1
|
Ji Y, Lv X, Wei R, Guan A, Yang C, Yan Y, Kuang M, Zheng G. Unconventional Electrocatalytic CO Conversion to C 2 Products on Single-Atomic Pd-Ag n Sites. Angew Chem Int Ed Engl 2024; 63:e202411194. [PMID: 38995549 DOI: 10.1002/anie.202411194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/13/2024]
Abstract
The electrochemical reduction of CO or CO2 into C2+ products has mostly been focused on Cu-based catalysts. Although Ag has also been predicted as a possible catalyst for the CO-to-C2+ conversion from the thermodynamic point of view, however, due to its weak CO binding strength, CO rapidly desorbs from the Ag surface rather than participates in deep reduction. In this work, we demonstrate that single-atomic Pd sites doped in Ag lattice can tune the CO adsorption behavior and promote the deep reduction of CO toward C2 products. The monodispersed Pd-Agn sites enable the CO adsorption with both Pd-atop (PdL) and Pd-Ag bridge (PdAgB) configurations, which can increase the CO coverage and reduce the C-C coupling energy barrier. Under room temperature and ambient pressure, the Pd1Ag10 alloy catalyst exhibited a total CO-to-C2 Faradaic efficiency of ~37 % at -0.83 V, with appreciable current densities and electrochemical stability, thus featuring unconventional non-Cu electrocatalytic CO-to-C2 conversion capability.
Collapse
Affiliation(s)
- Yali Ji
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ruilin Wei
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Anxiang Guan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yaqin Yan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Min Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
2
|
Yang FK, Fang Y, Li FF, Qu WL, Deng C. Sn-doped PdCu alloy nanosheet assemblies as an efficient electrocatalyst for formic acid oxidation. Dalton Trans 2023; 52:14428-14434. [PMID: 37771290 DOI: 10.1039/d3dt01095c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A ternary alloy catalyst has been confirmed to be an effective catalyst for anode catalysis in direct formic acid fuel cells, which can improve the electrocatalytic performance of the fuel cell by introducing commonly used metal elements to change the Pd electronic structure and can reduce the use of precious metals and the cost of catalyst production. In this study, PdCuSn Ns/C with a special 3D structure was synthesized by a simple two-step wet chemical method. The PdCuSn Ns/C catalyst prepared exhibits excellent catalytic activity and stability for the formic acid oxidation reaction (FAOR). The mass activity of 2420.1 mA mg-1Pd is 3.94 times that of the Pd/C catalyst. The improvement in the electrocatalytic performance stems from the introduction of Cu and Sn atoms and the unique 3D nanosheet structure, which changes the electronic structure of Pd to increase the reactive active site and accelerates the reaction mass transfer rate, and also reduces the content of precious metals, while improving the electrocatalytic performance. Therefore, the PdCuSn Ns/C catalyst has a promising future in the field of electrocatalysis.
Collapse
Affiliation(s)
- Fu-Kai Yang
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Yue Fang
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Fang-Fang Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Wei-Li Qu
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, China
| | - Chao Deng
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| |
Collapse
|
3
|
Zhang G, Wang Y, Ma Y, Zhang H, Zheng Y. Boosting Electrocatalytic Oxidation of Formic Acid on Ir(IV)-Doped PdAg Alloy Nanodendrites with Sub-5 nm Branches. Molecules 2023; 28:molecules28093670. [PMID: 37175080 PMCID: PMC10180118 DOI: 10.3390/molecules28093670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The formic acid oxidation reaction (FAOR) represents an important class of small organic molecule oxidation and is central to the practical application of fuel cells. In this study, we report the fabrication of Ir(IV)-doped PdAg alloy nanodendrites with sub-5 nm branches via stepwise synthesis in which the precursors of Pd and Ag were co-reduced, followed by the addition of IrCl3 to conduct an in situ galvanic replacement reaction. When serving as the electrocatalyst for the FAOR in an acidic medium, Ir(IV) doping unambiguously enhanced the activity of PdAg alloy nanodendrites and improved the reaction kinetics and long-term stability. In particular, the carbon-supported PdAgIr nanodendrites exhibited a prominent mass activity with a value of 1.09 A mgPd-1, which is almost 2.0 times and 2.7 times that of their PdAg and Pd counterparts, and far superior to that of commercial Pt/C. As confirmed by the means of the DFT simulations, this improved electrocatalytic performance stems from the reduced overall barrier in the oxidation of formic acid into CO2 during the FAOR and successful d-band tuning, together with the stabilization of Pd atoms. The current study opens a new avenue for engineering Pd-based trimetallic nanocrystals with versatile control over the morphology and composition, shedding light on the design of advanced fuel cell electrocatalysts.
Collapse
Affiliation(s)
- Gongguo Zhang
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, China
| | - Yingying Wang
- Health Management Department, Shandong Vocational College of Light Industry, Zibo 255300, China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Haifeng Zhang
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, China
| | - Yiqun Zheng
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, China
| |
Collapse
|
4
|
The effect of small silver inclusions on the palladium activity in formic acid oxidation reaction and corrosion stability. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Gholipour B, Zonouzi A, Shokouhimehr M, Rostamnia S. Integration of plasmonic AgPd alloy nanoparticles with single-layer graphitic carbon nitride as Mott-Schottky junction toward photo-promoted H 2 evolution. Sci Rep 2022; 12:13583. [PMID: 35945424 PMCID: PMC9363438 DOI: 10.1038/s41598-022-17238-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Plasmonic AgPd alloy nanoparticles (AgPdNPs) decorated on single-layer carbon nitride (AgPdNPs/SLCN) for the designing of the Mott-Schottky junction were constructed with the ultrasonically assisted hydrothermal method and used toward photo evolution H2 from formic acid (FA) at near room temperature (30 °C). The Pd atom contains active sites that are synergistically boosted by the localized surface plasmon resonance (LSPR) effect of Ag atoms, leading to considerably enhanced photocatalytic properties. The photoactive AgPdNPs/SLCN obtained supreme catalytic activity to produce 50 mL of gas (H2 + CO2) with the initial turnover frequency of 224 h-1 under light irradiation. The catalyst showed stable catalytic performance during successive cycles.
Collapse
Affiliation(s)
- Behnam Gholipour
- Department of Chemistry, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Afsaneh Zonouzi
- Department of Chemistry, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran.
| |
Collapse
|
6
|
Angell DK, Bourgeois B, Vadai M, Dionne JA. Lattice-Resolution, Dynamic Imaging of Hydrogen Absorption into Bimetallic AgPd Nanoparticles. ACS NANO 2022; 16:1781-1790. [PMID: 35044151 DOI: 10.1021/acsnano.1c04602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Palladium's strong reactivity and absorption affinity to H2 makes it a prime material for hydrogen-based technologies. Alloying of Pd has been used to tune its mechanical stability, catalytic activity, and absorption thermodynamics. However, atomistic mechanisms of hydrogen dissociation and intercalation are informed predominantly by theoretical calculations, owing to the difficulty in imaging dynamic metal-gas interactions at the atomic scale. Here, we use in situ environmental high resolution transmission electron microscopy to directly track the hydrogenation-induced lattice expansion within AgPd triangular nanoprisms. We investigate the thermodynamics of the system at the single particle level and show that, contrary to pure Pd nanoparticles, the AgPd system exhibits α/β coexistence within single crystalline nanoparticles in equilibrium; the nanoparticle system also moves to a solid-solution loading mechanism at lower Ag content than bulk. By tracking the lattice expansion in real time during a phase transition, we see surface-limited β phase growth, as well as rapid reorientation of the α/β interface within individual particles. This secondary rate corresponds to the speed with which the β phase can restructure and, according to our atomistic calculations, emerges from lattice strain minimization. We also observe no preferential nucleation at the sharpest nanoprism corners, contrary to classical nucleation theory. Our results achieve atomic lattice plane resolution─crucial for exploring the role of crystal defects and single atom sites on catalytic hydrogen splitting and absorption.
Collapse
Affiliation(s)
- Daniel K Angell
- Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Briley Bourgeois
- Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Michal Vadai
- Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Huizi Li, Dong Q, Hong L, Qin Q, Xie J, Yu G, Chen H. PdRu Nanoparticles Supported on Functionalized Titanium Carbide—a Highly Efficient Catalyst for Formic Acid Electro-Oxidation. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193520120113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Li M, Li Z, Fu G, Tang Y. Recent Advances in Amino-Based Molecules Assisted Control of Noble-Metal Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007179. [PMID: 33709573 DOI: 10.1002/smll.202007179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Morphology-control synthesis is an effective means to tailor surface structure of noble-metal nanocrystals, which offers a sensitive knob for tuning their electrocatalytic properties. The functional molecules are often indispensable in the morphology-control synthesis through preferential adsorption on specific crystal facets, or controlling certain crystal growth directions. In this review, the recent progress in morphology-control synthesis of noble-metal nanocrystals assisted by amino-based functional molecules for electrocatalytic applications are focused on. Although a mass of noble-metal nanocrystals with different morphologies have been reported, few review studies have been published related to amino-based molecules assisted control strategy. A full understanding for the key roles of amino-based molecules in the morphology-control synthesis is still necessary. As a result, the explicit roles and mechanisms of various types of amino-based molecules, including amino-based small molecules and amino-based polymers, in morphology-control of noble-metal nanocrystals are summarized and discussed in detail. Also presented in this progress are unique electrocatalytic properties of various shaped noble-metal nanocrystals. Particularly, the optimization of electrocatalytic selectivity induced by specific amino-based functional molecules (e.g., polyallylamine and polyethyleneimine) is highlighted. At the end, some critical prospects, and challenges in terms of amino-based molecules-controlled synthesis and electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 79407, USA
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
9
|
Troutman JP, Li H, Haddix AM, Kienzle BA, Henkelman G, Humphrey SM, Werth CJ. PdAg Alloy Nanocatalysts: Toward Economically Viable Nitrite Reduction in Drinking Water. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01538] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jacob P. Troutman
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Stop C1700, Austin, Texas 78712, United States
- Department of Chemistry, The University of Texas at Austin, 100 East 24th Street, Stop A1590, Austin, Texas 78712, United States
| | - Hao Li
- Department of Chemistry, The University of Texas at Austin, 100 East 24th Street, Stop A1590, Austin, Texas 78712, United States
| | - Alison M. Haddix
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Stop C1700, Austin, Texas 78712, United States
| | - Benjamin A. Kienzle
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Stop C1700, Austin, Texas 78712, United States
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, 100 East 24th Street, Stop A1590, Austin, Texas 78712, United States
| | - Simon M. Humphrey
- Department of Chemistry, The University of Texas at Austin, 100 East 24th Street, Stop A1590, Austin, Texas 78712, United States
| | - Charles J. Werth
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Stop C1700, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Mercado R, Wahl C, En Lu J, Zhang T, Lu B, Zhang P, Lu JQ, Allen A, Zhang JZ, Chen S. Nitrogen‐Doped Porous Carbon Cages for Electrocatalytic Reduction of Oxygen: Enhanced Performance with Iron and Cobalt Dual Metal Centers. ChemCatChem 2020. [DOI: 10.1002/cctc.201902324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rene Mercado
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Carolin Wahl
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Jia En Lu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Tianjun Zhang
- Department of Chemistry Dalhousie University 6274 Coburg Road Halifax, Nova Scotia B3H 4R2 Canada
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Peng Zhang
- Department of Chemistry Dalhousie University 6274 Coburg Road Halifax, Nova Scotia B3H 4R2 Canada
| | - Jennifer Q. Lu
- School of Engineering University of California 5200 North Lake Road Merced, CA-95343 USA
| | - A'Lester Allen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Jin Z. Zhang
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| |
Collapse
|
11
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
12
|
Liu C, Adams E, Li Z, Yu P, Wong HW, Gu Z. Effect of Metal Substrate on Electrocatalytic Property of Palladium Nanowire Array for High Performance Ethanol Electro-Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13821-13832. [PMID: 31584827 DOI: 10.1021/acs.langmuir.9b02060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this research, a high performance, ionomer-free electrocatalyst based on vertically aligned palladium (Pd) nanowire array was developed as an anode electrode toward ethanol oxidation reaction (EOR) in an alkaline environment. Using a one-step electrodeposition method, the Pd nanowires with controlled length were obtained by varying the electrodeposition current density and the synthesis time. Scanning electron microcopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) were employed to characterize the morphology, chemical composition, and crystal structure of the Pd nanowires. The length effects of the nanowires, in the range of 0.8-4.5 μm, and various metal substrates, such as Ag, Cu, Ni, and Ti, were investigated for their electrochemical activities. The results demonstrated that Ag was the most active substrate to facilitate the ethanol oxidation reaction of the Pd nanowire array (NWA) electrocatalyst, which could be related to its good electrical conductivity. The stability test of the Pd NWA/Ag over time for EOR was also carried out, and the catalytic activity was recovered after the electrode was replaced with a new ethanol solution. Electrochemical impedance spectroscopy (EIS) measurements were performed to provide insights in the electron transfer resistance between the electrode and analyte. Gas chromatography and UV-vis spectroscopy were employed to measure the concentration of chemical species, which helped elucidate the overall reaction mechanism on the electrode surfaces.
Collapse
Affiliation(s)
- Chuqing Liu
- Department of Chemical Engineering , University of Massachusetts Lowell One University Ave. , Lowell , Massachusetts 01854 , United States
| | - Ethan Adams
- Department of Chemical Engineering , University of Massachusetts Lowell One University Ave. , Lowell , Massachusetts 01854 , United States
| | - Zhiyang Li
- Department of Chemical Engineering , University of Massachusetts Lowell One University Ave. , Lowell , Massachusetts 01854 , United States
| | - Peng Yu
- Department of Chemical Engineering , University of Massachusetts Lowell One University Ave. , Lowell , Massachusetts 01854 , United States
| | - Hsi-Wu Wong
- Department of Chemical Engineering , University of Massachusetts Lowell One University Ave. , Lowell , Massachusetts 01854 , United States
| | - Zhiyong Gu
- Department of Chemical Engineering , University of Massachusetts Lowell One University Ave. , Lowell , Massachusetts 01854 , United States
| |
Collapse
|
13
|
Pan Y, Zhu Y, Shen J, Chen Y, Li C. Carbon-loaded ultrafine fully crystalline phase palladium-based nanoalloy PdCoNi/C: facile synthesis and high activity for formic acid oxidation. NANOSCALE 2019; 11:17334-17339. [PMID: 31517374 DOI: 10.1039/c9nr06671c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies have found surface engineering to be an effective strategy to improve the catalytic performance of noble-metal based catalysts. Herein, the successful synthesis of a fully crystalline PdCoNi alloy supported on carbon is reported. The as-synthesized catalyst has an ultrafine nanoparticle size distribution with low-coordination active sites distributed on the surface which was clearly captured by scanning transmission electron microscopy. The fully crystalline PdCoNi/C shows a significant enlarged electrochemical surface area (ECSA) and improved Pd-based mass activity and specific activity compared with bimetallic PdCo/C, PdNi/C and partly crystalline PdCoNi/C. An enhancement of the formic acid oxidation reaction activity can be explained by: (1) ultrafine size distribution from the greatly enlarged ECSA; (2) enhancement of the synergistic effect of the ternary PdCoNi alloy; (3) easier formation of a possible Pd intermediate state, PdHx, due to the regular atom arrangement being fully crystalline. This approach provides a strategy to design noble-metal-based catalysts for improved electrochemical performance.
Collapse
Affiliation(s)
- Yu Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yihua Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jianhua Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ying Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China. and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Wang Y, Jiang X, Fu G, Li Y, Tang Y, Lee JM, Tang Y. Cu 5Pt Dodecahedra with Low-Pt Content: Facile Synthesis and Outstanding Formic Acid Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34869-34877. [PMID: 31502819 DOI: 10.1021/acsami.9b09153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tailoring composition and structure are significantly important to improve the utilization and optimize the performance of the precious Pt catalyst toward various reactions, which greatly relies on the feasible synthesis approach. Herein, we demonstrate that Cu-rich Cu5Pt alloys with unique excavated dodecahedral frame-like structure (Cu5Pt nanoframes) can be synthesized via simply adjusting the amounts of salt precursors and surfactants under hydrothermal conditions. It is established that the presence of hexamethylenetetramine and cetyltrimethylammonium bromide, as well as the selection of a proper Pt/Cu ratio are key for the acquisition of the target product. The immediate appeal of this material stems from frame-like architecture and ultralow Pt content involved, which can be used to greatly improve the utilization efficiency of Pt atoms. When benchmarked against commercial catalysts, the developed Cu5Pt nanostructures display superior electrocatalytic performance toward formic acid oxidation, owing to unique electronic effect and ensemble effect. This work elucidates a promising methodology for the synthesis of Pt-based nanostructures while highlights the significance of composition and structure in electrocatalysis.
Collapse
Affiliation(s)
- Yao Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xian Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Gengtao Fu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
| | - Yuhan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yidan Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
15
|
Wang J, Chen F, Jin Y, Guo L, Gong X, Wang X, Johnston RL. In situ high-potential-driven surface restructuring of ternary AgPd-Pt dilute aerogels with record-high performance improvement for formate oxidation electrocatalysis. NANOSCALE 2019; 11:14174-14185. [PMID: 31210227 DOI: 10.1039/c9nr03266e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Engineering nanoparticle surfaces driven by various gas atmospheres has attracted intensive attention in the design of efficient electrocatalysts for sustainable energy applications. However, the development of a more facile and efficient in situ engineering strategy under electrochemical testing conditions to achieve surface-reconstruction-induced high performance is significantly lacking. Herein, for the first time, we report in situ high-potential-driven restructuring in ternary AgPdPt aerogels with dilute Pt (AgPd-Ptdilute) during the electrochemical cyclic voltammetry testing for the alkaline formate oxidation reaction (FOR), in which the upper potential limit is ingeniously extended to the Ag redox region. Impressively, the resulting AgPd-Ptdilute aerogel displayed remarkable structural and compositional reconstruction in an alkaline environment. Our comprehensive results revealed that the high-potential cycling induces unique Ag outward diffusion to form an enriched PdPt metallic surface atomically coupled with amorphous Ag2O, which provides more opportunities to expose abundant active sites and induce robust electronic structure modulation. Notably, the surface-restructured AgPd-Ptdilute aerogel achieved record-high activity for FOR when the upper potential limit was extended to 1.3 V, exhibiting an unprecedented 5-fold improvement in activity compared to that of the commercial Pd/C. Moreover, it also offered greatly enhanced electrochemical stability with negligible activity decay after 500 cycles. This work gives a good understanding of surface reconstruction during such a novel high-potential-driven cycling process and opens a new door to designing more efficient electrocatalysts for FOR and beyond.
Collapse
Affiliation(s)
- Jiali Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang C, Song P, Gao F, Song T, Zhang Y, Chen C, Li L, Jin L, Du Y. Precise synthesis of monodisperse PdAg nanoparticles for size-dependent electrocatalytic oxidation reactions. J Colloid Interface Sci 2019; 544:284-292. [DOI: 10.1016/j.jcis.2019.02.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
|
17
|
One-pot construction of N-doped graphene supported 3D PdAg nanoflower as efficient catalysts for ethylene glycol electrooxidation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Yan X, Hu X, Fu G, Xu L, Lee JM, Tang Y. Facile Synthesis of Porous Pd 3 Pt Half-Shells with Rich "Active Sites" as Efficient Catalysts for Formic Acid Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703940. [PMID: 29409151 DOI: 10.1002/smll.201703940] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Exploring highly efficient electrocatalysts is greatly important for the widespread uptake of the fuel cells. However, many newly generated nanocrystals with attractive nanostructures often have extremely limited surface area or large particle-size, which leads them to display limited electrocatalytic performance. Herein, a novel anode catalyst of hollow and porous Pd3 Pt half-shells with rich "active sites" is synthesized by using urea as a guiding surfactant. It is identified that the formation of Pd3 Pt half-shells involves the combination of bubble guiding, in situ deposition of particles and bubble burst. The obtained Pd3 Pt half-shells demonstrate a rich edge area with abundant exposed active sites and surface defects, indicating great potential for the electrocatalysis. When used as an electrocatalyst, the Pd3 Pt half-shells exhibit remarkably improved electrocatalytic performance for formic acid oxidation (FAO), where it promotes the dehydrogenation process of FAO by suppressing the formation of poisonous species COads via the electronic effect and ensemble effect.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuejiao Hu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
19
|
Majeed I, Manzoor U, Kanodarwala FK, Nadeem MA, Hussain E, Ali H, Badshah A, Stride JA, Nadeem MA. Pd–Ag decorated g-C3N4 as an efficient photocatalyst for hydrogen production from water under direct solar light irradiation. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02219k] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pd–Ag bimetallic and monometallic nanoparticles were decorated on g-C3N4 and evaluated for their ability to produce H2 through water splitting reactions.
Collapse
Affiliation(s)
- Imran Majeed
- Catalysis and Nanomaterials Lab 27
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Uzma Manzoor
- Catalysis and Nanomaterials Lab 27
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | | | | | - Ejaz Hussain
- Catalysis and Nanomaterials Lab 27
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Hassan Ali
- Catalysis and Nanomaterials Lab 27
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Amin Badshah
- Catalysis and Nanomaterials Lab 27
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | | | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| |
Collapse
|
20
|
Zhai C, Hu J, Zhu M. Three dimensional PdAg nanoflowers as excellent electrocatalysts towards ethylene glycol oxidation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Singhal N, Kumar U. Noble metal modified TiO 2 : selective photoreduction of CO 2 to hydrocarbons. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Yang N, Zhang Z, Chen B, Huang Y, Chen J, Lai Z, Chen Y, Sindoro M, Wang AL, Cheng H, Fan Z, Liu X, Li B, Zong Y, Gu L, Zhang H. Synthesis of Ultrathin PdCu Alloy Nanosheets Used as a Highly Efficient Electrocatalyst for Formic Acid Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700769. [PMID: 28585235 DOI: 10.1002/adma.201700769] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Inspired by the unique properties of ultrathin 2D nanomaterials and excellent catalytic activities of noble metal nanostructures for renewable fuel cells, a facile method is reported for the high-yield synthesis of ultrathin 2D PdCu alloy nanosheets under mild conditions. Impressively, the obtained PdCu alloy nanosheet after being treated with ethylenediamine can be used as a highly efficient electrocatalyst for formic acid oxidation. The study implicates that the rational design and controlled synthesis of an ultrathin 2D noble metal alloy may open up new opportunities for enhancing catalytic activities of noble metal nanostructures.
Collapse
Affiliation(s)
- Nailiang Yang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhicheng Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuangchai Lai
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ye Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Melinda Sindoro
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - An-Liang Wang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hongfei Cheng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhanxi Fan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yun Zong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
23
|
Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Xiong Z, Shiraishi Y, Du Y. Self-Supported Worm-like PdAg Nanoflowers as Efficient Electrocatalysts towards Ethylene Glycol Oxidation. ChemElectroChem 2017. [DOI: 10.1002/celc.201700611] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Bo Yan
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Ke Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Shumin Li
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Caiqin Wang
- Department of Chemistry University of Toronto; Toronto M5S3H4 Canada
| | - Zhiping Xiong
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| |
Collapse
|
24
|
Wei F, Liu J, Zhu YN, Wang XS, Cao CY, Song WG. In situ facile loading of noble metal nanoparticles on polydopamine nanospheres via galvanic replacement reaction for multifunctional catalysis. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9042-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Yang Z, Wang X, Kang X, Zhang S, Guo Y. The PtPdAg/C electrocatalyst with Pt-rich surfaces via electrochemical dealloying of Ag and Pd for ethanol oxidation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.165] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Zhu B, Xia Y, Zhang XJ. Weight prediction in complex networks based on neighbor set. Sci Rep 2016; 6:38080. [PMID: 27905497 PMCID: PMC5131472 DOI: 10.1038/srep38080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022] Open
Abstract
Link weights are essential to network functionality, so weight prediction is important for understanding weighted networks given incomplete real-world data. In this work, we develop a novel method for weight prediction based on the local network structure, namely, the set of neighbors of each node. The performance of this method is validated in two cases. In the first case, some links are missing altogether along with their weights, while in the second case all links are known and weight information is missing for some links. Empirical experiments on real-world networks indicate that our method can provide accurate predictions of link weights in both cases.
Collapse
Affiliation(s)
- Boyao Zhu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongxiang Xia
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xue-Jun Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
27
|
PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance. Sci Rep 2016; 6:32402. [PMID: 27573057 PMCID: PMC5004103 DOI: 10.1038/srep32402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/03/2016] [Indexed: 01/12/2023] Open
Abstract
Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility.
Collapse
|
28
|
Cao J, Zhu Z, Zhao W, Xu J, Chen Z. Facile Synthesis of Carbon-Supported Ultrasmall Ag@Pd Core-Shell Nanocrystals with Superior Electrocatalytic Activity for Direct Formic Acid Fuel Cell Application. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Xing X, Hermann A, Kuang X, Ju M, Lu C, Jin Y, Xia X, Maroulis G. Insights into the geometries, electronic and magnetic properties of neutral and charged palladium clusters. Sci Rep 2016; 6:19656. [PMID: 26794267 PMCID: PMC4726383 DOI: 10.1038/srep19656] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022] Open
Abstract
We performed an unbiased structure search for low-lying energetic minima of neutral and charged palladium PdnQ (n = 2–20, Q = 0, + 1 and –1) clusters using CALYPSO method in combination with density functional theory (DFT) calculations. The main candidates for the lowest energy neutral, cationic and anionic clusters are identified, and several new candidate structures for the cationic and anionic ground states are obtained. It is found that the ground state structures of small palladium clusters are more sensitive to the charge states. For the medium size Pdn0/+/– (n = 16–20) clusters, a fcc-like growth behavior is found. The structural transition from bilayer-like structures to cage-like structures is likely to occur at n = 14 for the neutral and cationic clusters. In contrast, for the anionic counterparts, the structural transition occurs at Pd13–. The photoelectron spectra (PES) of palladium clusters are simulated based on the time-dependent density functional theory (TD-DFT) method and compared with the experimental data. The good agreement between the experimental PES and simulated spectra provides us unequivocal structural information to fully solve the global minimum structures, allowing for new molecular insights into the chemical interactions in the Pd cages.
Collapse
Affiliation(s)
- Xiaodong Xing
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.,Department of Physics, Nanyang Normal University, Nanyang 473061, China
| | - Andreas Hermann
- Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - Xiaoyu Kuang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Meng Ju
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Cheng Lu
- Department of Physics, Nanyang Normal University, Nanyang 473061, China.,Beijing Computational Science Research Center, Beijing 100084, China
| | - Yuanyuan Jin
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xinxin Xia
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - George Maroulis
- Department of Chemistry, University of Patras, GR-26500 Patras, Greece
| |
Collapse
|
30
|
Rout L, Kumar A, Dhaka RS, Dash P. Bimetallic Ag–Cu alloy nanoparticles as a highly active catalyst for the enamination of 1,3-dicarbonyl compounds. RSC Adv 2016. [DOI: 10.1039/c6ra04569c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bimetallic Ag–Cu alloy nanoparticles were obtained via a simple co-reduction method, which exhibited significantly improved activity for the synthesis of β-enaminones and β-enaminoesters compared with their monometallic counterparts.
Collapse
Affiliation(s)
- Lipeeka Rout
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Aniket Kumar
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Rajendra S. Dhaka
- Novel Materials and Interface Physics Laboratory
- Department of Physics
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Priyabrat Dash
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
31
|
Ozoemena KI. Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications. RSC Adv 2016. [DOI: 10.1039/c6ra15057h] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A review of the fundamental principles that allow for the intelligent design and synthesis of non-precious metal nanostructured electrocatalysts for ADAFCs.
Collapse
Affiliation(s)
- Kenneth Ikechukwu Ozoemena
- Energy Materials
- Materials Science and Manufacturing
- Council for Scientific and Industrial Research (CSIR)
- Pretoria 0001
- South Africa
| |
Collapse
|