1
|
Alba PG, Inés FB, Julieta Gabriela H, Beatriz GC, Ismael LT, Leopoldo GB, Priscila RI, Pablo BÁ. SMC2 ablation impairs bovine embryo development shortly after blastocyst hatching. Reproduction 2024; 168:e240211. [PMID: 39231091 PMCID: PMC11466199 DOI: 10.1530/rep-24-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
In brief Bovine embryos lacking SMC2 (a core component of condensins I and II) are unable to survive maternal recognition of pregnancy. SMC2 KO embryos are able to form blastocysts, exhibiting a reduced cell proliferation ability, and arrest their development shortly after hatching. Abstract Condensins are large protein complexes required for chromosome assembly and segregation during mitosis and meiosis. Mouse or bovine embryos lacking SMC2 (a core component of condensins I and II) do not complete development to term, but it is unknown when they arrest their development. Herein, we have assessed the developmental ability of bovine embryos lacking SMC2 due to a naturally occurring mutation termed HH3 (Holstein Haplotype 3) or by CRISPR-mediated gene ablation. To determine if embryos homozygous for the HH3 allele survive to maternal recognition of pregnancy, embryonic day (E)14 embryos were flushed from superovulated carrier cows inseminated with a carrier bull. Mendelian inheritance of the HH3 allele was observed at E14 conceptuses but conceptuses homozygous for HH3 failed to achieve elongation and lacked an embryonic disc. To assess the consequence of the ablation of condensins I and II at earlier developmental stages, SMC2 KO bovine embryos were generated in vitro using CRISPR technology. SMC2 KO embryos were able to form blastocysts but exhibited reduced cell proliferation as evidenced by a significantly lower number of total, trophectoderm (CDX2+), and inner cell mass (SOX2+) cells at Day (D) 8 post-fertilization compared to their WT counterparts and were unable to survive to D12 in vitro. SMC2 ablation did not alter relative telomere length at D8, D12, or E14. In conclusion, condensins I and II are required for blastomere mitosis during early development, and embryos lacking those complexes arrest their development shortly after blastocyst hatching.
Collapse
Affiliation(s)
| | | | - Hamze Julieta Gabriela
- Department of Animal Reproduction, INIA, CSIC, Madrid, Spain
- Department of Cell Biology and Histology, Universidad de Murcia. International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | | | | | | | | | | |
Collapse
|
2
|
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Galiano-Cogolludo B, Lamas-Toranzo I, Hamze JG, Toledano-Díaz A, Santiago-Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. The role of TEAD4 in trophectoderm commitment and development is not conserved in non-rodent mammals. Development 2024; 151:dev202993. [PMID: 39171364 PMCID: PMC11463960 DOI: 10.1242/dev.202993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
The first lineage differentiation in mammals gives rise to the inner cell mass and the trophectoderm (TE). In mice, TEAD4 is a master regulator of TE commitment, as it regulates the expression of other TE-specific genes and its ablation prevents blastocyst formation, but its role in other mammals remains unclear. Herein, we have observed that TEAD4 ablation in two phylogenetically distant species (bovine and rabbit) does not impede TE differentiation, blastocyst formation and the expression of TE markers, such as GATA3 and CDX2, although a reduced number of cells in the inner cell mass was observed in bovine TEAD4 knockout (KO) blastocysts. Transcriptional analysis in bovine blastocysts revealed no major transcriptional effect of the ablation, although the expression of hypoblast and Hippo signalling-related genes tended to be decreased in KO embryos. Experiments were conducted in the bovine model to determine whether TEAD4 was required for post-hatching development. TEAD4 KO spherical conceptuses showed normal development of the embryonic disc and TE, but hypoblast migration rate was reduced. At later stages of development (tubular conceptuses), no differences were observed between KO and wild-type conceptuses.
Collapse
|
3
|
Pérez-Gómez A, Hamze JG, Flores-Borobia I, Galiano-Cogolludo B, Lamas-Toranzo I, González-Brusi L, Ramos-Ibeas P, Bermejo-Álvarez P. HH5 double-carrier embryos fail to progress through early conceptus elongation. J Dairy Sci 2024; 107:6371-6382. [PMID: 38642647 DOI: 10.3168/jds.2023-24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/14/2024] [Indexed: 04/22/2024]
Abstract
Massive genotyping in cattle has uncovered several deleterious haplotypes that cause preterm mortality. Holstein haplotype 5 (HH5) is a deleterious haplotype present in the Holstein Friesian population that involves the ablation of the transcription factor B1 mitochondrial (TFB1M) gene. The developmental stage at which HH5 double-carrier (DC, homozygous) embryos or fetuses die remains unknown and this is a relevant information to estimate the economic losses associated with the inadvertent cross between carriers. To determine whether HH5 DC survive to maternal recognition of pregnancy, embryonic day (E) 14 embryos were flushed from superovulated carrier cows inseminated with a carrier bull. Double-carrier E14 conceptuses were recovered at Mendelian rates but they failed to achieve early elongation, as evidenced by a drastic reduction of their extra-embryonic membranes, which were >26-fold shorter than those of carrier or noncarrier embryos. To assess development at earlier stages, TFB1M knockout (KO) embryos-functionally equivalent to DC embryos-were generated by clustered regularly interspaced short palindromic repeats (CRISPR) technology and cultured to the blastocyst stage, in vitro culture day (D) 8, and to the early embryonic disc stage, D12. No significant effect of TFB1M ablation was observed on the differentiation and proliferation of embryonic lineages and relative mitochondrial DNA (mtDNA) content up to D12. In conclusion, HH5 DC embryos are able to develop to early embryonic disc stage but fail to undergo early conceptus elongation, which is required for pregnancy recognition.
Collapse
Affiliation(s)
- A Pérez-Gómez
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain
| | - J G Hamze
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain; Department of Cell Biology and Histology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), 30100 Murcia, Spain
| | | | | | - I Lamas-Toranzo
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain; Department of Cell Biology and Histology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), 30100 Murcia, Spain
| | - L González-Brusi
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain; Department of Cell Biology and Histology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), 30100 Murcia, Spain
| | - P Ramos-Ibeas
- Animal Reproduction Department, INIA, CSIC, 28040 Madrid, Spain
| | | |
Collapse
|
4
|
Lin YH, Lehle JD, McCarrey JR. Source cell-type epigenetic memory persists in induced pluripotent cells but is lost in subsequently derived germline cells. Front Cell Dev Biol 2024; 12:1306530. [PMID: 38410371 PMCID: PMC10895008 DOI: 10.3389/fcell.2024.1306530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction: Retention of source cell-type epigenetic memory may mitigate the potential for induced pluripotent stem cells (iPSCs) to fully achieve transitions in cell fate in vitro. While this may not preclude the use of iPSC-derived somatic cell types for therapeutic applications, it becomes a major concern impacting the potential use of iPSC-derived germline cell types for reproductive applications. The transition from a source somatic cell type to iPSCs and then on to germ-cell like cells (GCLCs) recapitulates two major epigenetic reprogramming events that normally occur during development in vivo-embryonic reprogramming in the epiblast and germline reprogramming in primordial germ cells (PGCs). We examined the extent of epigenetic and transcriptomic memory persisting first during the transition from differentiated source cell types to iPSCs, and then during the transition from iPSCs to PGC-like cells (PGCLCs). Methods: We derived iPSCs from four differentiated mouse cell types including two somatic and two germ cell types and tested the extent to which each resulting iPSC line resembled a) a validated ES cell reference line, and b) their respective source cell types, on the basis of genome-wide gene expression and DNA methylation patterns. We then induced each iPSC line to form PGCLCs, and assessed epigenomic and transcriptomic memory in each compared to endogenous PGCs/M-prospermatogonia. Results: In each iPSC line, we found residual gene expression and epigenetic programming patterns characteristic of the corresponding source differentiated cell type from which each was derived. However, upon deriving PGCLCs, we found very little evidence of lingering epigenetic or transcriptomic memory of the original source cell type. Discussion: This result indicates that derivation of iPSCs and then GCLCs from differentiated source cell types in vitro recapitulates the two-phase epigenetic reprogramming that normally occurs in vivo, and that, to a significant extent, germline cell types derived in vitro from pluripotent cells accurately recapitulate epigenetic programming and gene expression patterns corresponding to equivalent endogenous germ cell types, suggesting that they have the potential to form the basis of in vitro gametogenesis as a useful therapeutic strategy for treatment of infertility.
Collapse
Affiliation(s)
- Yu-Huey Lin
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Jake D Lehle
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
5
|
Identification of spermatogenesis-associated changes in DNA methylation induced by maternal exposure to chemicals in male germ cells. STAR Protoc 2022; 3:101912. [PMID: 36595925 PMCID: PMC9763944 DOI: 10.1016/j.xpro.2022.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
It is now recognized that maternal environmental factors, including chemical exposure and nutritional conditions, alter DNA methylation patterns in fetal germ cells, subsequently affecting germ cell development as well as offspring phenotypes. Here, we describe steps for detecting DNA methylation changes in mouse germ cells isolated from both embryonic and spermatogenic stages after maternal exposure to a chemical compound. For complete details on the use and execution of this protocol, please refer to Tando et al. (2021).1.
Collapse
|
6
|
Horánszky A, Becker JL, Zana M, Ferguson-Smith AC, Dinnyés A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes (Basel) 2021; 12:genes12111704. [PMID: 34828310 PMCID: PMC8620286 DOI: 10.3390/genes12111704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
The rising frequency of ART-conceived births is accompanied by the need for an improved understanding of the implications of ART on gametes and embryos. Increasing evidence from mouse models and human epidemiological data suggests that ART procedures may play a role in the pathophysiology of certain imprinting disorders (IDs), including Beckwith-Wiedemann syndrome, Silver-Russell syndrome, Prader-Willi syndrome, and Angelman syndrome. The underlying molecular basis of this association, however, requires further elucidation. In this review, we discuss the epigenetic and imprinting alterations of in vivo mouse models and human iPSC models of ART. Mouse models have demonstrated aberrant regulation of imprinted genes involved with ART-related IDs. In the past decade, iPSC technology has provided a platform for patient-specific cellular models of culture-associated perturbed imprinting. However, despite ongoing efforts, a deeper understanding of the susceptibility of iPSCs to epigenetic perturbation is required if they are to be reliably used for modelling ART-associated IDs. Comparing the patterns of susceptibility of imprinted genes in mouse models and IPSCs in culture improves the current understanding of the underlying mechanisms of ART-linked IDs with implications for our understanding of the influence of environmental factors such as culture and hormone treatments on epigenetically important regions of the genome such as imprints.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Jessica L. Becker
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - Melinda Zana
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
| | - Anne C. Ferguson-Smith
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - András Dinnyés
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
- HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, H-6723 Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-20-510-9632; Fax: +36-28-526-151
| |
Collapse
|
7
|
Sundaravadivelu PK, Raina K, Thool M, Ray A, Joshi JM, Kaveeshwar V, Sudhagar S, Lenka N, Thummer RP. Tissue-Restricted Stem Cells as Starting Cell Source for Efficient Generation of Pluripotent Stem Cells: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:151-180. [PMID: 34611861 DOI: 10.1007/5584_2021_660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have vast biomedical potential concerning disease modeling, drug screening and discovery, cell therapy, tissue engineering, and understanding organismal development. In the year 2006, a groundbreaking study reported the generation of iPSCs from mouse embryonic fibroblasts by viral transduction of four transcription factors, namely, Oct4, Sox2, Klf4, and c-Myc. Subsequently, human iPSCs were generated by reprogramming fibroblasts as a starting cell source using two reprogramming factor cocktails [(i) OCT4, SOX2, KLF4, and c-MYC, and (ii) OCT4, SOX2, NANOG, and LIN28]. The wide range of applications of these human iPSCs in research, therapeutics, and personalized medicine has driven the scientific community to optimize and understand this reprogramming process to achieve quality iPSCs with higher efficiency and faster kinetics. One of the essential criteria to address this is by identifying an ideal cell source in which pluripotency can be induced efficiently to give rise to high-quality iPSCs. Therefore, various cell types have been studied for their ability to generate iPSCs efficiently. Cell sources that can be easily reverted to a pluripotent state are tissue-restricted stem cells present in the fetus and adult tissues. Tissue-restricted stem cells can be isolated from fetal, cord blood, bone marrow, and other adult tissues or can be obtained by differentiation of embryonic stem cells or trans-differentiation of other tissue-restricted stem cells. Since these cells are undifferentiated cells with self-renewal potential, they are much easier to reprogram due to the inherent characteristic of having an endogenous expression of few pluripotency-inducing factors. This review presents an overview of promising tissue-restricted stem cells that can be isolated from different sources, namely, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, limbal epithelial stem cells, and spermatogonial stem cells, and their reprogramming efficacy. This insight will pave the way for developing safe and efficient reprogramming strategies and generating patient-specific iPSCs from tissue-restricted stem cells derived from various fetal and adult tissues.
Collapse
Affiliation(s)
- Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
8
|
Wang B, Suen CW, Ma H, Wang Y, Kong L, Qin D, Lee YWW, Li G. The Roles of H19 in Regulating Inflammation and Aging. Front Immunol 2020; 11:579687. [PMID: 33193379 PMCID: PMC7653221 DOI: 10.3389/fimmu.2020.579687] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that long non-coding RNA H19 correlates with several aging processes. However, the role of H19 in aging remains unclear. Many studies have elucidated a close connection between H19 and inflammatory genes. Chronic systemic inflammation is an established factor associated with various diseases during aging. Thus, H19 might participate in the development of age-related diseases by interplay with inflammation and therefore provide a protective function against age-related diseases. We investigated the inflammatory gene network of H19 to understand its regulatory mechanisms. H19 usually controls gene expression by acting as a microRNA sponge, or through mir-675, or by leading various protein complexes to genes at the chromosome level. The regulatory gene network has been intensively studied, whereas the biogenesis of H19 remains largely unknown. This literature review found that the epithelial-mesenchymal transition (EMT) and an imprinting gene network (IGN) might link H19 with inflammation. Evidence indicates that EMT and IGN are also tightly controlled by environmental stress. We propose that H19 is a stress-induced long non-coding RNA. Because environmental stress is a recognized age-related factor, inflammation and H19 might serve as a therapeutic axis to fight against age-related diseases.
Collapse
Affiliation(s)
- Bin Wang
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun Wai Suen
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Haibin Ma
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yan Wang
- Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Kong
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dajiang Qin
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuk Wai Wayne Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Li
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Lamas-Toranzo I, Hamze JG, Bianchi E, Fernández-Fuertes B, Pérez-Cerezales S, Laguna-Barraza R, Fernández-González R, Lonergan P, Gutiérrez-Adán A, Wright GJ, Jiménez-Movilla M, Bermejo-Álvarez P. TMEM95 is a sperm membrane protein essential for mammalian fertilization. eLife 2020; 9:53913. [PMID: 32484434 PMCID: PMC7295574 DOI: 10.7554/elife.53913] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 06/01/2020] [Indexed: 01/12/2023] Open
Abstract
The fusion of gamete membranes during fertilization is an essential process for sexual reproduction. Despite its importance, only three proteins are known to be indispensable for sperm-egg membrane fusion: the sperm proteins IZUMO1 and SPACA6, and the egg protein JUNO. Here we demonstrate that another sperm protein, TMEM95, is necessary for sperm-egg interaction. TMEM95 ablation in mice caused complete male-specific infertility. Sperm lacking this protein were morphologically normal exhibited normal motility, and could penetrate the zona pellucida and bind to the oolemma. However, once bound to the oolemma, TMEM95-deficient sperm were unable to fuse with the egg membrane or penetrate into the ooplasm, and fertilization could only be achieved by mechanical injection of one sperm into the ooplasm, thereby bypassing membrane fusion. These data demonstrate that TMEM95 is essential for mammalian fertilization.
Collapse
Affiliation(s)
| | - Julieta G Hamze
- Department of Cell Biology and Histology, Medical School, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Beatriz Fernández-Fuertes
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | | | | | | | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - María Jiménez-Movilla
- Department of Cell Biology and Histology, Medical School, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | | |
Collapse
|
10
|
Lamas-Toranzo I, Fonseca Balvís N, Querejeta-Fernández A, Izquierdo-Rico MJ, González-Brusi L, Lorenzo PL, García-Rebollar P, Avilés M, Bermejo-Álvarez P. ZP4 confers structural properties to the zona pellucida essential for embryo development. eLife 2019; 8:48904. [PMID: 31635692 PMCID: PMC6805156 DOI: 10.7554/elife.48904] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
Zona pellucida (ZP), the extracellular matrix sheltering mammalian oocytes and embryos, is composed by 3 to 4 proteins. The roles of the three proteins present in mice have been elucidated by KO models, but the function of the fourth component (ZP4), present in all other eutherian mammals studied so far, has remained elusive. Herein, we report that ZP4 ablation impairs fertility in female rabbits. Ovulation, fertilization and in vitro development to blastocyst were not affected by ZP4 ablation. However, in vivo development is severely impaired in embryos covered by a ZP4-devoided zona, suggesting a defective ZP protective capacity in the absence of ZP4. ZP4-null ZP was significantly thinner, more permeable, and exhibited a more disorganized and fenestrated structure. The evolutionary conservation of ZP4 in other mammals, including humans, suggests that the structural properties conferred by this protein are required to ensure proper embryo sheltering during in vivo preimplantation development. The egg cells of mammals, called oocytes, are encased in a protective layer called the zona pellucida. This layer is made from proteins called ZP1 to 4. Most studies of the zona pellucida use mice, which do not have ZP4. This means that the research community have limited knowledge of what ZP4 does in humans and other mammals. Scientists can now use a technique called CRISPR to selectively modify the genetics of living things to help us to understand what specific genes and proteins do. The ZP4 protein can be eliminated from rabbit oocytes using CRISPR to help understand its role in egg cell fertilization and development. Lamas-Toranzo et al. examined the effect of losing ZP4 from rabbit oocytes. Without ZP4 the zona pellucida becomes thinner, irregular and more flexible. However, the loss of ZP4 did not affect ovulation (i.e. the release of egg cells from an ovary), fertilization, or the early stages of development of embryos when studied in the laboratory. However, rabbits without ZP4 were much less fertile. Indeed, only one out of 10 female rabbits without ZP4 was able to deliver pups because in most cases the development of embryos in the womb failed. These findings show that ZP4 has a structural role in the zona pellucida. Without ZP4 fertility is reduced. This work lays the ground for further investigation of the role of ZP4. It could also offer new insights into the causes of infertility.
Collapse
Affiliation(s)
| | | | - Ana Querejeta-Fernández
- Department of Physical Chemistry and Biomedical Research Center (CINBIO), Universidad de Vigo, Vigo, Spain
| | - María José Izquierdo-Rico
- Cell Biology and Histology Department, Faculty of Medicine, Universidad de Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Leopoldo González-Brusi
- Cell Biology and Histology Department, Faculty of Medicine, Universidad de Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Pedro L Lorenzo
- Animal Physiology Department, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar García-Rebollar
- Animal Production Department, ETSI Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Avilés
- Cell Biology and Histology Department, Faculty of Medicine, Universidad de Murcia and IMIB-Arrixaca, Murcia, Spain
| | | |
Collapse
|
11
|
Genome imprinting in stem cells: A mini-review. Gene Expr Patterns 2019; 34:119063. [PMID: 31279979 DOI: 10.1016/j.gep.2019.119063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022]
Abstract
Genomic imprinting is an epigenetic process result in silencing of one of the two alleles (maternal or paternal) based on the parent of origin. Dysregulation of imprinted genes results in detectable developmental and differential abnormalities. Epigenetics erasure is required for resetting the cell identity to a ground state during the production of induced pluripotent stem (iPS) cells from somatic cells. There are some contradictory reports regarding the status of the imprinting marks in the genome of iPS cells. Additionally, many studies highlighted the existence of subtle differences in the imprinting loci between different types of iPS cells and embryonic stem (ES) cells. These observations could ultimately undermine the use of patient-derived iPS cells for regenerative medicine.
Collapse
|
12
|
Kanitz A, Syed AP, Kaji K, Zavolan M. Conserved regulation of RNA processing in somatic cell reprogramming. BMC Genomics 2019; 20:100. [PMID: 30704403 PMCID: PMC6357513 DOI: 10.1186/s12864-019-5438-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Along with the reorganization of epigenetic and transcriptional networks, somatic cell reprogramming brings about numerous changes at the level of RNA processing. These include the expression of specific transcript isoforms and 3' untranslated regions. A number of studies have uncovered RNA processing factors that modulate the efficiency of the reprogramming process. However, a comprehensive evaluation of the involvement of RNA processing factors in the reprogramming of somatic mammalian cells is lacking. RESULTS Here, we used data from a large number of studies carried out in three mammalian species, mouse, chimpanzee and human, to uncover consistent changes in gene expression upon reprogramming of somatic cells. We found that a core set of nine splicing factors have consistent changes across the majority of data sets in all three species. Most striking among these are ESRP1 and ESRP2, which accelerate and enhance the efficiency of somatic cell reprogramming by promoting isoform expression changes associated with mesenchymal-to-epithelial transition. We further identify genes and processes in which splicing changes are observed in both human and mouse. CONCLUSIONS Our results provide a general resource for gene expression and splicing changes that take place during somatic cell reprogramming. Furthermore, they support the concept that splicing factors with evolutionarily conserved, cell type-specific expression can modulate the efficiency of the process by reinforcing intermediate states resembling the cell types in which these factors are normally expressed.
Collapse
Affiliation(s)
- Alexander Kanitz
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Afzal Pasha Syed
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
13
|
Lamas-Toranzo I, Ramos-Ibeas P, Pericuesta E, Bermejo-Álvarez P. Directions and applications of CRISPR technology in livestock research. Anim Reprod 2018; 15:292-300. [PMID: 34178152 PMCID: PMC8202460 DOI: 10.21451/1984-3143-ar2018-0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ablation (KO) or targeted insertion (KI) of specific genes or sequences has been essential
to test their roles on a particular biological process. Unfortunately, such genome modifications
have been largely limited to the mouse model, as the only way to achieve targeted mutagenesis
in other mammals required from somatic cell nuclear transfer, a time- and resource-consuming
technique. This difficulty has left research in livestock species largely devoided of KO
and targeted KI models, crucial tools to uncover the molecular roots of any physiological
or pathological process. Luckily, the eruption of site-specific endonucleases, and particularly
CRISPR technology, has empowered farm animal scientists to consider projects that could
not develop before. In this sense, the availability of genome modification in livestock species
is meant to change the way research is performed on many fields, switching from descriptive
and correlational approaches to experimental research. In this review we will provide some
guidance about how the genome can be edited by CRISPR and the possible strategies to achieve
KO or KI, paying special attention to an initially overlooked phenomenon: mosaicism. Mosaicism
is produced when the zygote´s genome edition occurs after its DNA has replicated,
and is characterized by the presence of more than two alleles in the same individual, an undesirable
outcome when attempting direct KO generation. Finally, the possible applications on different
fields of livestock research, such as reproduction or infectious diseases are discussed.
Collapse
Affiliation(s)
| | | | - Eva Pericuesta
- Department Reproducción Animal, INIA, 28040 Madrid, Spain
| | | |
Collapse
|
14
|
Puig I, Tenbaum SP, Chicote I, Arqués O, Martínez-Quintanilla J, Cuesta-Borrás E, Ramírez L, Gonzalo P, Soto A, Aguilar S, Eguizabal C, Caratù G, Prat A, Argilés G, Landolfi S, Casanovas O, Serra V, Villanueva A, Arroyo AG, Terracciano L, Nuciforo P, Seoane J, Recio JA, Vivancos A, Dienstmann R, Tabernero J, Palmer HG. TET2 controls chemoresistant slow-cycling cancer cell survival and tumor recurrence. J Clin Invest 2018; 128:3887-3905. [PMID: 29944140 DOI: 10.1172/jci96393] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Dormant or slow-cycling tumor cells can form a residual chemoresistant reservoir responsible for relapse in patients, years after curative surgery and adjuvant therapy. We have adapted the pulse-chase expression of H2BeGFP for labeling and isolating slow-cycling cancer cells (SCCCs). SCCCs showed cancer initiation potential and enhanced chemoresistance. Cells at this slow-cycling status presented a distinctive nongenetic and cell-autonomous gene expression profile shared across different tumor types. We identified TET2 epigenetic enzyme as a key factor controlling SCCC numbers, survival, and tumor recurrence. 5-Hydroxymethylcytosine (5hmC), generated by TET2 enzymatic activity, labeled the SCCC genome in carcinomas and was a predictive biomarker of relapse and survival in cancer patients. We have shown the enhanced chemoresistance of SCCCs and revealed 5hmC as a biomarker for their clinical identification and TET2 as a potential drug target for SCCC elimination that could extend patients' survival.
Collapse
Affiliation(s)
- Isabel Puig
- Stem Cells and Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Stephan P Tenbaum
- Stem Cells and Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Irene Chicote
- Stem Cells and Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Oriol Arqués
- Stem Cells and Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | - Lorena Ramírez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pilar Gonzalo
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Atenea Soto
- Gene Expression and Cancer Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Susana Aguilar
- Tumor Angiogenesis Group, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Cristina Eguizabal
- Cell Therapy and Stem Cell Group, Basque Centre for Transfusion and Human Tissues, Galdakao, Spain
| | - Ginevra Caratù
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Medical Oncology Department, Hospital Clínic, Universitat de Barcelona, Translational Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Guillem Argilés
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Stefania Landolfi
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alberto Villanueva
- Chemoresistance Group, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Alicia G Arroyo
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Luigi Terracciano
- Molecular Pathology Division, Institute of Pathology, University Hospital, Basel, Switzerland
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Joan Seoane
- Gene Expression and Cancer Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Juan A Recio
- Animal Models and Cancer Laboratory, Melanoma Program, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rodrigo Dienstmann
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Josep Tabernero
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
15
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
16
|
Zhang J, Cao H, Xie J, Fan C, Xie Y, He X, Liao M, Zhang S, Wang H. The oncogene Etv5 promotes MET in somatic reprogramming and orchestrates epiblast/primitive endoderm specification during mESCs differentiation. Cell Death Dis 2018; 9:224. [PMID: 29445086 PMCID: PMC5833841 DOI: 10.1038/s41419-018-0335-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/10/2023]
Abstract
Unipotent spermatogonial stem cells (SSCs) can be efficiently reprogrammed into pluripotent stem cells only by manipulating the culture condition, without introducing exogenous reprogramming factors. This phenotype raises the hypothesis that the endogenous transcription factors (TFs) in SSCs may facilitate reprogramming to acquire pluripotency. In this study, we screened a pool of SSCs TFs (Bcl6b, Lhx1, Foxo1, Plzf, Id4, Taf4b, and Etv5), and found that oncogene Etv5 could dramatically increase the efficiency of induced pluripotent stem cells (iPSCs) generation when combined with Yamanaka factors. We also demonstrated that Etv5 could promote mesenchymal-epithelial transition (MET) at the early stage of reprogramming by regulating Tet2-miR200s-Zeb1 axis. In addition, Etv5 knockdown in mouse embryonic stem cells (mESCs) could decrease the genomic 5hmC level by downregulating Tet2. Furthermore, the embryoid body assay revealed that Etv5 could positively regulate primitive endoderm specification through regulating Gata6 and negatively regulate epiblast specification by inhibiting Fgf5 expression. In summary, our findings provide insights into understanding the regulation mechanisms of Etv5 under the context of somatic reprogramming, mESCs maintenance, and differentiation.
Collapse
Affiliation(s)
- Jinglong Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongxia Cao
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Xie
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Fan
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Youlong Xie
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huayan Wang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Lamas-Toranzo I, Guerrero-Sánchez J, Miralles-Bover H, Alegre-Cid G, Pericuesta E, Bermejo-Álvarez P. CRISPR is knocking on barn door. Reprod Domest Anim 2017; 52 Suppl 4:39-47. [DOI: 10.1111/rda.13047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - G Alegre-Cid
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | - E Pericuesta
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | | |
Collapse
|
18
|
Laurentino S, Borgmann J, Gromoll J. On the origin of sperm epigenetic heterogeneity. Reproduction 2016; 151:R71-8. [PMID: 26884419 DOI: 10.1530/rep-15-0436] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/15/2016] [Indexed: 01/05/2023]
Abstract
The influence of epigenetic modifications on reproduction and on the function of male germ cells has been thoroughly demonstrated. In particular, aberrant DNA methylation levels in sperm have been associated with abnormal sperm parameters, lower fertilization rates and impaired embryo development. Recent reports have indicated that human sperm might be epigenetically heterogeneous and that abnormal DNA methylation levels found in the sperm of infertile men could be due to the presence of sperm populations with different epigenetic quality. However, the origin and the contribution of different germ cell types to this suspected heterogeneity remain unclear. In this review, we focus on sperm epigenetics at the DNA methylation level and its importance in reproduction. We take into account the latest developments and hypotheses concerning the functional significance of epigenetic heterogeneity coming from the field of stem cell and cancer biology and discuss the potential importance and consequences of sperm epigenetic heterogeneity for reproduction, male (in)fertility and assisted reproductive technologies (ART). Based on the current information, we propose a model in which spermatogonial stem cell variability, either intrinsic or due to external factors (such as endocrine action and environmental stimuli), can lead to epigenetic sperm heterogeneity, sperm epimutations and male infertility. The elucidation of the precise causes for epimutations, the conception of adequate therapeutic options and the development of sperm selection technologies based on epigenetic quality should be regarded as crucial to the improvement of ART outcome in the near future.
Collapse
Affiliation(s)
- Sandra Laurentino
- Centre of Reproductive Medicine and AndrologyAlbert-Schweitzer Campus, Münster, Germany
| | - Jennifer Borgmann
- Centre of Reproductive Medicine and AndrologyAlbert-Schweitzer Campus, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and AndrologyAlbert-Schweitzer Campus, Münster, Germany
| |
Collapse
|