1
|
MoaE Is Involved in Response to Oxidative Stress in Deinococcus radiodurans. Int J Mol Sci 2023; 24:ijms24032441. [PMID: 36768763 PMCID: PMC9916421 DOI: 10.3390/ijms24032441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Molybdenum ions are covalently bound to molybdenum pterin (MPT) to produce molybdenum cofactor (Moco), a compound essential for the catalytic activity of molybdenum enzymes, which is involved in a variety of biological functions. MoaE is the large subunit of MPT synthase and plays a key role in Moco synthesis. Here, we investigated the function of MoaE in Deinococcus radiodurans (DrMoaE) in vitro and in vivo, demonstrating that the protein contributed to the extreme resistance of D. radiodurans. The crystal structure of DrMoaE was determined by 1.9 Å resolution. DrMoaE was shown to be a dimer and the dimerization disappeared after Arg110 had been mutated. The deletion of drmoaE resulted in sensitivity to DNA damage stress and a slower growth rate in D. radiodurans. The increase in drmoaE transcript levels the and accumulation of intracellular reactive oxygen species levels under oxidative stress suggested that it was involved in the antioxidant process in D. radiodurans. In addition, treatment with the base analog 6-hydroxyaminopurine decreased survival and increased intracellular mutation rates in drmoaE deletion mutant strains. Our results reveal that MoaE plays a role in response to external stress mainly through oxidative stress resistance mechanisms in D. radiodurans.
Collapse
|
2
|
Hexabromocyclododecanes Are Dehalogenated by CYP168A1 from Pseudomonas aeruginosa Strain HS9. Appl Environ Microbiol 2021; 87:e0082621. [PMID: 34132585 DOI: 10.1128/aem.00826-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hexabromocyclododecanes (HBCDs) are widely used brominated flame retardants that cause antidiuretic hormone syndrome and even induce cancer. However, little information is available about the degradation mechanisms of HBCDs. In this study, genomic and proteomic analyses, reverse transcription-quantitative PCR, and gene knockout assays reveal that a cytochrome P450-encoding gene is responsible for HBCD catabolism in Pseudomonas aeruginosa HS9. The CO difference spectrum of the enzyme CYP168A1 was matched to P450 characteristics via UV visibility. We demonstrate that the reactions of debromination and hydrogenation are carried out one after another based on detection of the metabolites pentabromocyclododecanols (PBCDOHs), tetrabromocyclododecadiols (TBCDDOHs), and bromide ion. In the 18O isotope experiments, PBCD18OHs were only detected in the H218O group, proving that the added oxygen is derived from H2O, not from O2. This study elucidates the degradation mechanism of HBCDs by Pseudomonas. IMPORTANCE Hexabromocyclododecanes (HBCDs) are environmental pollutants that are widely used in industry. In this study, we identified and characterized a novel key dehalogenase, CYP168A1, that is responsible for HBCD degradation from Pseudomonas aeruginosa strain HS9. This study provides new insights into understanding biodegradation of HBCDs.
Collapse
|
3
|
Additional Role of Nicotinic Acid Hydroxylase for the Transformation of 3-Succinoyl-Pyridine by Pseudomonas sp. Strain JY-Q. Appl Environ Microbiol 2021; 87:AEM.02740-20. [PMID: 33397698 DOI: 10.1128/aem.02740-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023] Open
Abstract
Nicotine and nicotinic acid (NA) are both considered to be representatives of N-heterocyclic aromatic compounds, and their degradation pathways have been revealed in Pseudomonas species. However, the cooccurrence of these two pathways has only been observed in Pseudomonas sp. strain JY-Q. The nicotine pyrrolidine catabolism pathway of strain JY-Q consists of the functional modules Nic1, Spm, and Nic2. The module enzyme, 3-succinoylpyridine monooxygenase (Spm), catalyzes transformation of 3-succinoyl-pyridine (SP) to 6-hydroxy-3-succinoyl-pyridine (HSP). There exist two homologous but not identical Spm enzymes (namely, Spm1 and Spm2) in JY-Q. However, when spm1 and spm2 were both in-frame deleted, the mutant still grew well in basic salt medium (BSM) supplemented with nicotine as the sole carbon/nitrogen nutrition, suggesting that there exists an alternative pathway responsible for SP catabolism in JY-Q. NicAB, an enzyme accounting for NA hydroxylation, contains reorganized domains similar to those of Spm. When the JY-Q_nicAB gene (nicAB in strain JY-Q) was introduced into another Pseudomonas strain, one that is unable to degrade NA, the resultant recombinant strain exhibited the ability to transform SP to HSP, but without the ability to metabolize NA. Here, we conclude that NicAB in strain JY-Q exhibits an additional role in SP transformation. The other genes in the NA cluster, NicXDFE (Nic2 homolog), then also exhibit a role in subsequent HSP metabolism for energy yield. This finding also suggests that the cooccurrence of nicotine and NA degradation genes in strain JY-Q represents an advantage for JY-Q, making it more effective and flexible for the degradation of nicotine.IMPORTANCE 3-Succinoyl-pyridine (SP) and 6-hydroxy-3-succinoyl-pyridine (HSP) are both valuable chemical precursors to produce insecticides and hypotensive agents. SP and HSP could be renewable through the nicotine microbial degradation pathway, in which 3-succinoylpyridine monooxygenases (Spm) account for transforming SP into HSP in Pseudomonas sp. strain JY-Q. However, when two homologous Spm genes (spm1 and spm2) were knocked out, the mutant retained the ability to degrade nicotine. Thus, in addition to Spm, JY-Q should have an alternative pathway for SP conversion. In this research, we showed that JY-Q_NicAB was responsible for this alternative SP conversion. Both of the primary functions for nicotinic acid dehydrogenation and the additional function for SP metabolism were detected in a recombinant strain harboring JY-Q_NicAB. As a result, both nicotinic acid and nicotine degradation pathways in JY-Q contribute to its remarkable nicotine tolerance and nicotine degradation availability. These findings also provide one more metabolic engineering strategy for accumulation for value-added intermediates.
Collapse
|
4
|
Fléchard M, Duchesne R, Tahrioui A, Bouffartigues E, Depayras S, Hardouin J, Lagy C, Maillot O, Tortuel D, Azuama CO, Clamens T, Duclairoir-Poc C, Catel-Ferreira M, Gicquel G, Feuilloley MGJ, Lesouhaitier O, Heipieper HJ, Groleau MC, Déziel É, Cornelis P, Chevalier S. The absence of SigX results in impaired carbon metabolism and membrane fluidity in Pseudomonas aeruginosa. Sci Rep 2018; 8:17212. [PMID: 30464317 PMCID: PMC6249292 DOI: 10.1038/s41598-018-35503-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
In Pseudomonas aeruginosa, SigX is an extra-cytoplasmic function σ factor that belongs to the cell wall stress response network. In previous studies, we made the puzzling observation that sigX mutant growth was severely affected in rich lysogeny broth (LB) but not in minimal medium. Here, through comparative transcriptomic and proteomic analysis, we show that the absence of SigX results in dysregulation of genes, whose products are mainly involved in transport, carbon and energy metabolisms. Production of most of these genes is controlled by carbon catabolite repression (CCR), a key regulatory system than ensures preferential carbon source uptake and utilization, substrate prioritization and metabolism. The strong CCR response elicited in LB was lowered in a sigX mutant, suggesting altered nutrient uptake. Since the absence of SigX affects membrane composition and fluidity, we suspected membrane changes to cause such phenotype. The detergent polysorbate 80 (PS80) can moderately destabilize the envelope resulting in non-specific increased nutrient intake. Remarkably, growth, membrane fluidity and expression of dysregulated genes in the sigX mutant strain were restored in LB supplemented with PS80. Altogether, these data suggest that SigX is indirectly involved in CCR regulation, possibly via its effects on membrane integrity and fluidity.
Collapse
Affiliation(s)
- Maud Fléchard
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Rachel Duchesne
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Ali Tahrioui
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Emeline Bouffartigues
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Ségolène Depayras
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Julie Hardouin
- Normandie Université, Université de Rouen Normandie, Laboratoire Polymères Biopolymères Surfaces, PBS, UMR, 6270 CNRS, Mont-Saint-Aignan, France
| | - Coralie Lagy
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Olivier Maillot
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Damien Tortuel
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Cecil Onyedikachi Azuama
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Thomas Clamens
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Cécile Duclairoir-Poc
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Manuella Catel-Ferreira
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Gwendoline Gicquel
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Marc G J Feuilloley
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Olivier Lesouhaitier
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, UFZ Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - Éric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Pierre Cornelis
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Sylvie Chevalier
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France.
| |
Collapse
|
5
|
Wang H, Zhi XY, Qiu J, Shi L, Lu Z. Characterization of a Novel Nicotine Degradation Gene Cluster ndp in Sphingomonas melonis TY and Its Evolutionary Analysis. Front Microbiol 2017; 8:337. [PMID: 28337179 PMCID: PMC5343071 DOI: 10.3389/fmicb.2017.00337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/17/2017] [Indexed: 11/13/2022] Open
Abstract
Sphingomonas melonis TY utilizes nicotine as a sole source of carbon, nitrogen, and energy through a variant of the pyridine and pyrrolidine pathways (VPP). A 31-kb novel nicotine-degrading gene cluster, ndp, in strain TY exhibited a different genetic organization with the vpp cluster in strains Ochrobactrum rhizosphaerae SJY1 and Agrobacterium tumefaciens S33. Genes in vpp were separated by a 20-kb interval sequence, while genes in ndp were localized together. Half of the homolog genes were in different locus in ndp and vpp. Moreover, there was a gene encoding putative transporter of nicotine or other critical metabolite in ndp. Among the putative nicotine-degrading related genes, the nicotine hydroxylase, 6-hydroxy-L-nicotine oxidase, 6-hydroxypseudooxynicotine oxidase, and 6-hydroxy-3-succinyl-pyridine monooxygenase responsible for catalyzing the transformation of nicotine to 2, 5-dihydropyridine in the initial four steps of the VPP were characterized. Hydroxylation at C6 of the pyridine ring and dehydrogenation at the C2–C3 bond of the pyrrolidine ring were the key common reactions in the VPP, pyrrolidine and pyridine pathways. Besides, VPP and pyrrolidine pathway shared the same latter part of metabolic pathway. After analysis of metabolic genes in the pyridine, pyrrolidine, and VPP pathways, we found that both the evolutionary features and metabolic mechanisms of the VPP were more similar to the pyrrolidine pathway. The linked ndpHFEG genes shared by the VPP and pyrrolidine pathways indicated that these two pathways might share the same origin, but variants were observed in some bacteria. And we speculated that the pyridine pathway was distributed in Gram-positive bacteria and the VPP and pyrrolidine pathways were distributed in Gram-negative bacteria by using comprehensive homologs searching and phylogenetic tree construction.
Collapse
Affiliation(s)
- Haixia Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University Kunming, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Longxiang Shi
- Institution of System Engineering, College of Computer Science and Technology, Zhejiang University Hangzhou, China
| | - Zhenmei Lu
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|