1
|
Matias AC, Matos J, Dohmen RJ, Ramos PC. Hsp70 and Hsp110 Chaperones Promote Early Steps of Proteasome Assembly. Biomolecules 2022; 13:biom13010011. [PMID: 36671396 PMCID: PMC9855889 DOI: 10.3390/biom13010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Whereas assembly of the 20S proteasome core particle (CP) in prokaryotes apparently occurs spontaneously, the efficiency of this process in eukaryotes relies on the dedicated assembly chaperones Ump1, Pba1-Pba2, and Pba3-Pba4. For mammals, it was reported that CP assembly initiates with formation of a complete α-ring that functions as a template for β subunit incorporation. By contrast, we were not able to detect a ring composed only of a complete set of α subunits in S. cerevisiae. Instead, we found that the CP subunits α1, α2, and α4 each form independent small complexes. Purification of such complexes containing α4 revealed the presence of chaperones of the Hsp70/Ssa and Hsp110/Sse families. Consistently, certain small complexes containing α1, α2, and α4 were not formed in strains lacking these chaperones. Deletion of the SSE1 gene in combination with deletions of PRE9 (α3), PBA3, or UMP1 genes resulted in severe synthetic growth defects, high levels of ubiquitin-conjugates, and an accumulation of distinct small complexes with α subunits. Our study shows that Hsp70 and Hsp110 chaperones cooperate to promote the folding of individual α subunits and/or their assembly with other CP subunits, Ump1, and Pba1-Pba4 in subsequent steps.
Collapse
Affiliation(s)
- Ana C. Matias
- Center of Molecular Biosciences, Institute for Genetics, Department of Biology, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-117 Faro, Portugal
| | - Joao Matos
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-117 Faro, Portugal
| | - R. Jürgen Dohmen
- Center of Molecular Biosciences, Institute for Genetics, Department of Biology, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany
- Correspondence: (R.J.D.); (P.C.R.)
| | - Paula C. Ramos
- Center of Molecular Biosciences, Institute for Genetics, Department of Biology, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-117 Faro, Portugal
- Correspondence: (R.J.D.); (P.C.R.)
| |
Collapse
|
2
|
Itagi P, Kante A, Lagunes L, Deeds EJ. Understanding the separation of timescales in bacterial proteasome core particle assembly. Biophys J 2022; 121:3975-3986. [PMID: 36016496 PMCID: PMC9674962 DOI: 10.1016/j.bpj.2022.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
The 20S proteasome core particle (CP) is a molecular machine that is a key component of cellular protein degradation pathways. Like other molecular machines, it is not synthesized in an active form but rather as a set of subunits that assemble into a functional complex. The CP is conserved across all domains of life and is composed of 28 subunits, 14 α and 14 β, arranged in four stacked seven-member rings (α7β7β7α7). While details of CP assembly vary across species, the final step in the assembly process is universally conserved: two half proteasomes (HPs; α7β7) dimerize to form the CP. In the bacterium Rhodococcus erythropolis, experiments have shown that the formation of the HP is completed within minutes, while the dimerization process takes hours. The N-terminal propeptide of the β subunit, which is autocatalytically cleaved off after CP formation, plays a key role in regulating this separation of timescales. However, the detailed molecular mechanism of how the propeptide achieves this regulation is unclear. In this work, we used molecular dynamics simulations to characterize HP conformations and found that the HP exists in two states: one where the propeptide interacts with key residues in the HP dimerization interface and likely blocks dimerization, and one where this interface is free. Furthermore, we found that a propeptide mutant that dimerizes extremely slowly is essentially always in the nondimerizable state, while the wild-type rapidly transitions between the two. Based on these simulations, we designed a propeptide mutant that favored the dimerizable state in molecular dynamics simulations. In vitro assembly experiments confirmed that this mutant dimerizes significantly faster than wild-type. Our work thus provides unprecedented insight into how this critical step in CP assembly is regulated, with implications both for efforts to inhibit proteasome assembly and for the evolution of hierarchical assembly pathways.
Collapse
Affiliation(s)
- Pushpa Itagi
- Center for Computational Biology, University of Kansas, Lawrence, Kansas; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California
| | - Anupama Kante
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas; Department of Integrative Biology and Physiology, UCLA, Los Angeles, California
| | - Leonila Lagunes
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California
| | - Eric J Deeds
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California.
| |
Collapse
|
3
|
Upregulated Proteasome Subunits in COVID-19 Patients: A Link with Hypoxemia, Lymphopenia and Inflammation. Biomolecules 2022; 12:biom12030442. [PMID: 35327634 PMCID: PMC8946050 DOI: 10.3390/biom12030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Severe COVID-19 disease leads to hypoxemia, inflammation and lymphopenia. Viral infection induces cellular stress and causes the activation of the innate immune response. The ubiquitin-proteasome system (UPS) is highly implicated in viral immune response regulation. The main function of the proteasome is protein degradation in its active form, which recognises and binds to ubiquitylated proteins. Some proteasome subunits have been reported to be upregulated under hypoxic and hyperinflammatory conditions. Here, we conducted a prospective cohort study of COVID-19 patients (n = 44) and age-and sex-matched controls (n = 20). In this study, we suggested that hypoxia could induce the overexpression of certain genes encoding for subunits from the α and β core of the 20S proteasome and from regulatory particles (19S and 11S) in COVID-19 patients. Furthermore, the gene expression of proteasome subunits was associated with lymphocyte count reduction and positively correlated with inflammatory molecular and clinical markers. Given the importance of the proteasome in maintaining cellular homeostasis, including the regulation of the apoptotic and pyroptotic pathways, these results provide a potential link between COVID-19 complications and proteasome gene expression.
Collapse
|
4
|
Marshall RS, Gemperline DC, McLoughlin F, Book AJ, Hofmann K, Vierstra RD. An evolutionarily distinct chaperone promotes 20S proteasome α-ring assembly in plants. J Cell Sci 2020; 133:jcs249862. [PMID: 33033180 PMCID: PMC7657472 DOI: 10.1242/jcs.249862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
The core protease (CP) subcomplex of the 26S proteasome houses the proteolytic active sites and assumes a barrel shape comprised of four co-axially stacked heptameric rings formed by structurally related α- and β-subunits. CP biogenesis typically begins with the assembly of the α-ring, which then provides a template for β-subunit integration. In eukaryotes, α-ring assembly is partially mediated by two hetero-dimeric chaperones, termed Pba1-Pba2 (Add66) and Pba3-Pba4 (also known as Irc25-Poc4) in yeast. Pba1-Pba2 initially promotes orderly recruitment of the α-subunits through interactions between their C-terminal HbYX or HbF motifs and pockets at the α5-α6 and α6-α7 interfaces. Here, we identified PBAC5 as a fifth α-ring assembly chaperone in Arabidopsis that directly binds the Pba1 homolog PBAC1 to form a trimeric PBAC5-PBAC1-PBAC2 complex. PBAC5 harbors a HbYX motif that docks with a pocket between the α4 and α5 subunits during α-ring construction. Arabidopsis lacking PBAC5, PBAC1 and/or PBAC2 are hypersensitive to proteotoxic, salt and osmotic stresses, and display proteasome assembly defects. Remarkably, whereas PBAC5 is evolutionarily conserved among plants, sequence relatives are also dispersed within other kingdoms, including a scattered array of fungal, metazoan and oomycete species.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Adam J Book
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
5
|
Suppahia A, Itagi P, Burris A, Kim FMG, Vontz A, Kante A, Kim S, Im W, Deeds EJ, Roelofs J. Cooperativity in Proteasome Core Particle Maturation. iScience 2020; 23:101090. [PMID: 32380419 PMCID: PMC7210456 DOI: 10.1016/j.isci.2020.101090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Proteasomes are multi-subunit protease complexes found in all domains of life. The maturation of the core particle (CP), which harbors the active sites, involves dimerization of two half CPs (HPs) and an autocatalytic cleavage that removes β propeptides. How these steps are regulated remains poorly understood. Here, we used the Rhodococcus erythropolis CP to dissect this process in vitro. Our data show that propeptides regulate the dimerization of HPs through flexible loops we identified. Furthermore, N-terminal truncations of the propeptides accelerated HP dimerization and decelerated CP auto-activation. We identified cooperativity in autocatalysis and found that the propeptide can be partially cleaved by adjacent active sites, potentially aiding an otherwise strictly autocatalytic mechanism. We propose that cross-processing during bacterial CP maturation is the underlying mechanism leading to the observed cooperativity of activation. Our work suggests that the bacterial β propeptide plays an unexpected and complex role in regulating dimerization and autocatalytic activation.
Collapse
Affiliation(s)
- Anjana Suppahia
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Pushpa Itagi
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA
| | - Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Faith Mi Ge Kim
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Alexander Vontz
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Anupama Kante
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA; Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Seonghoon Kim
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18105, USA
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18105, USA; Department of Bioengineering, Lehigh University, Bethlehem, PA 18105, USA; Department of Chemistry, Lehigh University, Bethlehem, PA 18105, USA
| | - Eric J Deeds
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 99024, USA.
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA.
| |
Collapse
|
6
|
Hammack LJ, Panfair D, Kusmierczyk AR. A novel proteasome assembly intermediate bypasses the need to form α-rings first. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30312-0. [PMID: 32081431 DOI: 10.1016/j.bbrc.2020.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
Abstract
Proteasomes provide the main route of intracellular protein degradation. They consist of a central protease, termed the 20S proteasome, or core particle (CP), that partners with one or more regulatory complexes. The quaternary structure of the CP is conserved across all domains of life and is comprised of four coaxially stacked heptameric rings formed by structurally related α and β subunits. In eukaryotes, biogenesis of the CP is generally assumed to involve the obligate formation of α-rings. These serve as templates upon which β subunits assemble to form half-proteasomes which dimerize to give rise to CP. Here, we demonstrate the in vivo existence of an assembly-competent intermediate containing an incomplete set of both α and β subunits. The novel intermediate exhibits a precursor-product relationship with the well characterized CP assembly intermediate, the 13S. This is the first evidence that eukaryotic CP, like its archaeal and bacterial counterparts, can assemble in an α-ring independent manner.
Collapse
Affiliation(s)
- Lindsay J Hammack
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Dilrajkaur Panfair
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Andrew R Kusmierczyk
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
The Y. bercovieri Anbu crystal structure sheds light on the evolution of highly (pseudo)symmetric multimers. J Mol Biol 2017; 430:611-627. [PMID: 29258816 PMCID: PMC6376114 DOI: 10.1016/j.jmb.2017.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
Abstract
Ancestral β-subunit (Anbu) is homologous to HslV and 20S proteasomes. Based on its phylogenetic distribution and sequence clustering, Anbu has been proposed as the “ancestral” form of proteasomes. Here, we report biochemical data, small-angle X-ray scattering results, negative-stain electron microscopy micrographs and a crystal structure of the Anbu particle from Yersinia bercovieri (YbAnbu). All data are consistent with YbAnbu forming defined 12–14 subunit multimers that differ in shape from both HslV and 20S proteasomes. The crystal structure reveals that YbAnbu subunits form tight dimers, held together in part by the Anbu specific C-terminal helices. These dimers (“protomers”) further assemble into a low-rise left-handed staircase. The lock-washer shape of YbAnbu is consistent with the presence of defined multimers, X-ray diffraction data in solution and negative-stain electron microscopy images. The presented structure suggests a possible evolutionary pathway from helical filaments to highly symmetric or pseudosymmetric multimer structures. YbAnbu subunits have the Ntn-hydrolase fold, a putative S1 pocket and conserved candidate catalytic residues Thr1, Asp17 and Lys32(33). Nevertheless, we did not detect any YbAnbu peptidase or amidase activity. However, we could document orthophosphate production from ATP catalyzed by the ATP-grasp protein encoded in the Y. bercovieri Anbu operon.
Collapse
|
8
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Hammack LJ, Firestone K, Chang W, Kusmierczyk AR. Molecular chaperones of the Hsp70 family assist in the assembly of 20S proteasomes. Biochem Biophys Res Commun 2017; 486:438-443. [PMID: 28322792 DOI: 10.1016/j.bbrc.2017.03.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large protease comprised of two major sub assemblies, the 20S proteasome, or core particle (CP), and the 19S regulatory particle (RP). Assembly of the CP and RP is assisted by an expanding list of dedicated assembly factors. For the CP, this includes Ump1 and the heterodimeric Pba1-Pba2 and Pba3-Pba4 proteins. It is not known how many additional proteins that assist in proteasome biogenesis remain to be discovered. Here, we demonstrate that two members of the Hsp70 family in yeast, Ssa1 and Ssa2, play a direct role in CP assembly. Ssa1 and Ssa2 interact genetically and physically with proteasomal components. Specifically, they associate tightly with known CP assembly intermediates, but not with fully assembled CP, through an extensive purification protocol. And, in yeast lacking both Ssa1 and Ssa2, specific defects in CP assembly are observed.
Collapse
Affiliation(s)
- Lindsay J Hammack
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Kyle Firestone
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - William Chang
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Andrew R Kusmierczyk
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Howell LA, Tomko RJ, Kusmierczyk AR. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Im E, Chung KC. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases. BMB Rep 2017; 49:459-73. [PMID: 27312603 PMCID: PMC5227139 DOI: 10.5483/bmbrep.2016.49.9.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs. [BMB Reports 2016; 49(9): 459-473]
Collapse
Affiliation(s)
- Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
12
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
13
|
Panfair D, Kusmierczyk AR. Examining Proteasome Assembly with Recombinant Archaeal Proteasomes and Nondenaturing PAGE: The Case for a Combined Approach. J Vis Exp 2016. [PMID: 28060342 DOI: 10.3791/54860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Proteasomes are found in all domains of life. They provide the major route of intracellular protein degradation in eukaryotes, though their assembly is not completely understood. All proteasomes contain a structurally conserved core particle (CP), or 20S proteasome, containing two heptameric β subunit rings sandwiched between two heptameric α subunit rings. Archaeal 20S proteasomes are compositionally simpler compared to their eukaryotic counterparts, yet they both share a common assembly mechanism. Consequently, archaeal 20S proteasomes continue to be important models for eukaryotic proteasome assembly. Specifically, recombinant expression of archaeal 20S proteasomes coupled with nondenaturing polyacrylamide gel electrophoresis (PAGE) has yielded many important insights into proteasome biogenesis. Here, we discuss a means to improve upon the usual strategy of coexpression of archaeal proteasome α and β subunits prior to nondenaturing PAGE. We demonstrate that although rapid and efficient, a coexpression approach alone can miss key assembly intermediates. In the case of the proteasome, coexpression may not allow detection of the half-proteasome, an intermediate containing one complete α-ring and one complete β-ring. However, this intermediate is readily detected via lysate mixing. We suggest that combining coexpression with lysate mixing yields an approach that is more thorough in analyzing assembly, yet remains labor nonintensive. This approach may be useful for the study of other recombinant multiprotein complexes.
Collapse
Affiliation(s)
- Dilrajkaur Panfair
- Department of Biology, Indiana University-Purdue University, Indianapolis (IUPUI)
| | - Andrew R Kusmierczyk
- Department of Biology, Indiana University-Purdue University, Indianapolis (IUPUI);
| |
Collapse
|
14
|
Hammack LJ, Kusmierczyk AR. Assembly of proteasome subunits into non-canonical complexes in vivo. Biochem Biophys Res Commun 2016; 482:164-169. [PMID: 27833017 DOI: 10.1016/j.bbrc.2016.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/05/2016] [Indexed: 01/25/2023]
Abstract
Proteasomes exist in all domains of life. In general, they are comprised of a compartmentalized protease whose activity is modulated by one or more regulatory complexes with which it interacts. The quaternary structure of this compartmentalized protease, called the 20S proteasome, is absolutely conserved and consists of four heptameric rings stacked coaxially. The rings are made of structurally related α and β subunits. In eukaryotes, assembly factors chaperone the α and β subunits during 20S biogenesis. Here we demonstrate that proteasome subunits can assemble into structures other than the canonical 20S proteasome in vivo. Specifically, the yeast α4 subunit forms high molecular weight complexes whose abundance increases when proteasome function is compromised. Results from a disulfide crosslinking approach are consistent with these complexes being ring-shaped. Though several eukaryotic α subunits can form rings when expressed recombinantly in bacteria, this is the first evidence that such non-canonical complexes exist in vivo.
Collapse
Affiliation(s)
- Lindsay J Hammack
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, United States
| | - Andrew R Kusmierczyk
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, United States.
| |
Collapse
|
15
|
Padmanabhan A, Vuong SAT, Hochstrasser M. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells. Cell Rep 2016; 14:2962-74. [PMID: 26997268 DOI: 10.1016/j.celrep.2016.02.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/25/2016] [Accepted: 02/16/2016] [Indexed: 11/17/2022] Open
Abstract
Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here, we report the formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, that bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of "α4-α4" proteasomes depends on the relative cellular levels of α4 and α3 and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of an alternative mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Simone Anh-Thu Vuong
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|