1
|
Bayer H, Bertoglio LJ, Maren S, Stern CAJ. Windows of change: Revisiting temporal and molecular dynamics of memory reconsolidation and persistence. Neurosci Biobehav Rev 2025; 174:106198. [PMID: 40354954 DOI: 10.1016/j.neubiorev.2025.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Retrieval can bring memories to a labile state, creating a window to modify its content during reconsolidation. Numerous studies have investigated this period to elucidate reconsolidation mechanisms, understand long-term memory persistence, and develop therapeutic strategies for memory-related psychiatric disorders. However, the temporal dynamics of post-retrieval memory processes have been largely overlooked, leading to mixed findings and hindering the development of targeted interventions. This review discusses retrieval-related cellular and molecular events and how they develop in series and parallel across time. Emerging evidence suggests that some mechanisms triggered after fear memory retrieval can influence either reconsolidation or persistence in different time windows. The temporal boundaries of these post-retrieval processes are still unclear. Further research integrating behavioral and molecular approaches to a deeper understanding of reconsolidation and persistence temporal dynamics is essential to address current debates, including which system/pathway offers the most effective therapeutic window of opportunity.
Collapse
Affiliation(s)
- Hugo Bayer
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Beckman Institute for Advanced Science and Technology and Department of Psychology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Stephen Maren
- Beckman Institute for Advanced Science and Technology and Department of Psychology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Cristina A J Stern
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Soares LA, Nascimento LMM, Guimarães FS, Gazarini L, Bertoglio LJ. Dual-step pharmacological intervention for traumatic-like memories: implications from D-cycloserine and cannabidiol or clonidine in male and female rats. Psychopharmacology (Berl) 2024; 241:1827-1840. [PMID: 38691149 DOI: 10.1007/s00213-024-06596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
RATIONALE Therapeutic approaches to mitigating traumatic memories have often faced resistance. Exploring safe reconsolidation blockers, drugs capable of reducing the emotional valence of the memory upon brief retrieval and reactivation, emerges as a promising pharmacological strategy. Towards this objective, preclinical investigations should focus on aversive memories resulting in maladaptive outcomes and consider sex-related differences to enhance their translatability. OBJECTIVES After selecting a relatively high training magnitude leading to the formation of a more intense and generalized fear memory in adult female and male rats, we investigated whether two clinically approved drugs disrupting its reconsolidation remain effective. RESULTS We found resistant reconsolidation impairment by the α2-adrenergic receptor agonist clonidine or cannabidiol, a major non-psychotomimetic Cannabis sativa component. However, pre-retrieval administration of D-cycloserine, a partial agonist at the glycine-binding site of the N-methyl-D-aspartate (NMDA) receptor complex, facilitated their impairing effects on reconsolidation. A similar reconsolidation blockade by clonidine or cannabidiol was achieved following exposure to a non-conditioned but generalized context after D-cycloserine administration. This suggests that sufficient memory destabilization can accompany generalized fear expression. Combining clonidine with cannabidiol without potentiating memory destabilization by D-cycloserine was ineffective. CONCLUSIONS These findings highlight the importance of NMDA receptor signaling in memory destabilization and underscore the efficacy of a dual-step pharmacological intervention in attenuating traumatic-like memories, even in a context different from the original learning environment.
Collapse
Affiliation(s)
- Luciane A Soares
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Laura M M Nascimento
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Lucas Gazarini
- Universidade Federal de Mato Grosso Do Sul, Três Lagoas, MS, Brazil
| | - Leandro J Bertoglio
- Universidade Federal de Mato Grosso Do Sul, Três Lagoas, MS, Brazil.
- Depto. de Farmacologia, CCB, UFSC, Campus Universitário S/N, Florianópolis, SC, 88049-900, Brazil.
| |
Collapse
|
3
|
Tay KR, Bolt F, Wong HT, Vasileva S, Lee J. Reminder-dependent alterations in long-term declarative memory expression. Neurobiol Learn Mem 2023; 206:107858. [PMID: 37944636 DOI: 10.1016/j.nlm.2023.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The reminder of a previously-learned memory can render that memory vulnerable to disruption or change in expression. Such memory alterations have been viewed as supportive of the framework of memory reconsolidation. However, alternative interpretations and inconsistencies in the replication of fundamental findings have raised questions particularly in the domain of human declarative memory. Here we present a series of related experiments, all of which involve the learning of a declarative memory, followed 1-2 days later by memory reminder. Post-reminder learning of interfering material did result in modulation of subsequent recall at test, but the precise manifestation of that interference effect differed across experiments. With post-reminder performance of a visuospatial task, a quantitative impairment in test recall performance was observed within a visual list-learning paradigm, but not in a foreign vocabulary learning paradigm. These results support the existence of reminder-induced memory processes that can lead to the alteration of subsequent memory performance by interfering tasks. However, it remains unclear whether these effects are reflective of modulation or impairment of the putative memory reconsolidation process.
Collapse
Affiliation(s)
- Kai Rong Tay
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Francesca Bolt
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Hei Ting Wong
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Svetlina Vasileva
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Jonathan Lee
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Arellano Perez AD, Alves J, de Oliveira Alvares L. Re-exposures in the Dark Cycle Promote Attenuation of Fear Memory: Role of the Circadian Cycle and Glucocorticoids. Neuroscience 2022; 505:1-9. [DOI: 10.1016/j.neuroscience.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
|
5
|
Mello e Souza T. Unraveling molecular and system processes for fear memory. Neuroscience 2022; 497:14-29. [DOI: 10.1016/j.neuroscience.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
|
6
|
A Flurothyl-Induced Seizure Does Not Disrupt Hippocampal Memory Reconsolidation in C57BL/6J Mice. Epilepsy Res 2022; 181:106867. [DOI: 10.1016/j.eplepsyres.2022.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
|
7
|
Duran JM, Sierra RO, Corredor K, Cardenas FP. Cathodal transcranial direct current stimulation on the prefrontal cortex applied after reactivation attenuates fear memories and prevent reinstatement after extinction. J Psychiatr Res 2021; 145:213-221. [PMID: 34929471 DOI: 10.1016/j.jpsychires.2021.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND In the last decade, pharmacological strategies targeting reconsolidation after memory retrieval have shown promising efforts to attenuate persistent memories and overcome fear recovery. However, most reconsolidation inhibiting agents have not been approved for human testing. While non-invasive neuromodulation can be considered an alternative approach to pharmacological treatments, there is a lack of evidence about the efficacy of these technologies when modifying memory traces via reactivation/reconsolidation mechanism. OBJECTIVE In this study, we evaluate the effect of cathodal (c-tDCS) and anodal (a-DCS) transcranial direct current stimulation applied after memory reactivation and extinction in rats. METHODS Male Wistar rats were randomly assigned into three groups: one sham group, one anodal tDCS group, and one cathodal tDCS group (500 μA, 20 min). Reconsolidation and extinction of fear memories were evaluated using a contextual fear conditioning. RESULTS Our results showed that c-tDCS and a-tDCS after memory reactivation can attenuate mild fear memories. However, only c-tDCS stimulation prevented both fear expression under strong fear learning and fear recovery after a reinstatement protocol without modification of learning rate or extinction retrieval. Nevertheless, the remote memories were resistant to modification through this type of neuromodulation. Our results are discussed considering the interaction between intrinsic excitability promoted by learning and memory retrieval and the electric field applied during tDCS. CONCLUSION These results point out some of the boundary conditions influencing the efficacy of tDCS in fear attenuation and open new ways for the development of noninvasive interventions aimed to control fear-related disorders via reconsolidation.
Collapse
Affiliation(s)
- Johanna M Duran
- Laboratory of Neuroscience and Behavior, Department of Psychology, Universidad de Los Andes, Colombia.
| | | | - Karen Corredor
- Laboratory of Neuroscience and Behavior, Department of Psychology, Universidad de Los Andes, Colombia
| | - Fernando P Cardenas
- Laboratory of Neuroscience and Behavior, Department of Psychology, Universidad de Los Andes, Colombia.
| |
Collapse
|
8
|
Zorzo C, Arias JL, Méndez M. Hippocampus and cortex are involved in the retrieval of a spatial memory under full and partial cue availability. Behav Brain Res 2021; 405:113204. [PMID: 33647378 DOI: 10.1016/j.bbr.2021.113204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Retaking routes after a period of time usually occurs in an environment which has suffered from spatial configuration modifications. Thus, the original visual stimuli that allowed us to establish cognitive mapping using an allocentric strategy during the acquisition phase may not remain physically identical at the time of retrieval. However, in the standard experimental paradigms the cues are typically maintained constant. In this study, we explored memory retrieval with spatial modifications from learning in the Morris Water Maze. We trained rats on a reference memory protocol with five cues placed on black curtains that surrounded the pool, and seven days later, we tested memory retrieval under different conditions: maintenance of the five cues, removal of two and four of them, and the addition of three extra ones. Under full-cue and partial cue-conditions, rats showed successful memory retrieval, whereas adding extra cues resulted in impaired retrieval. Furthermore, we assessed brain oxidative metabolism through cytochrome c oxidase (CCO) histochemistry and found that, under full- and partial-cue conditions, there is an enhancement of the hippocampal, prefrontal, retrosplenial, parietal, and rhinal cortex metabolism. Rats that failed to retrieve spatial information in the extra cues condition showed similar or lower CCO activity than controls across many limbic areas. It is suggested that the presence of a partial portion of visual stimuli from learning makes it possible to reactivate the entire memory trace, but extra spatial information hinders retrieval, making it difficult to disengage the novel information from the older knowledge and establish a contextual generalization.
Collapse
Affiliation(s)
- Candela Zorzo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Marta Méndez
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.
| |
Collapse
|
9
|
Zink CF, Giegerich M, Prettyman GE, Carta KE, van Ginkel M, O'Rourke MP, Singh E, Fuchs EJ, Hendrix CW, Zimmerman E, Breakey J, Marzinke MA, Hummert P, Pillai JJ, Weinberger DR, Bigos KL. Nimodipine improves cortical efficiency during working memory in healthy subjects. Transl Psychiatry 2020; 10:372. [PMID: 33139710 PMCID: PMC7606375 DOI: 10.1038/s41398-020-01066-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 02/01/2023] Open
Abstract
The L-type calcium channel gene, CACNA1C, is a validated risk gene for schizophrenia and the target of calcium channel blockers. Carriers of the risk-associated genotype (rs1006737 A allele) have increased frontal cortical activity during working memory and higher CACNA1C mRNA expression in the prefrontal cortex. The aim of this study was to determine how the brain-penetrant calcium channel blocker, nimodipine, changes brain activity during working memory and other cognitive and emotional processes. We conducted a double-blind randomized cross-over pharmacoMRI study of a single 60 mg dose of oral nimodipine solution and matching placebo in healthy men, prospectively genotyped for rs1006737. With performance unchanged, nimodipine significantly decreased frontal cortical activity by 39.1% and parietal cortical activity by 42.8% during the N-back task (2-back > 0-back contrast; PFWE < 0.05; n = 28). Higher peripheral nimodipine concentrations were correlated with a greater decrease in activation in the frontal cortex. Carriers of the risk-associated allele, A (n = 14), had a greater decrease in frontal cortical activation during working memory compared to non-risk allele carriers. No differences in brain activation were found between nimodipine and placebo for other tasks. Future studies should be conducted to test if the decreased cortical brain activity after nimodipine is associated with improved working memory performance in patients with schizophrenia, particularly those who carry the risk-associated genotype. Furthermore, changes in cortical activity during working memory may be a useful biomarker in future trials of L-type calcium channel blockers.
Collapse
Affiliation(s)
- Caroline F Zink
- Baltimore Research and Education Foundation, Baltimore, MD, United States
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Mellissa Giegerich
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Veterans Administration, San Diego, CA, United States
| | - Greer E Prettyman
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
| | - Kayla E Carta
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Marcus van Ginkel
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Molly P O'Rourke
- Lieber Institute for Brain Development, Baltimore, MD, United States
- School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
| | - Eesha Singh
- Lieber Institute for Brain Development, Baltimore, MD, United States
- College of Medicine, University of Tennessee, Memphis, TN, United States
| | - Edward J Fuchs
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Craig W Hendrix
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, United States
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eric Zimmerman
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jennifer Breakey
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Mark A Marzinke
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Pamela Hummert
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jay J Pillai
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kristin L Bigos
- Lieber Institute for Brain Development, Baltimore, MD, United States.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
- Department of Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Thalamic nucleus reuniens regulates fear memory destabilization upon retrieval. Neurobiol Learn Mem 2020; 175:107313. [DOI: 10.1016/j.nlm.2020.107313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022]
|
11
|
Binder MS, Kim AD, Lugo JN. An acute seizure prior to memory reactivation transiently impairs associative memory performance in C57BL/6J mice. ACTA ACUST UNITED AC 2020; 27:340-345. [PMID: 32817300 PMCID: PMC7433655 DOI: 10.1101/lm.050633.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/01/2020] [Indexed: 11/25/2022]
Abstract
Memory deficits significantly decrease an individual's quality of life and are a pervasive comorbidity of epilepsy. Despite the various distinct processes of memory, the majority of epilepsy research has focused on seizures during the encoding phase of memory, therefore the effects of a seizure on other memory processes is relatively unknown. In the present study, we investigated how a single seizure affects memory reactivation in C57BL/6J adult mice using an associative conditioning paradigm. Initially, mice were trained to associate a tone (conditioned stimulus), with the presence of a shock (unconditioned stimulus). Flurothyl was then administered 1 h before, 1 h after, or 6 h before a memory reactivation trial. The learned association was then assessed by presenting a conditioned stimulus in a new context 24 h or 1 wk after memory reactivation. We found that mice receiving a seizure 1 h prior to reactivation exhibited a deficit in memory 24 h later but not 1 wk later. When mice were administered a seizure 6 h before or 1 h after reactivation, there were no differences in memory between seizure and control animals. Altogether, our study indicates that an acute seizure during memory reactivation leads to a temporary deficit in associative memory in adult mice. These findings suggest that the cognitive impact of a seizure may depend on the timing of the seizure relative to the memory process that is active.
Collapse
Affiliation(s)
- Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Andrew D Kim
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA.,Institute of Biomedical Studies, Baylor University, Waco, Texas 76798, USA.,Department of Biology, Baylor University, Waco, Texas 76798, USA
| |
Collapse
|
12
|
Rewarding information presented during reactivation attenuates fear memory: Methylphenidate and fear memory updating. Neuropharmacology 2020; 171:108107. [DOI: 10.1016/j.neuropharm.2020.108107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
|
13
|
Popik B, Amorim FE, Amaral OB, De Oliveira Alvares L. Shifting from fear to safety through deconditioning-update. eLife 2020; 9:51207. [PMID: 31999254 PMCID: PMC7021486 DOI: 10.7554/elife.51207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
Aversive memories are at the heart of psychiatric disorders such as phobias and post-traumatic stress disorder (PTSD). Here, we present a new behavioral approach in rats that robustly attenuates aversive memories. This method consists of ‘deconditioning’ animals previously trained to associate a tone with a strong footshock by replacing it with a much weaker one during memory retrieval. Our results indicate that deconditioning-update is more effective than traditional extinction in reducing fear responses; moreover, such effects are long lasting and resistant to renewal and spontaneous recovery. Remarkably, this strategy overcame important boundary conditions for memory updating, such as remote or very strong traumatic memories. The same beneficial effect was found in other types of fear-related memories. Deconditioning was mediated by L-type voltage-gated calcium channels and is consistent with computational accounts of mismatch-induced memory updating. Our results suggest that shifting from fear to safety through deconditioning-update is a promising approach to attenuate traumatic memories.
Collapse
Affiliation(s)
- Bruno Popik
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felippe Espinelli Amorim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Olavo B Amaral
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas De Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Ortiz V, Calfa GD, Molina VA, Martijena ID. Resistance to fear memory destabilization triggers exaggerated emotional-like responses following memory reactivation. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:197-204. [PMID: 30978427 DOI: 10.1016/j.pnpbp.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 01/23/2023]
Abstract
Fear memory reactivation does not always lead to memory destabilization-reconsolidation. For instance, fear memories formed following withdrawal from chronic ethanol consumption or a stressful event are less likely to become destabilized after reactivation, with the effect of recall of these memories on the affective state still requiring elucidation. Here, we investigated the negative emotional-like responses following fear memory reactivation in ethanol-withdrawn (ETOH) rats by focusing on the possible role played by destabilization. Our findings indicated that ETOH rats displayed an increased freezing in a novel context and an anxiogenic-like response in the elevated plus maze (EPM) following memory reactivation, whereas the behavior of CON animals was not affected. The destabilization blockade by pre-reactivation nimodipine (16 mg/kg, s.c) administration promoted in CON animals a similar behavior in the EPM and in a novel environment as that exhibited by ETOH rats after the reminder. Moreover, facilitating destabilization by pre-reactivation d-cycloserine (5 mg/kg, i.p) administration prevented the emotional-like disturbances observed in ETOH rats. Finally, using restraint stress, which is also an inductor of a fear memory resistant to destabilization, an increased fear response in an unconditioned environment and an anxiogenic-like state was also found after the presentation of the fear reminder in stressed rats. Our results suggest that, in the context of resistant fear memories, the occurrence of destabilization influences how animals respond to subsequent environmental challenges following reactivation.
Collapse
Affiliation(s)
- Vanesa Ortiz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina
| | - Gastón Diego Calfa
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina
| | - Víctor Alejandro Molina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina
| | - Irene Delia Martijena
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina.
| |
Collapse
|
15
|
Couto-Pereira NDS, Lampert C, Vieira ADS, Lazzaretti C, Kincheski GC, Espejo PJ, Molina VA, Quillfeldt JA, Dalmaz C. Resilience and Vulnerability to Trauma: Early Life Interventions Modulate Aversive Memory Reconsolidation in the Dorsal Hippocampus. Front Mol Neurosci 2019; 12:134. [PMID: 31191245 PMCID: PMC6546926 DOI: 10.3389/fnmol.2019.00134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
Early life experiences program lifelong responses to stress. In agreement, resilience and vulnerability to psychopathologies, such as posttraumatic stress disorder (PTSD), have been suggested to depend on the early background. New therapies have targeted memory reconsolidation as a strategy to modify the emotional valence of traumatic memories. Here, we used animal models to study the molecular mechanism through which early experiences may later affect aversive memory reconsolidation. Handling (H)—separation of pups from dams for 10 min—or maternal separation (MS) — 3-h separation—were performed from PDN1–10, using non-handled (NH) litters as controls. Adult males were trained in a contextual fear conditioning (CFC) task; 24 h later, a short reactivation session was conducted in the conditioned or in a novel context, followed by administration of midazolam 3 mg/kg i.p. (mdz), known to disturb reconsolidation, or vehicle; a test session was performed 24 h after. The immunocontent of relevant proteins was studied 15 and 60 min after memory reactivation in the dorsal hippocampus (dHc) and basolateral amygdala complex (BLA). Mdz-treated controls (NH) showed decreased freezing to the conditioned context, consistent with reconsolidation impairment, but H and MS were resistant to labilization. Additionally, MS males showed increased freezing to the novel context, suggesting fear generalization; H rats showed lower freezing than the other groups, in accordance with previous suggestions of reduced emotionality facing adversities. Increased levels of Zif268, GluN2B, β-actin and polyubiquitination found in the BLA of all groups suggest that memory reconsolidation was triggered. In the dHc, only NH showed increased Zif268 levels after memory retrieval; also, a delay in ERK1/2 activation was found in H and MS animals. We showed here that reconsolidation of a contextual fear memory is insensitive to interference by a GABAergic drug in adult male rats exposed to different neonatal experiences; surprisingly, we found no differences in the reconsolidation process in the BLA, but the dHc appears to suffer temporal desynchronization in the engagement of reconsolidation. Our results support a hippocampal-dependent mechanism for reconsolidation resistance in models of early experiences, which aligns with current hypotheses for the etiology of PTSD.
Collapse
Affiliation(s)
- Natividade de Sá Couto-Pereira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carine Lampert
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Dos Santos Vieira
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Camilla Lazzaretti
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Grasielle Clotildes Kincheski
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pablo Javier Espejo
- Instituto de Farmacología Experimental de Córdoba, Universidad Nacional de Cordoba (UNC), Cordoba, Argentina
| | - Victor Alejandro Molina
- Instituto de Farmacología Experimental de Córdoba, Universidad Nacional de Cordoba (UNC), Cordoba, Argentina
| | - Jorge Alberto Quillfeldt
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carla Dalmaz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Quillfeldt JA. Temporal Flexibility of Systems Consolidation and the Synaptic Occupancy/Reset Theory (SORT): Cues About the Nature of the Engram. Front Synaptic Neurosci 2019; 11:1. [PMID: 30814946 PMCID: PMC6381034 DOI: 10.3389/fnsyn.2019.00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/14/2019] [Indexed: 11/24/2022] Open
Abstract
The ability to adapt to new situations involves behavioral changes expressed either from an innate repertoire, or by acquiring experience through memory consolidation mechanisms, by far a much richer and flexible source of adaptation. Memory formation consists of two interrelated processes that take place at different spatial and temporal scales, Synaptic Consolidation, local plastic changes in the recruited neurons, and Systems Consolidation, a process of gradual reorganization of the explicit/declarative memory trace between hippocampus and the neocortex. In this review, we summarize some converging experimental results from our lab that support a normal temporal framework of memory systems consolidation as measured both from the anatomical and the psychological points of view, and propose a hypothetical model that explains these findings while predicting other phenomena. Then, the same experimental design was repeated interposing additional tasks between the training and the remote test to verify for any interference: we found that (a) when the animals were subject to a succession of new learnings, systems consolidation was accelerated, with the disengagement of the hippocampus taking place before the natural time point of this functional switch, but (b) when a few reactivation sessions reexposed the animal to the training context without the shock, systems consolidation was delayed, with the hippocampus prolonging its involvement in retrieval. We hypothesize that new learning recruits from a fixed number of plastic synapses in the CA1 area to store the engram index, while reconsolidation lead to a different outcome, in which additional synapses are made available. The first situation implies the need of a reset mechanism in order to free synapses needed for further learning, and explains the acceleration observed under intense learning activity, while the delay might be explained by a different process, able to generate extra free synapses: depending on the cognitive demands, it deals either with a fixed or a variable pool of available synapses. The Synaptic Occupancy/Reset Theory (SORT) emerged as an explanation for the temporal flexibility of systems consolidation, to encompass the two different dynamics of explicit memories, as well as to bridge both synaptic and systems consolidation in one single mechanism.
Collapse
Affiliation(s)
- Jorge Alberto Quillfeldt
- Psychobiology and Neurocomputation Lab, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Lee JLC, Amorim FE, Cassini LF, Amaral OB. Different temporal windows for CB1 receptor involvement in contextual fear memory destabilisation in the amygdala and hippocampus. PLoS One 2019; 14:e0205781. [PMID: 30645588 PMCID: PMC6333379 DOI: 10.1371/journal.pone.0205781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Reconsolidation is a process in which re-exposure to a reminder causes a previously acquired memory to undergo a process of destabilisation followed by subsequent restabilisation. Different molecular mechanisms have been postulated for destabilisation in the amygdala and hippocampus, including CB1 receptor activation, protein degradation and AMPA receptor exchange; however, most of the amygdala studies have used pre-reexposure interventions, while those in the hippocampus have usually performed them after reexposure. To test whether the temporal window for destabilisation is similar across both structures, we trained Lister Hooded rats in a contextual fear conditioning task, and 1 day later performed memory reexposure followed by injection of either the NMDA antagonist MK-801 (0.1 mg/kg) or saline in order to block reconsolidation. In parallel, we also performed local injections of either the CB1 antagonist SR141716A or its vehicle in the hippocampus or in the amygdala, either immediately before or immediately after reactivation. Infusion of SR141716A in the hippocampus prevented the reconsolidation-blocking effect of MK-801 when performed after reexposure, but not before it. In the amygdala, meanwhile, pre-reexposure infusions of SR141716A impaired reconsolidation blockade by MK-801, although the time-dependency of this effect was not as clear as in the hippocampus. Our results suggest the temporal windows for CB1-receptor-mediated memory destabilisation during reconsolidation vary between brain structures. Whether this reflects different time windows for engagement of these structures or different roles played by CB1 receptors in destabilisation across structures remains an open question for future studies.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/physiology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cannabinoid Receptor Antagonists/administration & dosage
- Conditioning, Classical/drug effects
- Dizocilpine Maleate/administration & dosage
- Excitatory Amino Acid Antagonists/administration & dosage
- Fear/drug effects
- Fear/physiology
- Hippocampus/drug effects
- Hippocampus/physiology
- Male
- Memory/drug effects
- Memory/physiology
- Models, Animal
- Rats
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Rimonabant/administration & dosage
- Time Factors
Collapse
Affiliation(s)
- Jonathan L. C. Lee
- University of Birmingham, School of Psychology, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| | - Felippe E. Amorim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lindsey F. Cassini
- University of Birmingham, School of Psychology, Edgbaston, Birmingham, United Kingdom
| | - Olavo B. Amaral
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Abstract
Several studies have revealed that fear recovery is prevented when extinction training is conducted after retrieval of a fear memory. Postretrieval extinction training is related to modification of memory during reconsolidation. Providing new information during reconsolidation can modify the original memory. We propose that avoidance behavior is a relevant factor that prevents subjects from obtaining new safety information during reconsolidation. Postretrieval extinction training without avoidance behavior reduced the fear response to conditioned stimulus and prevented spontaneous recovery in the current study, which corresponded with previous studies. Under the condition of postretrieval extinction training with avoidance behavior, the fear response was not reduced as much as it was in the condition without avoidance. It is possible that avoidance behavior prevents receiving new safety information during postretrieval extinction training.
Collapse
|
19
|
Vigil FA, Giese KP. Calcium/calmodulin-dependent kinase II and memory destabilization: a new role in memory maintenance. J Neurochem 2018; 147:12-23. [PMID: 29704430 PMCID: PMC6221169 DOI: 10.1111/jnc.14454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023]
Abstract
In this review, we discuss the poorly explored role of calcium/calmodulin-dependent protein kinase II (CaMKII) in memory maintenance, and its influence on memory destabilization. After a brief review on CaMKII and memory destabilization, we present critical pieces of evidence suggesting that CaMKII activity increases retrieval-induced memory destabilization. We then proceed to propose two potential molecular pathways to explain the association between CaMKII activation and increased memory destabilization. This review will pinpoint gaps in our knowledge and discuss some 'controversial' observations, establishing the basis for new experiments on the role of CaMKII in memory reconsolidation. The role of CaMKII in memory destabilization is of great clinical relevance. Still, because of the lack of scientific literature on the subject, more basic science research is necessary to pursue this pathway as a clinical tool.
Collapse
Affiliation(s)
- Fabio Antonio Vigil
- Department of Cell and Integrative PhysiologyThe University of Texas Health San Antonio8403, Floyd Curl DriveSan AntonioTX 78229USA
| | - Karl Peter Giese
- Department of Basic and Clinical NeuroscienceKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| |
Collapse
|
20
|
Periodical reactivation under the effect of caffeine attenuates fear memory expression in rats. Sci Rep 2018; 8:7260. [PMID: 29740084 PMCID: PMC5940846 DOI: 10.1038/s41598-018-25648-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022] Open
Abstract
In the last decade, several studies have shown that fear memories can be attenuated by interfering with reconsolidation. However, most of the pharmacological agents used in preclinical studies cannot be administered to humans. Caffeine is one of the world’s most popular psychoactive drugs and its effects on cognitive and mood states are well documented. Nevertheless, the influence of caffeine administration on fear memory processing is not as clear. We employed contextual fear conditioning in rats and acute caffeine administration under a standard memory reconsolidation protocol or periodical memory reactivation. Additionally, potential rewarding/aversion and anxiety effects induced by caffeine were evaluated by conditioning place preference or open field, respectively. Caffeine administration was able to attenuate weak fear memories in a standard memory reconsolidation protocol; however, periodical memory reactivation under caffeine effect was necessary to attenuate strong and remote memories. Moreover, caffeine promoted conditioned place preference and anxiolytic-like behavior, suggesting that caffeine weakens the initial learning during reactivation through counterconditioning mechanisms. Thus, our study shows that rewarding and anxiolytic effects of caffeine during fear reactivation can change the emotional valence of fear memory. It brings a new promising pharmacological approach based on drugs widely used such as caffeine to treat fear-related disorders.
Collapse
|
21
|
van Gelderen MJ, Nijdam MJ, Vermetten E. An Innovative Framework for Delivering Psychotherapy to Patients With Treatment-Resistant Posttraumatic Stress Disorder: Rationale for Interactive Motion-Assisted Therapy. Front Psychiatry 2018; 9:176. [PMID: 29780334 PMCID: PMC5946512 DOI: 10.3389/fpsyt.2018.00176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
Despite an array of evidence-based psychological treatments for patients with a posttraumatic stress disorder (PTSD), a majority of patients do not fully benefit from the potential of these therapies. In veterans with PTSD, up to two-thirds retain their diagnosis after psychotherapy and often their disorder is treatment-resistant, which calls for improvement of therapeutic approaches for this population. One of the factors hypothesized to underlie low response in PTSD treatment is high behavioral and cognitive avoidance to traumatic reminders. In the current paper we explore if a combination of personalized virtual reality, multi-sensory input, and walking during exposure can enhance treatment engagement, overcome avoidance, and thereby optimize treatment effectiveness. Virtual reality holds potential to increase presence and in-session attention and to facilitate memory retrieval. Multi-sensory input such as pictures and music can personalize this experience. Evidence for the positive effect of physical activity on fear extinction and associative thinking, as well as embodied cognition theories, provide a rationale for decreased avoidance by literally approaching cues of the traumatic memories. A dual-attention task further facilitates new learning and reconsolidation. These strategies have been combined in an innovative framework for trauma-focused psychotherapy, named Multi-modular Motion-assisted Memory Desensitization and Reconsolidation (3MDR). In this innovative treatment the therapeutic setting is changed from the face-to-face sedentary position to a side-by-side activating context in which patients walk toward trauma-related images in a virtual environment. The framework of 3MDR has been designed as a boost for patients with treatment-resistant PTSD, which is illustrated by three case examples. The intervention is discussed in context of other advancements in treatment for treatment-resistant PTSD. Novel elements of this approach are activation, personalization and empowerment. While developed for veterans with PTSD who do not optimally respond to standardized treatments, this innovative framework holds potential to also be used for other patient populations and earlier stages of treatment for patients with PTSD.
Collapse
Affiliation(s)
- Marieke J van Gelderen
- Foundation Centrum'45, Arq Psychotrauma Expert Groep, Diemen, Netherlands.,Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam J Nijdam
- Foundation Centrum'45, Arq Psychotrauma Expert Groep, Diemen, Netherlands.,Department of Psychiatry, Academic Medical Center at the University of Amsterdam, Amsterdam, Netherlands
| | - Eric Vermetten
- Foundation Centrum'45, Arq Psychotrauma Expert Groep, Diemen, Netherlands.,Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands.,Military Mental Health-Research, Ministry of Defence, Utrecht, Netherlands
| |
Collapse
|
22
|
Haubrich J, Machado A, Boos FZ, Crestani AP, Sierra RO, Alvares LDO, Quillfeldt JA. Enhancement of extinction memory by pharmacological and behavioral interventions targeted to its reactivation. Sci Rep 2017; 7:10960. [PMID: 28887561 PMCID: PMC5591313 DOI: 10.1038/s41598-017-11261-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
Extinction is a process that involves new learning that inhibits the expression of previously acquired memories. Although temporarily effective, extinction does not erase an original fear association. Since the extinction trace tends to fade over time, the original memory can resurge. On the other hand, strengthening effects have been described in several reconsolidation studies using different behavioral and pharmacological manipulations. In order to know whether an extinction memory can be strengthened by reactivation-based interventions in the contextual fear conditioning task, we began by replicating the classic phenomenon of spontaneous recovery to show that brief reexposure sessions can prevent the decay of the extinction trace over time in a long-lasting way. This fear attenuation was shown to depend both on L-type calcium channels and protein synthesis, which suggests a reconsolidation process behind the reactivation-induced strengthening effect. The extinction trace was also susceptible to enhancement by a post-reactivation infusion of a memory-enhancing drug (NaB), which was also able to prevent rapid fear reacquisition (savings). These findings point to new reactivation-based approaches able to strengthen an extinction memory to promote its persistence. The constructive interactions between extinction and reconsolidation may represent a promising novel approach in the realm of fear-related disorder treatments.
Collapse
Affiliation(s)
- Josué Haubrich
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Adriano Machado
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flávia Zacouteguy Boos
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana P Crestani
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo O Sierra
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jorge A Quillfeldt
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
23
|
Lunardi P, Sachser RM, Sierra RO, Pedraza LK, Medina C, de la Fuente V, Romano A, Quillfeldt JA, de Oliveira Alvares L. Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction. Mol Neurobiol 2017; 55:958-967. [DOI: 10.1007/s12035-016-0361-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023]
|
24
|
Fernández RS, Bavassi L, Kaczer L, Forcato C, Pedreira ME. Interference Conditions of the Reconsolidation Process in Humans: The Role of Valence and Different Memory Systems. Front Hum Neurosci 2016; 10:641. [PMID: 28066212 PMCID: PMC5167735 DOI: 10.3389/fnhum.2016.00641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/02/2016] [Indexed: 12/03/2022] Open
Abstract
Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence.
Collapse
Affiliation(s)
- Rodrigo S. Fernández
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Luz Bavassi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Laura Kaczer
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Cecilia Forcato
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| | - María E. Pedreira
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
25
|
Sachser RM, Haubrich J, Lunardi PS, de Oliveira Alvares L. Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology 2016; 112:94-103. [PMID: 27425202 DOI: 10.1016/j.neuropharm.2016.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Over the past years, extensive research in experimental cognitive neuroscience has provided a comprehensive understanding about the role of ionotropic glutamate receptor (IGluR)-dependent signaling underpinning postsynaptic plasticity induced by long-term potentiation (LTP), the leading cellular basis of long-term memory (LTM). However, despite the fact that iGluR-mediated postsynaptic plasticity regulates the formation and persistence of LTP and LTM, here we discuss the state-of-the-art regarding the mechanisms underpinning both LTP and LTM decay. First, we review the crucial roles that iGluRs play on memory encoding and stabilization. Second, we discuss the latest findings in forgetting considering hippocampal GluA2-AMPAR trafficking at postsynaptic sites as well as dendritic spine remodeling possibly involved in LTP decay. Third, on the role of retrieving consolidated LTMs, we discuss the mechanisms involved in memory destabilization that occurs followed reactivation that share striking similarities with the neurobiological basis of forgetting. Fourth, since different AMPAR subunits as well as postsynaptic scaffolding proteins undergo ubiquitination, the ubiquitin-proteasome system (UPS) is discussed in light of memory decay. In conclusion, we provide an integrated overview revealing some of the mechanisms determining memory forgetting that are mediated by iGluRs. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Ricardo Marcelo Sachser
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Santana Lunardi
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
26
|
Chen B, Feng B, Tang Y, You Y, Wang Y, Hou W, Hu W, Chen Z. Blocking GluN2B subunits reverses the enhanced seizure susceptibility after prolonged febrile seizures with a wide therapeutic time-window. Exp Neurol 2016; 283:29-38. [PMID: 27240522 DOI: 10.1016/j.expneurol.2016.05.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/09/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
Abstract
Febrile seizures (FSs), the most common type of convulsive events in infants, are closely associated with temporal lobe epilepsy (TLE) in adulthood. It is urgent to investigate how FSs promote epileptogenesis and find the potential therapeutic targets. In the present study, we showed that the phosphorylation of GluN2B Tyr1472 gradually reached peak level at 24h after prolonged FSs and remained elevated during 7days thereafter. IL-1β treatment alone, which in previous study mimicked the effect of prolonged FSs on adult seizure susceptibility, increased GluN2B Tyr1472 phosphorylation. Both IL-1 receptor antagonist (IL-1Ra) and IL-1R1 deletion were sufficient to reverse the prolonged FSs induced hyper-phosphorylation of GluN2B Tyr1472. GluN2B antagonist ifenprodil showed a wide therapeutic time-window (3days) to reverse the enhanced seizure susceptibility after prolonged FSs or IL-1β treatment. Our study demonstrated that GluN2B phosphorylation at Tyr1472 site mediated by the transient increase of IL-1β was involved in the enhanced adult seizure susceptibility after prolonged FSs, implicating GluN2B-containing NMDAR is a new potential drug target with a wide therapeutic time window to prevent epileptogenesis in patients with infantile FSs.
Collapse
Affiliation(s)
- Bin Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Feng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangshun Tang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi You
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Hou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Sachser RM, Santana F, Crestani AP, Lunardi P, Pedraza LK, Quillfeldt JA, Hardt O, Alvares LDO. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin. Sci Rep 2016; 6:22771. [PMID: 26947131 PMCID: PMC4780112 DOI: 10.1038/srep22771] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/15/2016] [Indexed: 01/26/2023] Open
Abstract
In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca2+ channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca2+ influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time.
Collapse
Affiliation(s)
- Ricardo Marcelo Sachser
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Santana
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Crestani
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Lunardi
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lizeth Katherine Pedraza
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge Alberto Quillfeldt
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Oliver Hardt
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, Scotland
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216A, CEP 91.501-970, Porto Alegre, Rio Grande do Sul, Brasil
| |
Collapse
|