this article may provide clues to reveal the previously unknown effects induced by purinergic signaling.
Collapse
Affiliation(s)
- Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| | - Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| |
Collapse
|
10
|
Liu Z, Sun Q, Liu X, Song Z, Song F, Lu C, Zhang Y, Song X, Yang Y, Li Y. Network pharmacology analysis and experimental verification reveal the mechanism of the traditional Chinese medicine YU-Pingfeng San alleviating allergic rhinitis inflammatory responses. FRONTIERS IN PLANT SCIENCE 2022; 13:934130. [PMID: 36017263 PMCID: PMC9396374 DOI: 10.3389/fpls.2022.934130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
YU-Pingfeng San (YPFS) can regulate inflammatory response to alleviate the symptoms of nasal congestion and runny rose in allergic rhinitis (AR). However, the mechanism of action remains unclear. In this study, 30 active ingredients of three effective herbs included in YPFS and 140 AR/YPFS-related genes were identified by database analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the targets were mainly enriched in immune inflammatory-related biological processes and pathways. Finally, three hub gene targeting epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), and protein kinase B1 (AKT1) related to YPFS and AR were identified by network pharmacology analysis. YPFS treatment decreased the expression of EGFR, MAPK1, and AKT1 in ovalbumin (OVA)-induced AR mice and impaired the production of inflammatory factors interleukin (IL)-4, IL-5, and IL-13, thus alleviating immunoglobulin E (IgE) production and the symptoms of scratching nose in AR. Through molecular docking analysis, we found that the active ingredients decursin, anomalin, and wogonin of YPFS could bind to EGFR, MAPK1, and AKT1 proteins. Moreover, decursin treatment impaired the expression of IL-4 and IL-5 in human PBMCs. These results suggested that YPFS could alleviate the AR inflammatory responses by targeting EGFR, MAPK1, and AKT1, showing the mechanism of action of YPFS in AR treatment.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xinyue Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Zheying Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Clinical Medicine College, Weifang Medical University, Weifang, China
| | - Fei Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, China
| | - Congxian Lu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
11
|
Philp AR, Miranda F, Gianotti A, Mansilla A, Scudieri P, Musante I, Vega G, Figueroa CD, Galietta LJV, Sarmiento JM, Flores CA. KCa3.1 differentially regulates trachea and bronchi epithelial gene expression in a chronic-asthma mouse model. Physiol Genomics 2022; 54:273-282. [PMID: 35658672 DOI: 10.1152/physiolgenomics.00134.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channels are potentially exploitable as pharmacological targets to treat asthma. This study evaluated the role of KCa3.1 channels, encoded by Kcnn4, in regulating the gene expression of mouse airway epithelium and the development of asthma traits. We used the ovalbumin (OVA) challenge as an asthma model in wild type and Kcnn4-/- mice, performed histological analysis, and measured serum IgE to evaluate asthma traits. We analyzed gene expression of isolated epithelial cells of trachea or bronchi using mRNA sequencing and gene ontology and performed Ussing chamber experiments in mouse trachea to evaluate anion secretion. Gene expression of epithelial cells from mouse airways differed between trachea and bronchi, indicating regional differences in the inflammatory and transepithelial transport properties of proximal and distal airways. We found that Kcnn4 silencing reduced mast cell numbers, mucus, and collagen in the airways, and reduced the amount of epithelial anion secretion in the OVA-challenged animals. Additionally, gene expression was differentially modified in the trachea and bronchi, with Kcnn4 genetic silencing significantly altering the expression of genes involved in the TNF pathway, supporting the potential of KCa3.1 as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Amber R Philp
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Austral University of Chile, Valdivia, Chile
| | - Fernando Miranda
- Departamento de Fisiología, Austral University of Chile, Valdivia, Chile
| | | | - Agustín Mansilla
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Austral University of Chile, Valdivia, Chile
| | | | | | - Génesis Vega
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile
| | | | - Luis J V Galietta
- TIGEM, Pozzuoli, Italia.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - José M Sarmiento
- Departamento de Fisiología, Austral University of Chile, Valdivia, Chile
| | - Carlos A Flores
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
12
|
He X, Liu L, Luo X, Zhu J, Yang H, Wang J, Chen L, Zhong L. Astragalus Polysaccharide Relieves Inflammatory Responses in Guinea Pigs with Allergic Rhinitis via Ameliorating NF-kB-Mediated Treg/Th17 Imbalance. Am J Rhinol Allergy 2022; 36:638-648. [PMID: 35585694 DOI: 10.1177/19458924221098847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is regarded as a prevalent and non-infectious inflammation in nasal mucosa, and astragalus polysaccharide (APS) could mitigate inflammation. OBJECTIVES Herein, this study probed the specific mechanism of APS in inflammatory responses in AR. METHODS Firstly, AR guinea pig models were established through the stimulation and sensitization of ovalbumin (OVA) and received APS treatment. Changes in nasal symptoms were assessed through counting the sneezing and rubbing times of guinea pigs. The change patterns of OVA-specific immunoglobulin-E (OVA-sIgE), OVA-specific immunoglobulin-G1 (OVA-sIgG1), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in guinea pig serum were identified. Meanwhile, the levels of IL-17, transforming growth factor (TGF)-β, IL-10, and forkhead box protein P3 (Foxp3) in the guinea pig tissues or serum were examined, and CD25+Foxp3+Treg or CD4+IL17+Th17 cell proportion was detected. Afterwards, nuclear factor-kappa B (NF-kB) expression in guinea pig nasal mucosa tissues were examined. Rescue experiments were designed to probe the role of NF-kB overexpression in inflammatory responses and Treg/Th17 imbalance in AR guinea pigs. RESULTS APS treatment reduced sneezing and rubbing times of AR guinea pigs and suppressed OVA-sIgE, OVA-sIgG1, TNF-α, and IL-6 levels in guinea pig serum, and meanwhile, increased CD25+Foxp3+Treg cell proportion while reduced CD4+IL17+Th17 cell proportion in AR guinea pig serum or tissues, in a dose-dependent manner. NF-kB was highly-expressed in AR guinea pigs and down-regulated after APS treatment. NF-kB overexpression facilitated inflammatory responses and Treg/Th17 imbalance in AR. CONCLUSION APS reduced Treg/Th17 imbalance via suppressing NF-kB expression, thereby ameliorating inflammatory responses in AR.
Collapse
Affiliation(s)
- Xian He
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, China
| | - Lei Liu
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, China
| | - Xiaoqin Luo
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, China
| | - Jiali Zhu
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, China
| | - Haoxiang Yang
- Department of Otolaryngology, The Second People's Hospital of Yibin, Yibin City, China
| | - Jian Wang
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, China
| | - Long Chen
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, China
| | - Lunkun Zhong
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, China
| |
Collapse
|
13
|
Seo CH, Cui HS, Kim JB. Altered K Ca3.1 expression following burn injury and the therapeutic potential of TRAM-34 in post-burn hypertrophic scar formation. Transl Res 2021; 236:133-146. [PMID: 33905948 DOI: 10.1016/j.trsl.2021.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 01/16/2023]
Abstract
Hypertrophic scars are the most common post-burn complications characterized by fibroblast proliferation and excessive extracellular matrix deposition. The intermediate-conductance Ca2+-activated K+ channel (KCa3.1) mediates fibroblast activation, resulting in several fibrotic diseases; however, this channel's role in the formation of post-burn hypertrophic skin scars remains unknown. Herein, we investigated the role of KCa3.1 and the therapeutic potential of TRAM-34, a selective inhibitor of KCa3.1, in hypertrophic skin scar formation following burn injury. Cytosolic Ca2+ levels, the expression of KCa3.1 and hypertrophic markers, and the proliferation of skin fibroblasts obtained directly from patients with third-degree burns who consequently developed post-burn hypertrophic scars were assessed. The anti-fibrotic effect of KCa3.1 inhibition by TRAM-34 was evaluated in vitro (fibroblasts) and in vivo (mouse burn models). Fibroblasts from burn wounds exhibited remarkably higher levels of cytosolic Ca2+ than normal cells. KCa3.1 expression was markedly higher in the membrane fraction but lower in the cytosolic fraction of burn wound fibroblasts than in normal cells. Selective inhibition of KCa3.1 by TRAM-34 markedly reduced not only the proliferation of burn wound fibroblasts but also the expression of hypertrophic markers in these cells. Anti-scarring molecular, histological, and visual effects of TRAM-34 were confirmed in murine burn models. Altered subcellular expression of KCa3.1 is a novel mechanism underlying the cellular response to burn injury. Our results suggest that selective inhibition of KCa3.1 by TRAM-34 has therapeutic potential against post-burn hypertrophic scar formation.
Collapse
Affiliation(s)
- Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hui Song Cui
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - June-Bum Kim
- Department of Pediatrics, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Guo J, Xu S. Astragaloside IV suppresses histamine-induced inflammatory factors and mucin 5 subtype AC overproduction in nasal epithelial cells via regulation of inflammation-related genes. Bioengineered 2021; 12:6045-6056. [PMID: 34482800 PMCID: PMC8806810 DOI: 10.1080/21655979.2021.1965813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Allergic rhinitis (AR) is a symptomatic allergic disease that leads to severe inflammation. Astragaloside IV (AS-IV) is a primary active component of Astragalus membranaceus and exerts immune-regulation and anti-inflammatory effects. However, the pharmacological effect of AS-IV in the nasal epithelial cells (NECs) has not been reported. The present study aimed to assess the effect of AS-IV on inflammatory cytokines and mucin 5 subtype AC (MUC5AC) overproduction in histamine (His)-stimulated NECs and its underlying mechanism. NECs were stimulated with or without His for 24 h in the absence or presence of AS-IV. The levels of inflammatory cytokines including IL-6, IL-8, MCP-1, IL-1β, granulocyte-macrophage colony-stimulating factor (GM-CSF), eotaxin, and MUC5AC were assayed. Our findings indicated that AS-IV inhibited His-evoked release and expression of inflammatory cytokines and MUC5AC in NECs. RNA-seq analyses indicated the significant changes in expression levels involved in inflammation genes upon treatment of His-induced NECs with AS-IV. Our findings indicated that AS-IV inhibited His-evoked inflammatory cytokines secretion and MUC5AC overproduction in NECs, which were partly mediated by regulation of inflammation-related genes. Therefore, our findings provided a scientific basis for the development of AS-IV as an effective agent for clinical therapeutic strategy in the treatment of AR.
Collapse
Affiliation(s)
- Jie Guo
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang Henan, China
| | - Shuai Xu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang Henan, China
| |
Collapse
|
15
|
Yang S, Fu Q, Deng H, Liu Z, Zhong J, Zhu X, Wang Q, Sun C, Wu J. Mechanisms and molecular targets of the Yu-Ping-Feng powder for allergic rhinitis, based on network pharmacology. Medicine (Baltimore) 2021; 100:e26929. [PMID: 34477124 PMCID: PMC8415986 DOI: 10.1097/md.0000000000026929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
In traditional Chinese medicine (TCM), Yu-Ping-Feng powder (YPFP) has been used to treat allergic rhinitis (AR) for centuries. However, the mechanisms underlying its effects or its molecular targets in AR treatment are yet to be elucidated. Therefore, the active compounds of YPFP and their targets were collected and identified from the Traditional Chinese Medicine Systems Pharmacology database. Moreover, AR-associated targets were acquired from the GeneCards and Online Mendelian Inheritance in Man database. Proteins interactions network of YPFP presumed targets and AR-associated targets were examined and merged to reveal the candidate YPFP targets against AR.Cytoscape software and BisoGenet Database were employed to perform the Visualization and Integrated Discovery (Cluster Profiler R package, version: 3.8.1). Kyoto Encyclopedia of Genes and Genomes and genome pathway analyses. To identify the key target genes, a gene-pathway network has been constructed.We identified 44 effective active compounds and 622 YPFP targets. Also 1324 target genes related to AR were identified. Twenty pathways, including those of AGE-RAGE signaling, fluid shear stress, atherosclerosis, PI3K-Akt signaling, and tumor necrosis factor signaling was enriched significantly. MAPK1 was identified as the core gene, while others including RELA, AKT1, NFKBIA, IL6, and JUN, were also important in the gene-pathway network. Clearly, network pharmacology can be applied in revealing the molecular targets and mechanisms of action of complex herbal preparations.These findings suggested that YPFP could treat AR by regulating immunological functions, diminishing inflammation, and improving immunity through different pathways.
Collapse
Affiliation(s)
- Shasha Yang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qinwei Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Deng
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhiqing Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Wang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chuanhui Sun
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
16
|
Shou Q, Tan T, Xu F. Salvinorin A inhibits ovalbumin-stimulated allergic rhinitis and RBL-2H3 cells degranulation. FEBS Open Bio 2021. [PMID: 34092045 PMCID: PMC8329952 DOI: 10.1002/2211-5463.13219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/25/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Allergic rhinitis (AR) is a long-term noncommunicable inflammatory disease of the nasal mucosa mediated by immunoglobulin E and is mainly caused by exposure of genetically susceptible individuals to environmental allergens. Mast cells contribute to the pathogenesis of allergic and nonallergic inflammatory diseases. Salvinorin A has been previously shown to inhibit leukotriene production and mast cell degranulation to suppress airway hyperresponsiveness caused by sensitization; thus, we hypothesized that salvinorin A has an anti-AR effect. We tested this hypothesis using monoclonal anti-2,4,6-dinitrophenyl immunoglobulin E/human serum albumin-induced rat basophilic leukemia cells (RBL-2H3 cells) and ovalbumin (OVA)-induced AR in mice as in vivo and in vitro AR models, respectively. The expression levels of histamine, β-hexosaminidase, interleukin-4 and tumor necrosis factor-α were decreased by salvinorin A in vitro. Granule release and F-actin organization were also suppressed by salvinorin A. Furthermore, salvinorin A inhibited OVA-induced features of AR in mice, including nasal rubbing and sneezing, as well as increased OVA-specific immunoglobulin E, histamine, tumor necrosis factor-α and interleukin-4 levels. In addition, salvinorin A decreased the phosphorylation of phosphoinositide 3-kinase/Akt in vitro and in vivo. Our work suggests that salvinorin A suppresses AR caused by sensitization by inhibiting the inflammatory responses of mast cells; thus, salvinorin A may have potential for treatment of AR.
Collapse
Affiliation(s)
- Qiyang Shou
- The Second Affiliated Hospital, Zhejiang University of Chinese Medicine, Hangzhou, China
| | - Tao Tan
- Internal Medicine Department, Zhejiang Provincial General Team Hospital of the Chinese People's Armed Police Force, Hangzhou, China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, China
| |
Collapse
|
17
|
Li A, Zhao F, Zhao Y, Liu H, Wang Z. ATF4-mediated GDF15 suppresses LPS-induced inflammation and MUC5AC in human nasal epithelial cells through the PI3K/Akt pathway. Life Sci 2021; 275:119356. [PMID: 33737080 DOI: 10.1016/j.lfs.2021.119356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
AIMS Growth and differentiation factor 15 (GDF15) is a stress-related factor, which implicated in various diseases. This study aimed to investigate the role of GDF15 in LPS-mediated inflammation and to explore the potential underlying molecular mechanisms in human nasal epithelial cells (HNEpCs). MAIN METHODS HNEpCs were treated with LPS. GDF15 loss-of-function and gain-of-function experiments were performed. The expression of GDF15 by quantitative real-time PCR (RT-qPCR). The mRNA levels and secretion of inflammatory cytokines and MUC5AC were assessed by RT-qPCR and ELISA kits. LY294002 (PI3K inhibitor) and 740Y-P (PI3K agonist) were utilized to interfere with PI3k/Akt pathway. The relationship between GDF15 and ATF4 was identified by chromatin immunoprecipitation (ChIP) and luciferase reporter assay. KEY FINDINGS We observed that LPS triggered GDF15 expression. GDF15 ablation reduced the mRNA levels and secretion of inflammatory cytokines. GDF15 silencing led to the reduction of the MUC5AC mRNA level, protein level and secretion in response to LPS. Enhanced expression of GDF15 showed the opposite results. Furthermore, we found that GDF15 deficiency inhibited activation of the PI3K/Akt pathway, LY294002 treatment further enhanced the role of GDF15 suppression in inflammation and MUC5AC expression, while 740Y-P administration partly reversed the biological activities of GDF15 silencing. ATF4 could bind to the promoter of GDF15 and positively regulate GDF15 expression. Depression of ATF4 diminished the secretion of inflammatory cytokines and MUC5AC via regulation of GDF15. SIGNIFICANCE Our data suggest that GDF15 is regulated by ATF4 and suppresses LPS-induced inflammation and MUC5AC in human nasal epithelial cells through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- An Li
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, PR China
| | - Fangfang Zhao
- Department of Medical Imaging, Chang'an Hospital, Xi'an 710016, Shaanxi, PR China
| | - Yuxiang Zhao
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, PR China
| | - Hui Liu
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, PR China
| | - Zhou Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, PR China.
| |
Collapse
|
18
|
Zhang W, Sun X, Ba G, Tang R, Lin H. RGFP966, a selective HDAC3 inhibitor, ameliorates allergic and inflammatory responses in an OVA-induced allergic rhinitis mouse model. Int Immunopharmacol 2021; 93:107400. [PMID: 33529911 DOI: 10.1016/j.intimp.2021.107400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
RGFP966 is a selective inhibitor of histone deacetylase 3 (HDAC3) playing crucial roles in triggering allergic and inflammatory responses. Whereas, its role in allergic rhinitis (AR) remains uncertain. This study sought to illustrate the role and mechanism of HDAC3 inhibitor RGFP966 on allergic and inflammatory responses in murine AR. RGFP966 administration was applied on murine AR. HE staining, PAS staining, toluidine blue staining, immunohistochemistry staining and real-time PCR methods were used to assess eosinophils, goblet cells, mast cells, HDAC3 positive cells and mRNA levels in nasal tissues of mice. HDAC3 activities in nasal tissues were quantified with HDAC3 Activity Assay Kit. We collected blood and nasal lavage fluid (NLF) of mice for assaying IgE, inflammatory cytokines and inflammatory cells. Results indicated that RGFP966 intervention attenuated sneezing, nose rubbing, IgE, inflammatory cytokines, eosinophils, goblet cells, mast cells, inflammatory cells, HDAC3 levles and activities in RGFP966 treated mice. In conclusion, RGFP966 might reduce HDAC3 expression and HDAC3 activities, and then eosinophils and mast cells recruitment, goblet cells proliferation and inflammatory cytokines levels are decreased, resulting in the alleviation of allergic and inflammatory responses in AR mice.
Collapse
Affiliation(s)
- Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China
| | - Xiwen Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China
| | - Guangyi Ba
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China
| | - Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China.
| |
Collapse
|
19
|
Anti-allergic and anti-inflammatory effects of resveratrol via inhibiting TXNIP-oxidative stress pathway in a mouse model of allergic rhinitis. World Allergy Organ J 2020; 13:100473. [PMID: 33133334 PMCID: PMC7586246 DOI: 10.1016/j.waojou.2020.100473] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/03/2023] Open
Abstract
Background Allergic rhinitis (AR) is a type I hypersensitivity mediated by IgE in the nose. Thioredoxin-interacting protein (TXNIP) plays a pivotal role in the process of producing reactive oxygen species (ROS). Resveratrol is a TXNIP inhibitor. Nonetheless, its role and mechanism in AR are still undetermined. The present study aimed to explore the effect and mechanism of resveratrol on an ovalbumin (OVA) induced mouse model of AR. Methods AR murine model was established using OVA and administrated intranasally with resveratrol or N-acetylcysteine (NAC). Hematoxylin and eosin (HE) stain was used for evaluating eosinophils. Immunohistochemistry (IHC) staining and real-time PCR were employed to evaluate immunolabeling and mRNA expression of TXNIP in nasal mucosas of mice. Malondialdehyde (MDA) level and superoxide dismutase (SOD) activity in nasal tissue homogenates were measured using MDA and SOD Assay Kit. Concentrations of OVA-specific IgE and histamines in serum, and OVA-specific IgE, PGD2, LTC4, ECP, IL-4, IL-5, IL-6, IL-33 and TNF-α in nasal lavage fluid (NLF) were assayed by ELISA. In vitro studies, western blotting, real-time PCR, ELISA, ROS detecting dye DCFH-DA, MDA, and SOD Assay Kit were performed to evaluate the effects and mechanisms of OVA, resveratrol or NAC on spleen mononuclear cells. Results We found significant alternations of sneezing, nasal rubbing, inflammatory cytokines, eosinophil numbers, TXNIP, MDA, and SOD levels in resveratrol or NAC treated mice compared with untreated AR mice. In cultured spleen mononuclear cells, TXNIP, MDA, SOD, ROS and inflammatory cytokines levels were altered by OVA but reversed by resveratrol or NAC. Conclusions Resveratrol could effectively alleviate murine AR by inhibiting TXNIP-oxidative stress pathway.
Collapse
Key Words
- AR, Allergic rhinitis
- Allergic rhinitis
- ELISA, Enzyme-linked immunosorbent assay
- IHC, Immunohistochemistry
- MDA, Malondialdehyde
- NAC, N-acetylcysteine
- NLF, Nasal lavage fluid
- OVA, Ovalbumin
- Ovalbumin
- Oxidative stress
- ROS, Reactive oxygen species
- Reactive oxygen species
- Resveratrol
- SOD, Superoxide dismutase
- TXNIP
- TXNIP, Thioredoxin-interacting protein
- Th2, Type 2T helper
Collapse
|
20
|
Vega G, Guequén A, Philp AR, Gianotti A, Arzola L, Villalón M, Zegarra-Moran O, Galietta LJ, Mall MA, Flores CA. Lack of Kcnn4 improves mucociliary clearance in muco-obstructive lung disease. JCI Insight 2020; 5:140076. [PMID: 32814712 PMCID: PMC7455130 DOI: 10.1172/jci.insight.140076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Airway mucociliary clearance (MCC) is the main mechanism of lung defense keeping airways free of infection and mucus obstruction. Airway surface liquid volume, ciliary beating, and mucus are central for proper MCC and critically regulated by sodium absorption and anion secretion. Impaired MCC is a key feature of muco-obstructive diseases. The calcium-activated potassium channel KCa.3.1, encoded by Kcnn4, participates in ion secretion, and studies showed that its activation increases Na+ absorption in airway epithelia, suggesting that KCa3.1-induced hyperpolarization was sufficient to drive Na+ absorption. However, its role in airway epithelium is not fully understood. We aimed to elucidate the role of KCa3.1 in MCC using a genetically engineered mouse. KCa3.1 inhibition reduced Na+ absorption in mouse and human airway epithelium. Furthermore, the genetic deletion of Kcnn4 enhanced cilia beating frequency and MCC ex vivo and in vivo. Kcnn4 silencing in the Scnn1b-transgenic mouse (Scnn1btg/+), a model of muco-obstructive lung disease triggered by increased epithelial Na+ absorption, improved MCC, reduced Na+ absorption, and did not change the amount of mucus but did reduce mucus adhesion, neutrophil infiltration, and emphysema. Our data support that KCa3.1 inhibition attenuated muco-obstructive disease in the Scnn1btg/+ mice. K+ channel modulation may be a therapeutic strategy to treat muco-obstructive lung diseases. Silencing the calcium-activated potassium channel KCa.3.1 improves mucociliary clearance in muco-obstructive lung disease by decreasing sodium absorption in the airways.
Collapse
Affiliation(s)
| | - Anita Guequén
- Centro de Estudios Científicos, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | - Amber R Philp
- Centro de Estudios Científicos, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | | | - Llilian Arzola
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Villalón
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Luis Jv Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research, Berlin, Germany
| | | |
Collapse
|
21
|
Peng H, Liao B, Zhu X, Liu Y, Jiang Y, Wu S. CCR3-shRNA promotes apoptosis and inhibits chemotaxis and degranulation of mouse mast cells. Exp Ther Med 2020; 20:1030-1038. [PMID: 32742345 PMCID: PMC7388334 DOI: 10.3892/etm.2020.8737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 03/17/2020] [Indexed: 11/09/2022] Open
Abstract
Mast cells (MCs) are the major effector cells of allergic rhinitis (AR). The present study aimed to investigate the effects of C-C chemokine receptor type 3 (CCR3) on the proliferation, apoptosis, chemotaxis and activated degranulation of mouse MCs. Mouse bone marrow-derived MCs were cultured in vitro, purified and identified using toluidine blue staining and flow cytometry. Three different CCR3-short hairpin (shRNA) lentiviral vectors were constructed and transfected into MCs, and the mRNA and protein expression levels of CCR3 were assessed by reverse transcription-quantitative PCR and western blotting. Proliferation and apoptosis of the MCs were measured using Cell Counting kit-8 (CCK-8) assays and flow cytometry, respectively. MC chemotaxis was assessed by Transwell assay and quantified using flow cytometry. The activation of MC degranulation was examined using ELISAs. The results demonstrated that MCs were appropriately isolated, and identified that CCR3-shRNA2 presented the higher knockdown effect among the three shRNAs tested. Following 96 h of transfection, the results of CCK-8 and flow cytometry assays demonstrated that CCR3-shRNA2 inhibited MC proliferation and promoted MC apoptosis. The results from the Transwell assay indicated that CCR3-shRNA2 restrained MC chemotaxis, whereas ELISA results demonstrated that CCR3-shRNA2 suppressed MC degranulation. In conclusion, CCR3-shRNA2 effectively downregulated CCR3 mRNA and protein expression levels in mouse MCs. In addition, CCR3-shRNA2 promoted MC apoptosis and suppressed the proliferation, chemotaxis and degranulation of mouse MCs, suggesting that CCR3-shRNA2 may serve as a therapeutic tool for the treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Haisen Peng
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bing Liao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Zhu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuehui Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yinli Jiang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shuhong Wu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Identification of Active Compounds of Mahuang Fuzi Xixin Decoction and Their Mechanisms of Action by LC-MS/MS and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3812180. [PMID: 32565854 PMCID: PMC7267872 DOI: 10.1155/2020/3812180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The decoction is an important dosage form of traditional Chinese medicine (TCM) administration. The Mahuang Fuzi Xixin decoction (MFXD) is widely used to treat allergic rhinitis (AR) in China. However, its active compounds and therapeutic mechanisms are unclear. The aim of this study was to establish an integrative method to identify the bioactive compounds and reveal the mechanisms of action of MFXD. LC-MS/MS was used to identify the compounds in MFXD, followed by screening for oral bioavailability. TCMSP, BindingDB, STRING, DAVID, and KEGG databases and algorithms were used to gather information. Cytoscape was used to visualize the networks. Twenty-four bioactive compounds were identified, and thirty-seven predicted targets of these compounds were associated with AR. DAVID analysis suggested that these compounds exert their therapeutic effects by modulating the Fc epsilon RI, B-cell receptor, Toll-like receptor, TNF, NF-κB, and T-cell receptor signaling pathways. The PI3K/AKT and cAMP signaling pathways were also implicated. Ten of the identified compounds, quercetin, pseudoephedrine, ephedrine, β-asarone, methylephedrine, α-linolenic acid, cathine, ferulic acid, nardosinone, and higenamine, seemed to account for most of the beneficial effects of MFXD in AR. This study showed that LC-MS/MS followed by network pharmacology analysis is useful to elucidate the complex mechanisms of action of TCM formulas.
Collapse
|
23
|
Ameliorative effect of selective NLRP3 inflammasome inhibitor MCC950 in an ovalbumin-induced allergic rhinitis murine model. Int Immunopharmacol 2020; 83:106394. [PMID: 32193102 DOI: 10.1016/j.intimp.2020.106394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Allergic rhinitis (AR) is a complex IgE-mediated nasal allergic and inflammatory disease. Nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) is essential in the process of allergic and inflammatory responses. MCC950 is a selective NLRP3 inhibitor. However, its role and mechanism in AR remains undetermined. The present study aimed to explore the effect and mechanism of MCC950 on an ovalbumin (OVA) induced mouse model of AR. The AR BALB/c mice were constructed using OVA and administrated intranasally with MCC950. Concentrations of OVA-specific IgE, histamines and leukotrienes C4 (LTC4) in serum, and OVA-specific IgE, ECP, IFN-γ, IL-4, IL-5, IL-13, IL-1β and IL-18 in nasal lavage fluid (NLF) were assayed by enzyme-linked immunosorbent assay (ELISA). Inflammatory cells were counted in NLF. HE and PAS staing were used for evaluating eosinophils and goblet cells. Immunohistochemistry (IHC) staining were employed to evaluate immunolabeling of NLRP3, Caspase-1, ASC, IL-1β and IL-18 in nasal mucosas of mice. Real-time PCR was conducted to assay NLRP3, Caspase-1, ASC, IL-1β and IL-18 mRNA levels. In vitro studies, western blotting, real-time PCR and ELISA were performed to evaluate the effects and mechanisms of OVA and NLRP3 inhibitor MCC950 on spleen mononuclear cells. We found significant downregulation of sneezing, nasal rubbing, inflammatory cytokines, inflammatory cells and NLRP3, Caspase-1, ASC, IL-1β and IL-18 expression in MCC950 treated mice compared with untreated AR mice. In spleen mononuclear cells culture and stimulation experiment, NLRP3, Caspase-1, ASC, IL-1β and IL-18 levels were upregulated by OVA but inhibited by MCC950. In conclusion, MCC950 could effectively exert its ameliorative effect in murine AR by inhibiting NLRP3 and leads to reduction of Caspase-1, ASC, IL-1β and IL-18, resulting in the attenuation of the allergic and inflammatory responses.
Collapse
|
24
|
Wu S, Tang S, Peng H, Jiang Y, Liu Y, Wu Z, Liu Q, Zhu X. Effects of lentivirus-mediated CCR3 RNA interference on the function of mast cells of allergic rhinitis in mice. Int Immunopharmacol 2020; 78:106011. [DOI: 10.1016/j.intimp.2019.106011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
|
25
|
Dietary Omega-3 Fatty Acid Dampens Allergic Rhinitis via Eosinophilic Production of the Anti-Allergic Lipid Mediator 15-Hydroxyeicosapentaenoic Acid in Mice. Nutrients 2019; 11:nu11122868. [PMID: 31766714 PMCID: PMC6950470 DOI: 10.3390/nu11122868] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The metabolism and generation of bioactive lipid mediators are key events in the exertion of the beneficial effects of dietary omega-3 fatty acids in the regulation of allergic inflammation. Here, we found that dietary linseed oil, which contains high amounts of alpha-linolenic acid (ALA) dampened allergic rhinitis through eosinophilic production of 15-hydroxyeicosapentaenoic acid (15-HEPE), a metabolite of eicosapentaenoic acid (EPA). Lipidomic analysis revealed that 15-HEPE was particularly accumulated in the nasal passage of linseed oil-fed mice after the development of allergic rhinitis with the increasing number of eosinophils. Indeed, the conversion of EPA to 15-HEPE was mediated by the 15-lipoxygenase activity of eosinophils. Intranasal injection of 15-HEPE dampened allergic symptoms by inhibiting mast cell degranulation, which was mediated by the action of peroxisome proliferator-activated receptor gamma. These findings identify 15-HEPE as a novel EPA-derived, and eosinophil-dependent anti-allergic metabolite, and provide a preventive and therapeutic strategy against allergic rhinitis.
Collapse
|
26
|
Krishn SR, Ganguly K, Kaur S, Batra SK. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 2019; 39:633-651. [PMID: 29415129 DOI: 10.1093/carcin/bgy019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Heavily glycosylated secreted mucin MUC5AC, by the virtue of its cysteine-rich repeats, can form inter- and intramolecular disulfide linkages resulting in complex polymers, which in turn craft the framework of the polymeric mucus gel on epithelial cell surfaces. MUC5AC is a molecule with versatile functional implications including barrier functions to epithelial cells, host-pathogen interaction, immune cell attraction to sites of premalignant or malignant lesions and tumor progression in a context-dependent manner. Differential expression, glycosylation and localization of MUC5AC have been associated with a plethora of benign and malignant pathologies. In this era of robust technologies, overexpression strategies and genetically engineered mouse models, MUC5AC is emerging as a potential diagnostic, prognostic and therapeutic target for various malignancies. Considering the clinical relevance of MUC5AC, this review holistically encompasses its genomic organization, domain structure, glycosylation patterns, regulation, functional and molecular connotation from benign to malignant pathologies. Furthermore, we have here explored the incipient and significant experimental tools that are being developed to study this structurally complex and evolutionary conserved gel-forming mucin.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Ohya S, Kito H. Ca 2+-Activated K + Channel K Ca3.1 as a Therapeutic Target for Immune Disorders. Biol Pharm Bull 2018; 41:1158-1163. [PMID: 30068864 DOI: 10.1248/bpb.b18-00078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In lymphoid and myeloid cells, membrane hyperpolarization by the opening of K+ channels increases the activity of Ca2+ release-activated Ca2+ (CRAC) channels and transient receptor potential (TRP) Ca2+ channels. The intermediate-conductance Ca2+-activated K+ channel KCa3.1 plays an important role in cell proliferation, differentiation, migration, and cytokine production in innate and adaptive immune systems. KCa3.1 is therefore an attractive therapeutic target for allergic, inflammatory, and autoimmune disorders. In the past several years, studies have provided new insights into 1) KCa3.1 pharmacology and its auxiliary regulators; 2) post-transcriptional and proteasomal regulation of KCa3.1; 3) KCa3.1 as a regulator of immune cell migration, cytokine production, and phenotypic polarization; 4) the role of KCa3.1 in the phosphorylation and nuclear translocation of Smad2/3; and 5) KCa3.1 as a therapeutic target for cancer immunotherapy. In this review, we have assembled a comprehensive overview of current research on the physiological and pathophysiological significance of KCa3.1 in the immune system.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University
| |
Collapse
|
28
|
Phua JL, Hou A, Lui YS, Bose T, Chandy GK, Tong L, Venkatraman S, Huang Y. Topical Delivery of Senicapoc Nanoliposomal Formulation for Ocular Surface Treatments. Int J Mol Sci 2018; 19:E2977. [PMID: 30274277 PMCID: PMC6213297 DOI: 10.3390/ijms19102977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023] Open
Abstract
Topical ophthalmologic treatments have been facing great challenges with main limitations of low drug bioavailability, due to highly integrative defense mechanisms of the eye. This study rationally devised strategies to increase drug bioavailability by increasing ocular surface residence time of drug-loaded nanoliposomes dispersed within thermo-sensitive hydrogels (Pluronic F-127). Alternatively, we utilized sub-conjunctival injections as a depot technique to localize nanoliposomes. Senicapoc was encapsulated and sustainably released from free nanoliposomes and hydrogels formulations in vitro. Residence time increased up to 12-fold (60 min) with 24% hydrogel formulations, as compared to 5 min for free liposomes, which was observed in the eyes of Sprague-Dawley rats using fluorescence measurements. Pharmacokinetic results obtained from flushed tears, also showed that the hydrogels had greater drug retention capabilities to that of topical viscous solutions for up to 60 min. Senicapoc also remained quantifiable within sub-conjunctival tissues for up to 24 h post-injection.
Collapse
Affiliation(s)
- Jie Liang Phua
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| | - Aihua Hou
- Singapore Eye Research Institute, Singapore 169856, Singapore.
- Duke-NUS Medical School, Singapore 169856, Singapore.
| | - Yuan Siang Lui
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| | - Tanima Bose
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| | | | - Louis Tong
- Singapore Eye Research Institute, Singapore 169856, Singapore.
- Duke-NUS Medical School, Singapore 169856, Singapore.
- Singapore National Eye Center, Singapore 168751, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Subbu Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| | - Yingying Huang
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
29
|
Hu H, Li H. Prunetin inhibits lipopolysaccharide-induced inflammatory cytokine production and MUC5AC expression by inactivating the TLR4/MyD88 pathway in human nasal epithelial cells. Biomed Pharmacother 2018; 106:1469-1477. [PMID: 30119221 DOI: 10.1016/j.biopha.2018.07.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Allergic rhinitis (AR) is a chronic upper respiratory disorder characterized by inflammation of the nasal mucosa. Prunetin is an O-methylated isoflavone, which has been found to possess anti-inflammatory activity. The aim of the current study was to evaluate the effect of prunetin on inflammatory cytokine and mucus production and its underlying mechanism in nasal epithelial cells. Results showed that treatment with prunetin (10, 30, and 50 μM) inhibited lipopolysaccharide (LPS)-induced expression and secretion of interleukin (IL)-6, IL-8, and mucin 5 AC (MUC5 AC) in RPMI2650 cells, and attenuated the effect of LPS on toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) expression. TAK-242 (an inhibitor of TLR4) treatment or TLR4 knockdown attenuated LPS-induced expression and secretion of IL-6, IL-8 and MUC5 AC. In conclusion, prunetin inhibited LPS-induced inflammatory cytokine production and MUC5 AC expression and secretion by inactivating the TLR4/MyD88 pathway in human nasal epithelial cells. These results suggested that prunetin might be a useful agent in the treatment of AR.
Collapse
Affiliation(s)
- Haili Hu
- Department of Otolaryngology, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China.
| | - Haixia Li
- Department of Otolaryngology, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| |
Collapse
|
30
|
Bao Y, Wang S, Gao Y, Zhang W, Jin H, Yang Y, Li J. MicroRNA-126 accelerates IgE-mediated mast cell degranulation associated with the PI3K/Akt signaling pathway by promoting Ca 2+ influx. Exp Ther Med 2018; 16:2763-2769. [PMID: 30186504 DOI: 10.3892/etm.2018.6510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/15/2018] [Indexed: 12/26/2022] Open
Abstract
Mast cells (MCs) have been reported to serve a crucial role in allergic diseases, including asthma, allergic rhinitis and anaphylaxis. A previous study revealed that microRNA-126 (miR-126) was associated with airway hyperresponsiveness induced by house dust mites, however the molecular mechanisms were unclear. The present study aimed to investigate the effect of miR-126 on immunoglobulin E (IgE)-regulated MC degranulation and explore its underlying mechanisms. miR-126 expression was quantified using a rat model in vivo and in rat peritoneal mast cells (RPMCs) in vitro. Overexpression or downregulation of miR-126 was established by transfection with miR-126 mimics or miR-126 inhibitors and MC degranulation was subsequently evaluated. The effect of miR-126 on protein kinase B (Akt) and phosphorylated Akt protein expression was examined by western blot analysis. The phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) was used to determine the role of the PI3K/Akt signaling pathway. In addition, cytosolic calcium (Ca2+) levels were measured by a fura-2 assay. The results demonstrated that miR-126 expression was upregulated in the ear tissues of rats with allergic contact dermatitis and IgE-activated MCs. The overexpression of miR-126 in RPMCs was established following miR-126 mimic transfection. The release of β-hexosaminidase and histamine, markers of MC degranulation, were significantly increased in cells with miR-126 overexpression. The phosphorylation of Akt was significantly increased following transfection with miR-126 mimics in stimulated cells, however the signaling activation was abrogated by LY294002. In addition, Ca2+ influx was significantly promoted in stimulated RPMCs overexpressing miR-126. These results indicate that miR-126 accelerated IgE-mediated MC degranulation associated with the PI3K/Akt signaling pathway by promoting Ca2+ influx. This suggests that miR-126 may be a promising therapeutic target for the treatment of allergic skin diseases.
Collapse
Affiliation(s)
- Yuan Bao
- Department of Network Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Song Wang
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, P.R. China
| | - Yang Gao
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, P.R. China
| | - Wen Zhang
- Department of Encephalopathy (I), Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, P.R. China
| | - Haitao Jin
- Department of Encephalopathy (II), Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, P.R. China
| | - Yang Yang
- Department of Network Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jiangyu Li
- Department of Gerontology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
31
|
Propofol attenuates mast cell degranulation via inhibiting the miR-221/PI3K/Akt/Ca 2+ pathway. Exp Ther Med 2018; 16:1426-1432. [PMID: 30116391 DOI: 10.3892/etm.2018.6317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the effect of propofol on immunoglobulin (Ig)E-activated mast cell degranulation and explore the underlying mechanisms responsible. RBL-2H3 cells were treated with propofol for at a variety of concentrations and different amounts of time. Cell viability was assessed using an MTT assay and microRNA (miR)-221 expression was quantified using reverse transcription-quantitative polymerase chain reaction. RBL-2H3 cells were transfected with miR-221 mimic or a negative control and degranulation, including the release of β-hexosaminidase and histamine, was evaluated using an ELISA kit. The effect of miR-221 overexpression on the phosphorylation of protein kinase B (Akt) was detected using western blotting and extracellular Ca2+ influx was measured via afura-2 assay. The phosphoinositide 3-kinase(PI3K) inhibitor LY294002 was used to investigate the association between PI3K/Akt signaling and Ca2+ influx in the presence of propofol. The results demonstrated that propofol treatment suppressed RBL-2H3 cell proliferation in a dose- and time-dependent manner. Propofol inhibited miR-221 expression in a dose-dependent manner compared with the control group; however, the inhibitive effect was significantly abrogated following transfection with miR-221 mimics. Furthermore, β-hexosaminidase and histamine release, PI3K/Akt signaling and Ca2+ influx were decreased following propofol application. miR-221 overexpression markedly ameliorated the suppressive effect of propofol. Treatment with LY294002 reversed the propofol-induced decrement of Ca2+ influx on IgE-mediated RBL-2H3 cells, suggesting an association between PI3K/Akt signaling and Ca2+ influx. In conclusion, the results of the present study suggest that propofol treatment attenuates mast cell degranulation via inhibiting the miR-221/PI3K/Akt/Ca2+ pathway. These results indicate that propofol may have a potential therapeutic effect as a treatment for allergic diseases.
Collapse
|
32
|
Xu L, Cai Z, Yang F, Chen M. Activation‑induced upregulation of MMP9 in mast cells is a positive feedback mediator for mast cell activation. Mol Med Rep 2017; 15:1759-1764. [PMID: 28259919 DOI: 10.3892/mmr.2017.6215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/15/2016] [Indexed: 11/05/2022] Open
Abstract
Activated mast cells are involved in the pathogenesis of allergic rhinitis (AR). As a member of the matrix metalloproteinase (MMP) family, MMP9 has been previously demonstrated act in a pro‑inflammatory manner. Mast cells regulate the activity of MMP9, and mast cells themselves have been reported to produce MMP9. However, to the best of our knowledge, the involvement of MMP9 in mast cell activation remains to be elucidated. The present study demonstrated an upregulation of MMP9 protein and mRNA expression levels in mast cells activated by phorbol ester and ionomycin. Phosphorylated ERK and AKT protein levels also markedly increased in activated mast cells, and inhibition of the ERK and AKT signaling pathways prevented the increase of MMP9 in activated mast cells. MMP9 was demonstrated to be involved in mast cell activation, since inhibition of MMP9 activity or expression inhibited mast cell activation. Furthermore, IL‑4 treatment reduced MMP9 upregulation in activated mast cells, and interference with IL‑4 signaling with an IL‑4 neutralizing antibody promoted MMP9 upregulation in activated mast cells. These results revealed a novel MMP9‑mediated mechanism underlying mast cell activation, thus providing novel ideas for AR therapy.
Collapse
Affiliation(s)
- Lin Xu
- Department of Otolaryngology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Fei Yang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Ming Chen
- Department of Otolaryngology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
33
|
Ohya S, Kanatsuka S, Hatano N, Kito H, Matsui A, Fujimoto M, Matsuba S, Niwa S, Zhan P, Suzuki T, Muraki K. Downregulation of the Ca(2+)-activated K(+) channel KC a3.1 by histone deacetylase inhibition in human breast cancer cells. Pharmacol Res Perspect 2016; 4:e00228. [PMID: 27069638 PMCID: PMC4804315 DOI: 10.1002/prp2.228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
The intermediate‐conductance Ca2+‐activated K+ channel KCa3.1 is involved in the promotion of tumor growth and metastasis, and is a potential therapeutic target and biomarker for cancer. Histone deacetylase inhibitors (HDACis) have considerable potential for cancer therapy, however, the effects of HDACis on ion channel expression have not yet been investigated in detail. The results of this study showed a significant decrease in KCa3.1 transcription by HDAC inhibition in the human breast cancer cell line YMB‐1, which functionally expresses KCa3.1. A treatment with the clinically available, class I, II, and IV HDAC inhibitor, vorinostat significantly downregulated KCa3.1 transcription in a concentration‐dependent manner, and the plasmalemmal expression of the KCa3.1 protein and its functional activity were correspondingly decreased. Pharmacological and siRNA‐based HDAC inhibition both revealed the involvement of HDAC2 and HDAC3 in KCa3.1 transcription through the same mechanism. The downregulation of KCa3.1 in YMB‐1 was not due to the upregulation of the repressor element‐1 silencing transcription factor, REST and the insulin‐like growth factor‐binding protein 5, IGFBP5. The significant decrease in KCa3.1 transcription by HDAC inhibition was also observed in the KCa3.1‐expressing human prostate cancer cell line, PC‐3. These results suggest that vorinostat and the selective HDACis for HDAC2 and/or HDAC3 are effective drug candidates for KCa3.1‐overexpressing cancers.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Saki Kanatsuka
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology School of Pharmacy Aichi-Gakuin University Nagoya 464-8650 Japan
| | - Hiroaki Kito
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Azusa Matsui
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Mayu Fujimoto
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Sayo Matsuba
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Satomi Niwa
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Peng Zhan
- Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto 606-0823 Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto 606-0823 Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology School of Pharmacy Aichi-Gakuin University Nagoya 464-8650 Japan
| |
Collapse
|
34
|
Niu Q, Liu FK, Wang AL, Jia XF, Liu CX. Isoliquiritigenin induces apoptosis of human gastric carcinoma SGC7901 cells through PI3K/AKT pathway. Shijie Huaren Xiaohua Zazhi 2015; 23:5342-5347. [DOI: 10.11569/wcjd.v23.i33.5342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of isoliquiritigenin (ISL) on the apoptosis of human gastric carcinoma SGC7901 cells and to explore the possible mechanism involved.
METHODS: SGC7901 cells in logarithmic growth phase were divided into a control group and an ISL group. After cells were treated with different concentrations of ISL for different durations, cell proliferation was assessed by MTT assay, apoptosis of SGC7901 cells was assessed by flow cytometry, and the expression of Bax, Akt, and P-Akt was tested by Western blot.
RESULTS: The proliferation of SGC7901 cells could not be inhibited by 10 μmol/L ISL, but was significantly inhibited by 25 μmol/L, 50 μmol/L, and 100 μmol/L ISL, and the inhibitory effect was concentration- and time-dependent. Compared with the control group (3.23% ± 0.45%), the apoptosis rates of cells treated with 25 μmol/L (6.13% ± 0.61%), 50 μmol/L (11.70% ± 0.75%), and 100 μmol/L ISL (26.60% ± 1.51%) significantly increased (P < 0.05). The expression level of P-Akt decreased gradually and Bax increased gradually with the increase of the ISL concentration (P < 0.05). There was no statistically significant difference between groups in the expression level of Akt protein.
CONCLUSION: ISL can significantly induce the apoptosis of SGC7901 cells, possibly via mechanisms related to downregulation of the expression of signal transduction pathways protein PI3K/AKT and upregulation of its downstream protein Bax.
Collapse
|