1
|
Rani J, Goyal T, Kaur A, Ganesan S, Sharma AK, Chauhan AS, Kaushal S, Kumar S. Bimetallic nanoparticles as pioneering eco-friendly catalysts for remediation of pharmaceuticals and personal care products (PPCPs). NANOSCALE ADVANCES 2025; 7:3160-3188. [PMID: 40290209 PMCID: PMC12024480 DOI: 10.1039/d5na00151j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
The persistent presence of Pharmaceuticals and Personal Care Products (PPCPs) in aquatic environments poses a significant risk to both human health and ecosystems, with conventional water treatment methods often unable to effectively remove these contaminants. Recent research has identified bimetallic nanoparticles as a promising and eco-friendly solution for PPCP remediation, owing to their enhanced catalytic properties and the synergistic effects between the metals. This review critically examines the synthesis, characterization, and application of bimetallic nanoparticles for the degradation of PPCPs in water. Key synthetic approaches, particularly green synthesis methods, are explored, emphasizing their ability to control nanoparticle morphology, size, and composition. We highlight the novel catalytic mechanisms employed by bimetallic nanoparticles, including electron transfer, surface reactions, and adsorption processes, which contribute to efficient PPCP removal. Furthermore, the influence of critical factors such as nanoparticle size, composition, and surface functionalization on catalytic efficiency is analyzed. Key findings include the superior performance of bimetallic nanoparticles over monometallic counterparts, with specific emphasis on their ability to degrade a wide range of PPCPs under mild conditions. However, challenges such as scalability, stability, and environmental impact remain. This review also provides insights into the future directions for bimetallic nanoparticle development, stressing the importance of interdisciplinary research and collaborative efforts to optimize their design for large-scale, sustainable water treatment applications. Overall, this work offers a comprehensive understanding of how bimetallic nanoparticles can be optimized for sustainable water treatment solutions, highlighting their potential to mitigate the adverse effects of PPCPs on both ecosystems and public health.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Chemistry, Akal University Talwandi Sabo Bathinda-151302 Punjab India
| | - Tamanna Goyal
- Department of Chemistry, Akal University Talwandi Sabo Bathinda-151302 Punjab India
| | - Arshdeep Kaur
- Department of Chemistry, Akal University Talwandi Sabo Bathinda-151302 Punjab India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Ashwani Kumar Sharma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri Mohali 140307 Punjab India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University Dehradun Uttarakhand India
| | - Sandeep Kaushal
- Regional Institute of Education, National Council of Educational Research and Training Ajmer Rajasthan India
| | - Sandeep Kumar
- Department of Chemistry, Akal University Talwandi Sabo Bathinda-151302 Punjab India
| |
Collapse
|
2
|
Sun L, Li Y, Yan J, Xu W, Xiao L, Zheng Z, Liu K, Huang Z, Li S. A Review on Pulsed Laser Preparation of Quantum Dots in Colloids for the Optimization of Perovskite Solar Cells: Advantages, Challenges, and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1550. [PMID: 39404276 PMCID: PMC11477582 DOI: 10.3390/nano14191550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
In recent years, academic research on perovskite solar cells (PSCs) has attracted remarkable attention, and one of the most crucial issues is promoting the power conversion efficiency (PCE) and operational stability of PSCs. Generally, modification of the electron or hole transport layers between the perovskite layers and electrodes via surface engineering is considered an effective strategy because the inherent structural defects between charge carrier transport layers and perovskite layers can be reshaped and modified by adopting the functional nanomaterials, and thus the charge recombination rate can be naturally decreased. At present, large amounts of available nanomaterials for surface modification of the perovskite films are extensively investigated, mainly including nanocrystals, nanorods, nanoarrays, and even colloidal quantum dots (QDs). In particular, as unique size-dependent nanomaterials, the diverse quantum properties of colloidal QDs are different from other nanomaterials, such as their quantum confinement effects, quantum-tunable effects, and quantum surface effects, which display great potential in promoting the PCE and operational stability of PSCs as the charge carriers in perovskite layers can be effectively tuned by these quantum effects. However, preparing QDs with a neat and desirable size remains a technical difficulty, even though the present chemical engineering is highly advanced. Fortunately, the rapid advances in laser technology have provided new insight into the precise preparation of QDs. In this review, we introduce a new approach for preparing the QDs, namely pulsed laser irradiation in colloids (PLIC), and briefly highlight the innovative works on PLIC-prepared QDs for the optimization of PSCs. This review not only highlights the advantages of PLIC for QD preparation but also critically points out the challenges and prospects of QD-based PSCs.
Collapse
Affiliation(s)
- Liang Sun
- Department of Basic Courses, Naval University of Engineering, Wuhan 430033, China
| | - Yang Li
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Jiujiang Yan
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Wei Xu
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Liangfen Xiao
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Zhong Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ke Liu
- College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Zhijie Huang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shuhan Li
- Department of Information Countermeasures, Air Force Early Warning Academy, Wuhan 430019, China
| |
Collapse
|
3
|
Li Y, Xiao L, Zheng Z, Yan J, Sun L, Huang Z, Li X. A Review on Pulsed Laser Fabrication of Nanomaterials in Liquids for (Photo)catalytic Degradation of Organic Pollutants in the Water System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2628. [PMID: 37836269 PMCID: PMC10574106 DOI: 10.3390/nano13192628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The water pollution caused by the release of organic pollutants has attracted remarkable attention, and solutions for wastewater treatment are being developed. In particular, the photocatalytic removal of organic pollutants in water systems is a promising strategy to realize the self-cleaning of ecosystems under solar light irradiation. However, at present the semiconductor-based nanocatalysts can barely satisfy the industrial requirements because their wide bandgaps restrict the effective absorption of solar light, which needs an energy band modification to boost the visible light harvesting via surface engineering. As an innovative approach, pulsed laser heating in liquids has been utilized to fabricate the nanomaterials in catalysis; it demonstrates multi-controllable features, such as size, morphology, crystal structure, and even optical or electrical properties, with which photocatalytic performances can be precisely optimized. In this review, focusing on the powerful heating effect of pulsed laser irradiation in liquids, the functional nanomaterials fabricated by laser technology and their applications in the catalytic degradation of various organic pollutants are summarized. This review not only highlights the innovative works of pulsed laser-prepared nanomaterials for organic pollutant removal in water systems, such as the photocatalytic degradation of organic dyes and the catalytic reduction of toxic nitrophenol and nitrobenzene, it also critically discusses the specific challenges and outlooks of this field, including the weakness of the produced yields and the relevant automatic strategies for massive production.
Collapse
Affiliation(s)
- Yang Li
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Liangfen Xiao
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Zhong Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiujiang Yan
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Liang Sun
- Department of Basic Courses, Naval University of Engineering, Wuhan 430033, China
| | - Zhijie Huang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyou Li
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Gurbatov S, Puzikov V, Modin E, Shevlyagin A, Gerasimenko A, Mitsai E, Kulinich SA, Kuchmizhak A. Ag-Decorated Si Microspheres Produced by Laser Ablation in Liquid: All-in-One Temperature-Feedback SERS-Based Platform for Nanosensing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8091. [PMID: 36431575 PMCID: PMC9697265 DOI: 10.3390/ma15228091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Combination of dissimilar materials such as noble metals and common semiconductors within unified nanomaterials holds promise for optoelectronics, catalysis and optical sensing. Meanwhile, difficulty of obtaining such hybrid nanomaterials using common lithography-based techniques stimulates an active search for advanced, inexpensive, and straightforward fabrication methods. Here, we report one-pot one-step synthesis of Ag-decorated Si microspheres via nanosecond laser ablation of monocrystalline silicon in isopropanol containing AgNO3. Laser ablation of bulk silicon creates the suspension of the Si microspheres that host further preferential growth of Ag nanoclusters on their surface upon thermal-induced decomposition of AgNO3 species by subsequently incident laser pulses. The amount of the AgNO3 in the working solution controls the density, morphology, and arrangement of the Ag nanoclusters allowing them to achieve strong and uniform decoration of the Si microsphere surface. Such unique morphology makes Ag-decorated Si microspheres promising for molecular identification based on the surface-enhanced Raman scattering (SERS) effect. In particular, the designed single-particles sensing platform was shown to offer temperature-feedback modality as well as SERS signal enhancement up to 106, allowing reliable detection of the adsorbed molecules and tracing their plasmon-driven catalytic transformations. Considering the ability to control the decoration degree of Si microspheres by Ag nanoclusters via amount of the AgNO3, the developed one-pot easy-to-implement PLAL synthesis holds promise for gram-scale production of high-quality hybrid nanomaterial for various nanophotonics and sensing applications.
Collapse
Affiliation(s)
- Stanislav Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
- Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Vladislav Puzikov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Evgeny Modin
- CIC NanoGUNE BRTA, 20018 Donostia-San Sebastian, Spain
| | - Alexander Shevlyagin
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Andrey Gerasimenko
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Science, 690022 Vladivostok, Russia
| | - Eugeny Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Sergei A. Kulinich
- Research Institute of Science & Technology, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
| | - Aleksandr Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
- Far Eastern Federal University, 690041 Vladivostok, Russia
| |
Collapse
|
5
|
Liang SX, Zhang LC, Reichenberger S, Barcikowski S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys Chem Chem Phys 2021; 23:11121-11154. [PMID: 33969854 DOI: 10.1039/d1cp00701g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amorphous metal nanoparticles (A-NPs) have aroused great interest in their structural disordering nature and combined downsizing strategies (e.g. nanoscaling), both of which are beneficial for highly strengthened properties compared to their crystalline counterparts. Conventional synthesis strategies easily induce product contamination and/or size limitations, which largely narrow their applications. In recent years, laser ablation in liquid (LAL) and laser fragmentation in liquid (LFL) as "green" and scalable colloid synthesis methodologies have attracted extensive enthusiasm in the production of ultrapure crystalline NPs, while they also show promising potential for the production of A-NPs. Yet, the amorphization in such methods still lacks sufficient rules to follow regarding the formation mechanism and criteria. To that end, this article reviews amorphous metal oxide and carbide NPs from LAL and LFL in terms of NP types, liquid selection, target elements, laser parameters, and possible formation mechanism, all of which play a significant role in the competitive relationship between amorphization and crystallization. Furthermore, we provide the prospect of laser-generated metallic glass nanoparticles (MG-NPs) from MG targets. The current and potential applications of A-NPs are also discussed, categorized by the attractive application fields e.g. in catalysis and magnetism. The present work aims to give possible selection rules and perspective on the design of colloidal A-NPs as well as the synthesis criteria of MG-NPs from laser-based strategies.
Collapse
Affiliation(s)
- Shun-Xing Liang
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, Essen 45141, Germany.
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, Essen 45141, Germany.
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, Essen 45141, Germany.
| |
Collapse
|
6
|
Hupfeld T, Stein F, Barcikowski S, Gökce B, Wiedwald U. Manipulation of the Size and Phase Composition of Yttrium Iron Garnet Nanoparticles by Pulsed Laser Post-Processing in Liquid. Molecules 2020; 25:E1869. [PMID: 32316700 PMCID: PMC7221795 DOI: 10.3390/molecules25081869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 01/19/2023] Open
Abstract
Modification of the size and phase composition of magnetic oxide nanomaterials dispersed in liquids by laser synthesis and processing of colloids has high implications for applications in biomedicine, catalysis and for nanoparticle-polymer composites. Controlling these properties for ternary oxides, however, is challenging with typical additives like salts and ligands and can lead to unwanted byproducts and various phases. In our study, we demonstrate how additive-free pulsed laser post-processing (LPP) of colloidal yttrium iron oxide nanoparticles using high repetition rates and power at 355 nm laser wavelength can be used for phase transformation and phase purification of the garnet structure by variation of the laser fluence as well as the applied energy dose. Furthermore, LPP allows particle size modification between 5 nm (ps laser) and 20 nm (ns laser) and significant increase of the monodispersity. Resulting colloidal nanoparticles are investigated regarding their size, structure and temperature-dependent magnetic properties.
Collapse
Affiliation(s)
- Tim Hupfeld
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, 45141 Essen, Germany; (T.H.); (F.S.); (S.B.)
| | - Frederic Stein
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, 45141 Essen, Germany; (T.H.); (F.S.); (S.B.)
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, 45141 Essen, Germany; (T.H.); (F.S.); (S.B.)
| | - Bilal Gökce
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, 45141 Essen, Germany; (T.H.); (F.S.); (S.B.)
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| |
Collapse
|
7
|
Reichenberger S, Marzun G, Muhler M, Barcikowski S. Perspective of Surfactant‐Free Colloidal Nanoparticles in Heterogeneous Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900666] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sven Reichenberger
- University of Duisburg-EssenTechnical Chemistry I Universitätsstrasse 7 Essen 45141 Germany
| | - Galina Marzun
- University of Duisburg-EssenTechnical Chemistry I Universitätsstrasse 7 Essen 45141 Germany
| | - Martin Muhler
- Ruhr-University BochumDepartment for Technical Chemistry Universitätsstraße 150 Bochum 44801 Germany
| | - Stephan Barcikowski
- University of Duisburg-EssenTechnical Chemistry I Universitätsstrasse 7 Essen 45141 Germany
| |
Collapse
|
8
|
Spontaneous Shape Alteration and Size Separation of Surfactant-Free Silver Particles Synthesized by Laser Ablation in Acetone during Long-Period Storage. NANOMATERIALS 2018; 8:nano8070529. [PMID: 30011881 PMCID: PMC6071058 DOI: 10.3390/nano8070529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
The technique of laser ablation in liquids (LAL) has already demonstrated its flexibility and capability for the synthesis of a large variety of surfactant-free nanomaterials with a high purity. However, high purity can cause trouble for nanomaterial synthesis, because active high-purity particles can spontaneously grow into different nanocrystals, which makes it difficult to accurately tailor the size and shape of the synthesized nanomaterials. Therefore, a series of questions arise with regards to whether particle growth occurs during colloid storage, how large the particle size increases to, and into which shape the particles evolve. To obtain answers to these questions, here, Ag particles that are synthesized by femtosecond (fs) laser ablation of Ag in acetone are used as precursors to witness the spontaneous growth behavior of the LAL-generated surfactant-free Ag dots (2–10 nm) into different polygonal particles (5–50 nm), and the spontaneous size separation phenomenon by the carbon-encapsulation induced precipitation of large particles, after six months of colloid storage. The colloids obtained by LAL at a higher power (600 mW) possess a greater ability and higher efficiency to yield colloids with sizes of <40 nm than the colloids obtained at lower power (300 mW), because of the generation of a larger amount of carbon ‘captors’ by the decomposition of acetone and the stronger particle fragmentation. Both the size increase and the shape alteration lead to a redshift of the surface plasmon resonance (SPR) band of the Ag colloid from 404 nm to 414 nm, after storage. The Fourier transform infrared spectroscopy (FTIR) analysis shows that the Ag particles are conjugated with COO– and OH– groups, both of which may lead to the growth of polygonal particles. The CO and CO2 molecules are adsorbed on the particle surfaces to form Ag(CO)x and Ag(CO2)x complexes. Complementary nanosecond LAL experiments confirmed that the particle growth was inherent to LAL in acetone, and independent of pulse duration, although some differences in the final particle sizes were observed. The nanosecond-LAL yields monomodal colloids, whereas the size-separated, initially bimodal colloids from the fs-LAL provide a higher fraction of very small particles that are <5 nm. The spontaneous growth of the LAL-generated metallic particles presented in this work should arouse the special attention of academia, especially regarding the detailed discussion on how long the colloids can be preserved for particle characterization and applications, without causing a mismatch between the colloid properties and their performance. The spontaneous size separation phenomenon may help researchers to realize a more reproducible synthesis for small metallic colloids, without concern for the generation of large particles.
Collapse
|
9
|
Shih CY, Streubel R, Heberle J, Letzel A, Shugaev MV, Wu C, Schmidt M, Gökce B, Barcikowski S, Zhigilei LV. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. NANOSCALE 2018; 10:6900-6910. [PMID: 29561559 PMCID: PMC6637654 DOI: 10.1039/c7nr08614h] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/01/2018] [Indexed: 05/27/2023]
Abstract
The synthesis of chemically clean and environmentally friendly nanoparticles through pulsed laser ablation in liquids has shown a number of advantages over conventional chemical synthesis methods and has evolved into a thriving research field attracting laboratory and industrial applications. The fundamental understanding of processes leading to the nanoparticle generation, however, still remains elusive. In particular, the origin of bimodal nanoparticle size distributions in femto- and picosecond laser ablation in liquids, where small nanoparticles (several nanometers) with narrow size distribution are commonly observed to coexist with larger (tens to hundreds of nanometers) ones, has not been explained so far. In this paper, joint computational and experimental efforts are applied to understand the mechanisms of nanoparticle formation in picosecond laser ablation in liquids and to explain the bimodal nanoparticle size distributions. The results of a large-scale atomistic simulation reveal the critical role of the dynamic interaction between the ablation plume and the liquid environment, leading to the generation of large nanoparticles through a sequence of hydrodynamic instabilities at the plume-liquid interface and a concurrent nucleation and growth of small nanoparticles in an expanding metal-liquid mixing region. The computational predictions are supported by a series of stroboscopic videography experiments showing the emergence of small satellite bubbles surrounding the main cavitation bubble generated in single pulse experiments. Carefully timed double pulse irradiation triggers expansion of secondary cavitation bubbles indicating, in accord with the simulation results, the presence of localized sites of laser energy deposition (possibly large nanoparticles) injected into the liquid at the early stage of the bubble formation.
Collapse
Affiliation(s)
- Cheng-Yu Shih
- Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, Virginia 22904-4745, USA.
| | - René Streubel
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, Essen 45141, Germany.
| | - Johannes Heberle
- Institute of Photonic Technologies, Friedrich-Alexander University Erlangen-Nürnberg, Konrad-Zuse-Straße 3/5, Erlangen 91052, Germany
| | - Alexander Letzel
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, Essen 45141, Germany.
| | - Maxim V Shugaev
- Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, Virginia 22904-4745, USA.
| | - Chengping Wu
- Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, Virginia 22904-4745, USA.
| | - Michael Schmidt
- Institute of Photonic Technologies, Friedrich-Alexander University Erlangen-Nürnberg, Konrad-Zuse-Straße 3/5, Erlangen 91052, Germany
| | - Bilal Gökce
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, Essen 45141, Germany.
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, Essen 45141, Germany.
| | - Leonid V Zhigilei
- Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, Virginia 22904-4745, USA.
| |
Collapse
|
10
|
Fracasso G, Ghigna P, Nodari L, Agnoli S, Badocco D, Pastore P, Nicolato E, Marzola P, Mihajlović D, Markovic M, Čolić M, Amendola V. Nanoaggregates of iron poly-oxo-clusters obtained by laser ablation in aqueous solution of phosphonates. J Colloid Interface Sci 2018; 522:208-216. [PMID: 29604440 DOI: 10.1016/j.jcis.2018.03.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Laser ablation in liquid (LAL) emerged as a versatile technique for the synthesis of nanoparticles with various structures and compositions, although the control over products remains challenging in most cases. For instance, it is still difficult to drive the size of metal oxide crystalline domains down to the level of few atom clusters with LAL. Here we demonstrate that laser ablation of a bulk iron target in aqueous solution of phosphonates gives phosphonate-grafted iron oxo-clusters polymerized into nanoaggregates with Fe:ligand ratio of 2:1, instead of the usual nanocrystalline iron oxides. We attribute this result to the strong ability of phosphonate groups to bind iron oxide clusters and prevent their further growth into crystalline iron oxide. These laser generated poly-oxo-clusters are biocompatible and trackable by magnetic resonance imaging, providing interesting features for use in biological environments, such as nano-vehicles for iron administration. Besides, this method is promising for the generation of atom-scale metal-oxide clusters, which are ubiquitary in chemistry and of interest in biochemistry, catalysis, molecular magnetism and materials science.
Collapse
Affiliation(s)
- Giulio Fracasso
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | - Paolo Ghigna
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Elena Nicolato
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pasquina Marzola
- Department of Computer Sciences, University of Verona, Verona, Italy
| | - Dušan Mihajlović
- University of Belgrade, Institute for Application of Nuclear Energy, Zemun, Serbia
| | - Milan Markovic
- University of Belgrade, Institute for Application of Nuclear Energy, Zemun, Serbia
| | - Miodrag Čolić
- University of Belgrade, Institute for Application of Nuclear Energy, Zemun, Serbia; University of Defence in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
11
|
Kajiya D, Saitow KI. Si nanocrystal solution with stability for one year. RSC Adv 2018; 8:41299-41307. [PMID: 35559330 PMCID: PMC9091691 DOI: 10.1039/c8ra08816k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Colloidal silicon nanocrystals (SiNCs) are a promising material for next-generation nanostructured devices. High-stability SiNC solutions are required for practical use as well as studies on the properties of SiNC. Here, we show a solution of SiNCs that was stable for one year without aggregation. The stable solution was synthesized by a facile process, i.e., pulsed laser ablation of a Si wafer in isopropyl alcohol (IPA). The long-term stability was due to a large ζ-potential of −50 mV from a SiNC passivation layer composed of oxygen, hydrogen, and alkane groups, according to the results of eight experiments and theoretical calculations. This passivation layer also resulted in good performance as an additive for a conductive polymer film. Namely, a 5-fold enhancement in carrier density was established by the addition of SiNCs into an organic conductive polymer, poly(3-dodecylthiophene), which is useful for solar cells. Furthermore, it was found that fresh (<1 day) and aged (4 months) SiNCs give the same enhancement. The long-term stability was attributed to a great repulsive energy in IPA, whose value was quantified as a function the distance between SiNCs. A stable nanocrystal for one year without aggregation in a liquid is synthesized by one-step, one-pot, and one-hour process.![]()
Collapse
Affiliation(s)
- Daisuke Kajiya
- Natural Science Center for Basic Research and Development (N-BARD)
- Hiroshima University
- Higashi-hiroshima
- Japan
- Department of Chemistry
| | - Ken-ichi Saitow
- Natural Science Center for Basic Research and Development (N-BARD)
- Hiroshima University
- Higashi-hiroshima
- Japan
- Department of Chemistry
| |
Collapse
|
12
|
Shih CY, Shugaev MV, Wu C, Zhigilei LV. Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:16549-16567. [PMID: 28798858 PMCID: PMC5545760 DOI: 10.1021/acs.jpcc.7b02301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/07/2017] [Indexed: 05/29/2023]
Abstract
The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ablation in liquids. The simulations of bulk Ag targets irradiated in water are performed with an advanced computational model combining a coarse-grained representation of liquid environment and an atomistic description of laser interaction with metal targets. For the irradiation conditions that correspond to the spallation regime in vacuum, the simulations predict that the water environment can prevent the complete separation of the spalled layer from the target, leading to the formation of large subsurface voids stabilized by rapid cooling and solidification. The subsequent irradiation of the laser-modified surface is found to result in a more efficient ablation and nanoparticle generation, thus suggesting the possibility of the incubation effect in multipulse laser ablation in liquids. The simulations performed at higher laser fluences that correspond to the phase explosion regime in vacuum reveal the accumulation of the ablation plume at the interface with the water environment and the formation of a hot metal layer. The water in contact with the metal layer is brought to the supercritical state and provides an environment suitable for nucleation and growth of small metal nanoparticles from metal atoms emitted from the hot metal layer. The metal layer itself has limited stability and can readily disintegrate into large (tens of nanometers) nanoparticles. The layer disintegration is facilitated by the Rayleigh-Taylor instability of the interface between the higher density metal layer decelerated by the pressure from the lighter supercritical water. The nanoparticles emerging from the layer disintegration are rapidly cooled and solidified due to the interaction with water environment, with a cooling rate of ∼2 × 1012 K/s observed in the simulations. The computational prediction of two distinct mechanisms of nanoparticle formation yielding nanoparticles with different characteristic sizes provides a plausible explanation for the experimental observations of bimodal nanoparticle size distributions in laser ablation in liquids. The ultrahigh cooling and solidification rates suggest the possibility for generation of nanoparticles featuring metastable phases and highly nonequilibrium structures.
Collapse
|
13
|
Maurer E, Barcikowski S, Gökce B. Process Chain for the Fabrication of Nanoparticle Polymer Composites by Laser Ablation Synthesis. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201600506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elisabeth Maurer
- University of Duisburg-Essen; Technical Chemistry I; Universitätsstraße 7 45141 Essen Germany
| | - Stephan Barcikowski
- University of Duisburg-Essen; Technical Chemistry I; Universitätsstraße 7 45141 Essen Germany
| | - Bilal Gökce
- University of Duisburg-Essen; Technical Chemistry I; Universitätsstraße 7 45141 Essen Germany
| |
Collapse
|
14
|
Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water. J Colloid Interface Sci 2017; 489:3-17. [DOI: 10.1016/j.jcis.2016.10.029] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 11/17/2022]
|
15
|
Schmitz T, Wiedwald U, Dubs C, Gökce B. Ultrasmall Yttrium Iron Garnet Nanoparticles with High Coercivity at Low Temperature Synthesized by Laser Ablation and Fragmentation of Pressed Powders. Chemphyschem 2017; 18:1125-1132. [PMID: 28032953 DOI: 10.1002/cphc.201601183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/29/2016] [Indexed: 11/08/2022]
Abstract
Pulsed laser ablation of pressed yttrium iron garnet powders in water is studied and compared to the ablation of a single-crystal target. We find that target porosity is a crucial factor, which has far-reaching implications on nanoparticle productivity. Although nanoparticle size distributions obtained by analytical disc centrifugation and transmission electron microscopy (TEM) are in agreement, X-ray diffraction and energy dispersive X-ray analysis show that only nanoparticles obtained from targets with densities close to that of a bulk target lead to comparable properties. Our findings also show why the gravimetrical measurement of nanoparticle productivity is often flawed and needs to be complemented by colloidal productivity measurements. The synthesized YIG nanoparticles are further reduced in size by laser fragmentation to obtain sizes smaller than 3 nm. Since the particle diameters are close to the YIG lattice constant, these ultrasmall nanoparticles reveal an immense change of the magnetic properties, exhibiting huge coercivity (0.11 T) and irreversibility fields (8 T) at low temperatures.
Collapse
Affiliation(s)
- Tim Schmitz
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057, Duisburg, Germany
| | - Carsten Dubs
- INNOVENT e.V. Technologieentwicklung, Prüssingstr., 27B, 07745, Jena, Germany
| | - Bilal Gökce
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
| |
Collapse
|
16
|
Zhang D, Gökce B, Barcikowski S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem Rev 2017; 117:3990-4103. [PMID: 28191931 DOI: 10.1021/acs.chemrev.6b00468] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Driven by functionality and purity demand for applications of inorganic nanoparticle colloids in optics, biology, and energy, their surface chemistry has become a topic of intensive research interest. Consequently, ligand-free colloids are ideal reference materials for evaluating the effects of surface adsorbates from the initial state for application-oriented nanointegration purposes. After two decades of development, laser synthesis and processing of colloids (LSPC) has emerged as a convenient and scalable technique for the synthesis of ligand-free nanomaterials in sealed environments. In addition to the high-purity surface of LSPC-generated nanoparticles, other strengths of LSPC include its high throughput, convenience for preparing alloys or series of doped nanomaterials, and its continuous operation mode, suitable for downstream processing. Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials, thereby enabling the fabrication of bioconjugates and heterogeneous catalysts. Accurate size control of LSPC-synthesized materials ranging from quantum dots to submicrometer spheres and recent upscaling advancement toward the multiple-gram scale are helpful for extending the applicability of LSPC-synthesized nanomaterials to various fields. By discussing key reports on both the fundamentals and the applications related to laser ablation, fragmentation, and melting in liquids, this Article presents a timely and critical review of this emerging topic.
Collapse
Affiliation(s)
- Dongshi Zhang
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitaetsstrasse 7, 45141 Essen, Germany
| | - Bilal Gökce
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitaetsstrasse 7, 45141 Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitaetsstrasse 7, 45141 Essen, Germany
| |
Collapse
|
17
|
Zhang D, Lau M, Lu S, Barcikowski S, Gökce B. Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects. Sci Rep 2017; 7:40355. [PMID: 28084408 PMCID: PMC5233983 DOI: 10.1038/srep40355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
Abstract
Pulsed laser melting in liquid (PLML) has emerged as a facile approach to synthesize submicron spheres (SMSs) for various applications. Typically lasers with long pulse durations in the nanosecond regime are used. However, recent findings show that during melting the energy absorbed by the particle will be dissipated promptly after laser-matter interaction following the temperature decrease within tens of nanoseconds and hence limiting the efficiency of longer pulse widths. Here, the feasibility to utilize a picosecond laser to synthesize Ge SMSs (200~1000 nm in diameter) is demonstrated by irradiating polydisperse Ge powders in water and isopropanol. Through analyzing the educt size dependent SMSs formation mechanism, we find that Ge powders (200~1000 nm) are directly transformed into SMSs during PLML via reshaping, while comparatively larger powders (1000~2000 nm) are split into daughter SMSs via liquid droplet bisection. Furthermore, the contribution of powders larger than 2000 nm and smaller than 200 nm to form SMSs is discussed. This work shows that compared to nanosecond lasers, picosecond lasers are also suitable to produce SMSs if the pulse duration is longer than the material electron-phonon coupling period to allow thermal relaxation.
Collapse
Affiliation(s)
- Dongshi Zhang
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Marcus Lau
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Suwei Lu
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Bilal Gökce
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| |
Collapse
|
18
|
Streubel R, Bendt G, Gökce B. Pilot-scale synthesis of metal nanoparticles by high-speed pulsed laser ablation in liquids. NANOTECHNOLOGY 2016; 27:205602. [PMID: 27053598 DOI: 10.1088/0957-4484/27/20/205602] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The synthesis of catalysis-relevant nanoparticles such as platinum and gold is demonstrated with productivities of 4 g h(-1) for pulsed laser ablation in liquids (PLAL). The major drawback of low productivity of PLAL is overcome by utilizing a novel ultrafast high-repetition rate laser system combined with a polygon scanner that reaches scanning speeds up to 500 m s(-1). This high scanning speed is exploited to spatially bypass the laser-induced cavitation bubbles at MHz-repetition rates resulting in an increase of the applicable, ablation-effective, repetition rate for PLAL by two orders of magnitude. The particle size, morphology and oxidation state of fully automated synthesized colloids are analyzed while the ablation mechanisms are studied for different laser fluences, repetition rates, interpulse distances, ablation times, volumetric flow rates and focus positions. It is found that at high scanning speeds and high repetition rate PLAL the ablation process is stable in crystallite size and decoupled from shielding and liquid effects that conventionally occur during low-speed PLAL.
Collapse
Affiliation(s)
- René Streubel
- Institute of Technical Chemistry I, University of Duisburg-Essen, Universitaetsstr. 7, 45141 Essen, Germany. Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | | | | |
Collapse
|
19
|
Streubel R, Barcikowski S, Gökce B. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. OPTICS LETTERS 2016; 41:1486-9. [PMID: 27192268 DOI: 10.1364/ol.41.001486] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Utilizing a novel laser system consisting of a 500 W, 10 MHz, 3 ps laser source which is fully synchronized with a polygon scanner reaching scanning speeds up to 500 m/s, we explore the possibilities to increase the productivity of nanoparticle synthesis by laser ablation in liquids. By exploiting the high scanning speed, laser-induced cavitation bubbles are spatially bypassed at high repetition rates and continuous multigram ablation rates up to 4 g/h are demonstrated for platinum, gold, silver, aluminum, copper, and titanium. Furthermore, the applicable, ablation-effective repetition rate is increased by two orders of magnitude. The ultrafast ablation mechanisms are investigated for different laser fluences, repetition rates, interpulse distances, and ablation times, while the resulting trends are successfully described by validating a model developed for ultrafast laser ablation in air to hold in liquids as well.
Collapse
|