1
|
Wong WSY, Corrales TP, Naga A, Baumli P, Kaltbeitzel A, Kappl M, Papadopoulos P, Vollmer D, Butt HJ. Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning. ACS NANO 2020; 14:3836-3846. [PMID: 32096971 PMCID: PMC7307963 DOI: 10.1021/acsnano.9b08211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 05/19/2023]
Abstract
Superamphiphobic surfaces are commonly associated with superior anticontamination and antifouling properties. Visually, this is justified by their ability to easily shed off drops and contaminants. However, on micropillar arrays, tiny droplets are known to remain on pillars' top faces while the drop advances. This raises the question of whether remnants remain even on nanostructured superamphiphobic surfaces. Are superamphiphobic surfaces really self-cleaning? Here we investigate the presence of microdroplet contaminants on three nanostructured superamphiphobic surfaces. After brief contact with liquids having different volatilities and surface tension (water, ethylene glycol, hexadecane, and an ionic liquid), confocal microscopy reveals a "blanket-like" layer of microdroplets remaining on the surface. It appears that the phenomenon is universal. Notably, when placing subsequent drops onto the contaminated surface, they are still able to roll off. However, adhesion forces can gradually increase by up to 3 times after repeated liquid drop contact. Therefore, we conclude that superamphiphobic surfaces do not warrant self-cleaning and anticontamination capabilities at sub-micrometric length scales.
Collapse
Affiliation(s)
- William S. Y. Wong
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Tomas P. Corrales
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Department
of Physics, Federico Santa María
Technical University, Avenida España 1680, Casilla 110-V, Valparaíso, Chile
| | - Abhinav Naga
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Philipp Baumli
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Anke Kaltbeitzel
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Michael Kappl
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Periklis Papadopoulos
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Department
of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | - Doris Vollmer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| |
Collapse
|
2
|
Spiesz EM, Schmieden DT, Grande AM, Liang K, Schwiedrzik J, Natalio F, Michler J, Garcia SJ, Aubin-Tam ME, Meyer AS. Bacterially Produced, Nacre-Inspired Composite Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805312. [PMID: 30951252 DOI: 10.1002/smll.201805312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/27/2019] [Indexed: 05/12/2023]
Abstract
The impressive mechanical properties of natural composites, such as nacre, arise from their multiscale hierarchical structures, which span from nano- to macroscale and lead to effective energy dissipation. While some synthetic bioinspired materials have achieved the toughness of natural nacre, current production methods are complex and typically involve toxic chemicals, extreme temperatures, and/or high pressures. Here, the exclusive use of bacteria to produce nacre-inspired layered calcium carbonate-polyglutamate composite materials that reach and exceed the toughness of natural nacre, while additionally exhibiting high extensibility and maintaining high stiffness, is introduced. The extensive diversity of bacterial metabolic abilities and the possibility of genetic engineering allows for the creation of a library of bacterially produced, cost-effective, and eco-friendly composite materials.
Collapse
Affiliation(s)
- Ewa M Spiesz
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Dominik T Schmieden
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Antonio M Grande
- Department of Aerospace Science and Technology, Politecnico di Milano, Via Giuseppe La Masa, 34, 20156, Milan, Italy
| | - Kuang Liang
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Jakob Schwiedrzik
- Laboratory for Mechanics of Materials and Nanostructures, EMPA Swiss Federal Laboratories for Materials Science and Technology, Überland Str. 129, 8600, Dübendorf, Switzerland
| | - Filipe Natalio
- Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, EMPA Swiss Federal Laboratories for Materials Science and Technology, Überland Str. 129, 8600, Dübendorf, Switzerland
| | - Santiago J Garcia
- Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629, HS Delft, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Anne S Meyer
- Department of Biology, University of Rochester, Hutchison Road, Rochester, NY, 14620, USA
| |
Collapse
|
3
|
Werner P, Blumtritt H, Natalio F. Organic crystal lattices in the axial filament of silica spicules of Demospongiae. J Struct Biol 2017; 198:186-195. [DOI: 10.1016/j.jsb.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
4
|
Corrales TP, Friedemann K, Fuchs R, Roy C, Crespy D, Kappl M. Breaking Nano-Spaghetti: Bending and Fracture Tests of Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1389-1395. [PMID: 26750590 DOI: 10.1021/acs.langmuir.5b04176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanofibers composed of silica nanoparticles, used as structural building blocks, and polystyrene nanoparticles introduced as sacrificial material are fabricated by bicolloidal electrospinning. During fiber calcination, sacrificial particles are combusted leaving voids with controlled average sizes. The mechanical properties of the sintered silica fibers with voids are investigated by suspending the nanofiber over a gap and performing three-point bending experiments with atomic force microscopy. We investigate three different cases: fibers without voids and with 60 or 260 nm voids. For each case, we study how the introduction of the voids can be used to control the mechanical stiffness and fracture properties of the fibers. Fibers with no voids break in their majority at a single fracture point (70% of cases), segmenting the fiber into two pieces, while the remaining cases (30%) fracture at multiple points, leaving a gap in the suspended fiber. On the other hand, fibers with 60 nm voids fracture in only 25% of the cases at a single point, breaking predominantly at multiple points (75%). Finally, fibers with 260 nm voids fracture roughly in equal proportions leaving two and multiple pieces (46% vs 54%, respectively). The present study is a prerequisite for processes involving the controlled sectioning of nanofibers to yield anisometric particles.
Collapse
Affiliation(s)
- Tomas P Corrales
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Instituto de Alta Investigacion, Universidad de Tarapaca , Casilla 7-D, Arica, Chile
| | - Kathrin Friedemann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Regina Fuchs
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Clément Roy
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Graduate School of Engineering, University of Nantes , 2, rue de la Houssinière, FR 44322 Nantes, Cedex 3, France
| | - Daniel Crespy
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Zhang Y, Reed BW, Chung FR, Koski KJ. Mesoscale elastic properties of marine sponge spicules. J Struct Biol 2016; 193:67-74. [DOI: 10.1016/j.jsb.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/23/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022]
|