1
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
2
|
Diversity of transcription activator-like effectors and pathogenicity in strains of Xanthomonas oryzae pv. oryzicola from Yunnan. World J Microbiol Biotechnol 2022; 38:71. [PMID: 35258706 DOI: 10.1007/s11274-022-03230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 01/07/2022] [Indexed: 10/18/2022]
Abstract
The present study aimed to evaluate transcriptional activator-like effector (TALE) genes in 86 Xanthomonas oryzae pv. oryzicola strains collected from 8 rice-growing regions in Yunnan, and to examine the relationship between TALE genotypes and virulence in 6 differential rice lines. Besides, the geographical areas, distribution of these genotypes were studied in detail. Genetic diversity was analyzed through the number and size of putative TALE genes based on TALE gene avrXa3 as a probe. We found that X. oryzae pv. oryzicola strains consist of variable number (13-27) of avrXa3-hybridizing fragments (putative TALE genes). Test strains were classified into 8 genotypes (G1-G8) with major genotypes G3 and G7 widely distributed in Yunnan. Pathogenicity of X. oryzae pv. oryzicola was evaluated by inoculating 6 differential rice lines with a single resistance gene into 9 pathotypes clusters (I-IX), the dominant Genotypes G3 and G7 consist of pathotypes I, II, and IV. Furthermore, we also detected the known TALE target genes expression in susceptible rice cultivar (cv. nipponbare) after inoculating 8 genotypes-representative X. oryzae pv. oryzicola strain. Correlation between the numbers of putative TALE genes of X. oryzae pv. oryzicola and relevant target genes in nipponbare confirmed up-regulation. Altogether, this study has given insights into the population structure of X. oryzae pv. oryzicola that may inform strategies to control BLS in rice.
Collapse
|
3
|
Zárate‐Chaves CA, Gómez de la Cruz D, Verdier V, López CE, Bernal A, Szurek B. Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. MOLECULAR PLANT PATHOLOGY 2021; 22:1520-1537. [PMID: 34227737 PMCID: PMC8578842 DOI: 10.1111/mpp.13094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
Xanthomonas phaseoli pv. manihotis (Xpm) and X. cassavae (Xc) are two bacterial pathogens attacking cassava. Cassava bacterial blight (CBB) is a systemic disease caused by Xpm, which might have dramatic effects on plant growth and crop production. Cassava bacterial necrosis is a nonvascular disease caused by Xc with foliar symptoms similar to CBB, but its impacts on the plant vigour and the crop are limited. In this review, we describe the epidemiology and ecology of the two pathogens, the impacts and management of the diseases, and the main research achievements for each pathosystem. Because Xc data are sparse, our main focus is on Xpm and CBB.
Collapse
Affiliation(s)
| | | | - Valérie Verdier
- PHIMUniversité MontpellierCIRADINRAeIRDInstitut AgroMontpellierFrance
| | - Camilo E. López
- Manihot Biotec, Departamento de BiologíaUniversidad Nacional de ColombiaBogotáColombia
| | - Adriana Bernal
- Laboratorio de Interacciones Moleculares de Microorganismos AgrícolasDepartamento de Ciencias BásicasUniversidad de los AndesBogotáColombia
| | - Boris Szurek
- PHIMUniversité MontpellierCIRADINRAeIRDInstitut AgroMontpellierFrance
| |
Collapse
|
4
|
Sigma 54-Regulated Transcription Is Associated with Membrane Reorganization and Type III Secretion Effectors during Conversion to Infectious Forms of Chlamydia trachomatis. mBio 2020; 11:mBio.01725-20. [PMID: 32900805 PMCID: PMC7482065 DOI: 10.1128/mbio.01725-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The factors that control the growth and infectious processes for Chlamydia are still poorly understood. This study used recently developed genetic tools to determine the regulon for one of the key transcription factors encoded by Chlamydia, sigma 54. Surrogate and computational analyses provide additional support for the hypothesis that sigma 54 plays a key role in controlling the expression of many components critical to converting and enabling the infectious capability of Chlamydia. These components include those that remodel the membrane for the extracellular environment and incorporation of an arsenal of type III secretion effectors in preparation for infecting new cells. Chlamydia bacteria are obligate intracellular organisms with a phylum-defining biphasic developmental cycle that is intrinsically linked to its ability to cause disease. The progression of the chlamydial developmental cycle is regulated by the temporal expression of genes predominantly controlled by RNA polymerase sigma (σ) factors. Sigma 54 (σ54) is one of three sigma factors encoded by Chlamydia for which the role and regulon are unknown. CtcC is part of a two-component signal transduction system that is requisite for σ54 transcriptional activation. CtcC activation of σ54 requires phosphorylation, which relieves inhibition by the CtcC regulatory domain and enables ATP hydrolysis by the ATPase domain. Prior studies with CtcC homologs in other organisms have shown that expression of the ATPase domain alone can activate σ54 transcription. Biochemical analysis of CtcC ATPase domain supported the idea of ATP hydrolysis occurring in the absence of the regulatory domain, as well as the presence of an active-site residue essential for ATPase activity (E242). Using recently developed genetic approaches in Chlamydia to induce expression of the CtcC ATPase domain, a transcriptional profile was determined that is expected to reflect the σ54 regulon. Computational evaluation revealed that the majority of the differentially expressed genes were preceded by highly conserved σ54 promoter elements. Reporter gene analyses using these putative σ54 promoters reinforced the accuracy of the model of the proposed regulon. Investigation of the gene products included in this regulon supports the idea that σ54 controls expression of genes that are critical for conversion of Chlamydia from replicative reticulate bodies into infectious elementary bodies.
Collapse
|
5
|
Li C, Ji C, Huguet‐Tapia JC, White FF, Dong H, Yang B. An efficient method to clone TAL effector genes from Xanthomonas oryzae using Gibson assembly. MOLECULAR PLANT PATHOLOGY 2019; 20:1453-1462. [PMID: 31414714 PMCID: PMC6792135 DOI: 10.1111/mpp.12820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transcription Activator-Like effectors (TALes) represent the largest family of type III effectors among pathogenic bacteria and play a critical role in the process of infection. Strains of Xanthomonas oryzae pv. oryzae (Xoo) and some strains of other Xanthomonas pathogens contain large numbers of TALe genes. Previous techniques to clone individual or a complement of TALe genes through conventional strategies are inefficient and time-consuming due to multiple genes (up to 29 copies) in a given genome, and technically challenging due to the repetitive sequences (up to 33 nearly identical 102-nucleotide repeats) of individual TALe genes. Thus, only a limited number of TALe genes have been molecularly cloned and characterized, and the functions of most TALe genes remain unknown. Here, we present an easy and efficient cloning technique to clone TALe genes selectively through in vitro homologous recombination and single-strand annealing, and demonstrate the feasibility of this approach with four different Xoo strains. Based on the Gibson assembly strategy, two complementary vectors with scaffolds that can preferentially capture all TALe genes from a pool of genomic fragments were designed. Both vector systems enabled cloning of a full complement of TALe genes from each of four Xoo strains and functional analysis of individual TALes in rice in approximately 1 month compared to 3 months by previously used methods. The results demonstrate a robust tool to advance TALe biology and a potential for broad usage of this approach to clone multiple copies of highly competitive DNA elements in any genome of interest.
Collapse
Affiliation(s)
- Chenhao Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjing210095Jiangsu ProvidenceP.R. China
- Division of Plant SciencesUniversity of MissouriColumbiaMO65211USA
| | - Chonghui Ji
- Division of Plant SciencesUniversity of MissouriColumbiaMO65211USA
| | | | - Frank F. White
- Department of Plant PathologyUniversity of FloridaGainesvilleFL32611USA
| | - Hansong Dong
- Department of Plant PathologyNanjing Agricultural UniversityNanjing210095Jiangsu ProvidenceP.R. China
| | - Bing Yang
- Division of Plant SciencesUniversity of MissouriColumbiaMO65211USA
- Donald Danforth Plant Science CenterSt. LouisMO63132USA
| |
Collapse
|
6
|
Chien CC, Chou MY, Chen CY, Shih MC. Analysis of genetic diversity of Xanthomonas oryzae pv. oryzae populations in Taiwan. Sci Rep 2019; 9:316. [PMID: 30670790 PMCID: PMC6342995 DOI: 10.1038/s41598-018-36575-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/25/2018] [Indexed: 01/22/2023] Open
Abstract
Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major rice disease. In Taiwan, the tropical indica type of Oryza sativa originally grown in this area is mix-cultivated with the temperate japonica type of O. sativa, and this might have led to adaptive changes of both rice host and Xoo isolates. In order to better understand how Xoo adapts to this unique environment, we collected and analyzed fifty-one Xoo isolates in Taiwan. Three different genetic marker systems consistently identified five groups. Among these groups, two of them had unique sequences in the last acquired ten spacers in the clustered regularly interspaced short palindromic repeats (CRISPR) region, and the other two had sequences that were similar to the Japanese isolate MAFF311018 and the Philippines isolate PXO563, respectively. The genomes of two Taiwanese isolates with unique CRISPR sequence features, XF89b and XM9, were further completely sequenced. Comparison of the genome sequences suggested that XF89b is phylogenetically close to MAFF311018, and XM9 is close to PXO563. Here, documentation of the diversity of groups of Xoo in Taiwan provides evidence of the populations from different sources and hitherto missing information regarding distribution of Xoo populations in East Asia.
Collapse
Affiliation(s)
- Chih-Cheng Chien
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Mei-Yi Chou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Yi Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Che Shih
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
7
|
Tran TT, Doucouré H, Hutin M, Jaimes Niño LM, Szurek B, Cunnac S, Koebnik R. Efficient enrichment cloning of TAL effector genes from Xanthomonas. MethodsX 2018; 5:1027-1032. [PMID: 30225203 PMCID: PMC6138780 DOI: 10.1016/j.mex.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2018] [Indexed: 11/29/2022] Open
Abstract
Many plant-pathogenic xanthomonads use a type III secretion system to translocate Transcription Activator-Like (TAL) effectors into eukaryotic host cells where they act as transcription factors. Target genes are induced upon binding of a TAL effector to double-stranded DNA in a sequence-specific manner. DNA binding is governed by a highly repetitive protein domain, which consists of an array of nearly identical repeats of ca. 102 base pairs. Many species and pathovars of Xanthomonas, including pathogens of rice, cereals, cassava, citrus and cotton, encode multiple TAL effectors in their genomes. Some of the TAL effectors have been shown to act as key pathogenicity factors, which induce the expression of susceptibility genes to the benefit of the pathogen. However, due to the repetitive character and the presence of multiple gene copies, high-throughput cloning of TAL effector genes remains a challenge. In order to isolate complete TAL effector gene repertoires, we developed an enrichment cloning strategy based on •genome-informed in silico optimization of restriction digestions,•selective restriction digestion of genomic DNA, and•size fractionation of DNA fragments. Our rapid, cheap and powerful method allows efficient cloning of TAL effector genes from xanthomonads, as demonstrated for two rice-pathogenic strains of Xanthomonas oryzae from Africa.
Collapse
Affiliation(s)
- T T Tran
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - H Doucouré
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - M Hutin
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | | | - B Szurek
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - S Cunnac
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - R Koebnik
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| |
Collapse
|
8
|
Li R, Wang S, Sun R, He X, Liu Y, Song C. Xanthomonas oryzae pv. oryzae type III effector PthXo3JXOV suppresses innate immunity, induces susceptibility and binds to multiple targets in rice. FEMS Microbiol Lett 2018. [DOI: 10.1093/femsle/fny037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Rongmei Li
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Ronghua Sun
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang He
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongting Liu
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Congfeng Song
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|