1
|
Gao G, Hu Y, Qin K, Fan Z, Wang C, Wang H. The effects of sulfate on the physiology, biochemistry, and intestinal transcriptome of Scylla paramamosain under low-salinity conditions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101502. [PMID: 40184881 DOI: 10.1016/j.cbd.2025.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Sulfate, a key component of seawater and sulfate-saline-alkali soil, critically impacts aquatic species' physiology. The aim of this experiment was to investigate the effects of sulfate concentration on the growth, survival, microstructure of gills and hepatopancreas, as well as the intestinal immune response and molecular mechanisms of Scylla paramamosain. The experimental groups were categorized as S1 (0 g/L sulfate, sulfate-free), S2 (1 g/L sulfate, optimal concentration), and S3 (2 g/L sulfate, high sulfate concentration). The results showed that with the increase of sulfate concentration in the experimental water, Survival and weight growth rates initially increased but declined at higher sulfate concentrations (P < 0.05), while molting rates progressively decreased. The intestinal ACP and AKP levels in S2 were significantly higher than those in S1 and S3 (P < 0.05). AST and ALT in the S2 group showed no significant difference from those in the S3 group (P > 0.05) but were significantly lower than those in the S1 group (P < 0.05). Sulfotransferases in the S2 group were significantly lower than those in the S1 and S3 groups (P < 0.05). Short-term (72 h) microscopic observations of the gills and hepatopancreas revealed that the gills in both the S1 and S3 groups exhibited thickening of the gill filaments and rupture of the cuticle layer, while the hepatopancreatic tissue in the S3 group also showed enlargement of intercellular spaces, fracture of the basement membrane, and blurred boundaries. Transcriptome sequencing of the S. paramamosain intestine revealed significant upregulation of sulfotransferases in both S1 and S3 groups. GO annotation of DEGs indicated similar responses of S. paramamosain to sulfate-free and high-sulfate environments, maintaining physiological stability by activating protein processing pathways, enhancing blood-lymph coagulation, and regulating redox balance. KEGG analysis revealed that sulfate-free environments predominantly enriched lipid metabolism and secondary metabolism pathways. While those enriched in high-sulfate environments were mainly related to amino acid metabolism and secondary metabolism. The results indicate that both sulfate-free and high-sulfate concentrations affect the growth, survival, and molting rates of S. paramamosain, as well as inducing immune responses in the intestine. In the short term, they can cause structural changes in the gills and hepatopancreas. The intestinal transcriptome expression shows a similar response pattern, but the metabolic pathways differ. This study provides theoretical support and technical guidance for the cultivation of S. paramamosain under low-salinity conditions with sulfate-type saline-alkali water.
Collapse
Affiliation(s)
- Gao Gao
- School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yun Hu
- School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Kangxiang Qin
- School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Ziwei Fan
- School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Huan Wang
- School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Jiang GH, Wang G, Luo C, Wang YF, Qiu JF, Peng RJ, Sima YH, Xu SQ. Mechanism of hyperproteinemia-induced damage to female reproduction in a genetic silkworm model. iScience 2023; 26:107860. [PMID: 37752953 PMCID: PMC10518704 DOI: 10.1016/j.isci.2023.107860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Hyperproteinemia is a metabolic disorder characterized by abnormally elevated plasma protein concentrations (PPC) in humans and animals. Here, a genetic silkworm model with high PPC was employed to investigate the effect of elevated PPC on female reproduction. Transcriptomic analysis revealed that high PPC induces downregulation of the ovarian development-related genes and disrupts ovarian sugar metabolism. Biochemical and endocrinal analyses revealed that high PPC increases trehalose and glucose levels in hemolymph and glycogen content in the fat body through activation of the gluconeogenic pathway and inhibition of the Insulin/Insulin-like growth factor signaling pathway-the serine/threonine kinase (IIS-AKT) pathway, thus disrupting characteristic metabolic homeostasis of sugar in the ovary. These resulted in ovarian developmental delay as well as reduced number and poor quality of eggs. Insulin supplementation effectively increased egg numbers by lowering blood sugar. These collective results provide new insights into the mechanisms by which high PPC negatively affects female reproduction and support the potential therapeutic effects of insulin.
Collapse
Affiliation(s)
- Gui-Hua Jiang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Guang Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Cheng Luo
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yong-Feng Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Ru-Ji Peng
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Wang Y, Shi M, Yang J, Ma L, Chen X, Xu M, Peng R, Wang G, Pan Z, Sima Y, Xu S. Sericin Ser3 Ectopic Expressed in Posterior Silk Gland Affects Hemolymph Immune Melanization Response via Reducing Melanin Synthesis in Silkworm. INSECTS 2023; 14:245. [PMID: 36975930 PMCID: PMC10051610 DOI: 10.3390/insects14030245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The transgenesis of silkworms is an important way to innovate genetic resources and silk function. However, the silk-gland (SG) of transgenic silkworms, which is the most concerned target tissue of sericulture, often suffers from low vitality, stunting and other problems, and the reasons are still unknown. This study trans engineered recombinant Ser3, a middle silk gland (MSG) specific expression gene, in the posterior silk gland (PSG) of the silkworm, and studied hemolymph immune melanization response changes in mutant pure line SER (Ser3+/+). The results showed that although the mutant had normal vitality, the melanin content and phenoloxidase (PO) activity in hemolymph related to humoral immunity were significantly reduced, and caused significantly slower blood melanization and weaker sterilization ability. The mechanism investigation showed that the mRNA levels and enzymatic activities of phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH) and dopamine decarboxylase (DDC) in the melanin synthesis pathway in mutant hemolymph, as well as the transcription levels of the PPAE, SP21 and serpins genes in the serine protease cascade were significantly affected. Moreover, the total antioxidant capacity, superoxide anion inhibition capacity and catalase (CAT) level related to the redox metabolic capacity of hemolymph were significantly increased, while the activities of superoxide dismutase (SOD) and glutathione reductase (GR), as well as the levels of hydrogen peroxide (H2O2) and glutathione (GSH), were significantly decreased. In conclusion, the anabolism of melanin in the hemolymph of PSG transgenic silkworm SER was inhibited, while the basic response level of oxidative stress was increased, and the hemolymph immune melanization response was decreased. The results will significantly improve the safe assessment and development of genetically modified organisms.
Collapse
Affiliation(s)
- Yongfeng Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Meijuan Shi
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jiameng Yang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Lu Ma
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xuedong Chen
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Meng Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Ruji Peng
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Guang Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhonghua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Ectopic expression of sericin enables efficient production of ancient silk with structural changes in silkworm. Nat Commun 2022; 13:6295. [PMID: 36273007 PMCID: PMC9588020 DOI: 10.1038/s41467-022-34128-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Bombyx mori silk is a super-long natural protein fiber with a unique structure and excellent performance. Innovative silk structures with high performance are in great demand, thus resulting in an industrial bottleneck. Herein, the outer layer sericin SER3 is ectopically expressed in the posterior silk gland (PSG) in silkworms via a piggyBac-mediated transgenic approach, then secreted into the inner fibroin layer, thus generating a fiber with sericin microsomes dispersed in fibroin fibrils. The water-soluble SER3 protein secreted by PSG causes P25's detachment from the fibroin unit of the Fib-H/Fib-L/P25 polymer, and accumulation between the fibroin layer and the sericin layer. Consequently, the water solubility and stability of the fibroin-colloid in the silk glandular cavity, and the crystallinity increase, and the mechanical properties of cocoon fibers, moisture absorption and moisture liberation of the silk also improve. Meanwhile, the mutant overcomes the problems of low survival and abnormal silk gland development, thus enabling higher production efficiency of cocoon silk. In summary, we describe a silk gland transgenic target protein selection strategy to alter the silk fiber structure and to innovate its properties. This work provides an efficient and green method to produce silk fibers with new functions.
Collapse
|
5
|
Combined analysis of silk synthesis and hemolymph amino acid metabolism reveal key roles for glycine in increasing silkworm silk yields. Int J Biol Macromol 2022; 209:1760-1770. [PMID: 35490768 DOI: 10.1016/j.ijbiomac.2022.04.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
Rearing silkworms (Bombyx mori) using formula feed has revolutionized traditional mulberry feed strategies. However, low silk production efficiencies persist and have caused bottlenecks, hindering the industrial application of formula feed sericulture. Here, we investigated the effects of formula feed amino acid composition on silk yields. We showed that imbalanced amino acids reduced DNA proliferation, decreased Fib-H, Fib-L, and P25 gene expression, and caused mild autophagy in the posterior silk gland, reducing cocoon shell weight and ratio. When compared with mulberry leaves, Gly, Ala, Ser, and Tyr percentages of total amino acids in formula feed were decreased by 5.26%, while Glu and Arg percentages increased by 9.56%. These changes increased uric acid and several amino acids levels in the hemolymph of silkworms on formula feed. Further analyses showed that Gly and Thr (important synthetic Gly sources) increased silk yields, with Gly increasing amino acid conversion efficiencies to silk protein, and reducing urea levels in hemolymph. Also, Gly promoted endomitotic DNA synthesis in silk gland cells via phosphoinositide 3-kinase (PI3K)/Akt/target of rapamycin (TOR) signaling. In this study, we highlighted the important role of Gly in regulating silk yields in silkworms.
Collapse
|
6
|
Comparative transcriptome analysis of the gills of Cardisoma armatum provides novel insights into the terrestrial adaptive related mechanism of air exposure stress. Genomics 2021; 113:1193-1202. [PMID: 33711456 DOI: 10.1016/j.ygeno.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
Cardisoma armatum is a typical member of the Gecarcinidae which show significant behavioral, morphological, physiological, and/or biochemical adaptations permitting extended activities on the land. The special gills (branchiostegal lung) of C. armatum play an important role in maintaining osmotic pressure balance and obtaining oxygen to adapt to the terrestrial environment. However, adaptive molecular mechanisms responding to air exposure in C. armatum are still poorly understood. In this study, transcriptomic analysis and histological analysis were conducted on the gills to test adaptive capabilities over 8 h between the aerial exposure (AE) and the water immersion (WI) group. Differentially expressed genes (DEGs) related to terrestrial adaptation were categorized into four broad categories: ion transport, acid-base balance, energy metabolism and immune response. This is the first research to reveal the molecular mechanism of terrestrial adaptation in C. armatum, and will provide new insight into the molecular genetic basis of terrestrial adaptation in crabs.
Collapse
|
7
|
Zhang YH, Shi MJ, Li KL, Xing R, Chen ZH, Chen XD, Wang YF, Liu XF, Liang XY, Sima YH, Xu SQ. Impact of adding glucose-coated water-soluble silver nanoparticles to the silkworm larval diet on silk protein synthesis and related properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:376-393. [PMID: 31724490 DOI: 10.1080/09205063.2019.1692642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Biological modifications of the silk fibroin (silk) material have broad applications in textiles, biomedical materials and other industrial materials. It is economical to incorporate nanoparticles to the biosynthesis of silk fibroin by adding them to silkworm larval diets. This strategy may result in the rapid stable production of modified silk. Glucose-coated silver nanoparticles (AgNPs) were used to improve the AgNPs' biocompatibility, and the AgNPs were efficiently incorporated into silk by feeding. Larvae fed with AgNPs produced silk with significantly improved antibacterial properties and altered silk secondary structures. Both positive and negative effects on the growth and synthesis of silk proteins were observed after different AgNPs doses. Larvae feeding with low concentration of 0.02% and medium 0.20% AgNPs have greater transfer efficiencies of AgNPs to silk compared with feeding high concentration of 2.00% AgNPs. In addition, the elongation and tensile strength of the produced silk fibers were also significantly increased, with greater mammalian cell compatibility. The appropriate AgNPs concentration in the diet of silkworms can promote the synthesis of silk proteins, enhance their mechanical properties, improve their antibacterial property and inhibit the presence of Gram-negative bacteria.
Collapse
Affiliation(s)
- Yun-Hu Zhang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Mei-Juan Shi
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Kai-Le Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Rui Xing
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESLab), Soochow University, Suzhou, China
| | - Zhuo-Hua Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Xue-Dong Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Yong-Feng Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Xiao-Fei Liu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Xin-Yin Liang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESLab), Soochow University, Suzhou, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESLab), Soochow University, Suzhou, China
| |
Collapse
|
8
|
Wang H, Wei H, Tang L, Lu J, Mu C, Wang C. A proteomics of gills approach to understanding salinity adaptation of Scylla paramamosain. Gene 2018; 677:119-131. [DOI: 10.1016/j.gene.2018.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
|
9
|
Dong HL, Zhang SX, Chen ZH, Tao H, Li X, Qiu JF, Cui WZ, Sima YH, Cui WZ, Xu SQ. Differences in gut microbiota between silkworms ( Bombyx mori) reared on fresh mulberry ( Morus alba var. multicaulis) leaves or an artificial diet. RSC Adv 2018; 8:26188-26200. [PMID: 35541943 PMCID: PMC9082819 DOI: 10.1039/c8ra04627a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/04/2018] [Indexed: 12/27/2022] Open
Abstract
Artificial diets for silkworms have many potential applications and they are important in sericulture. However, the challenges of weak larvae and low silk protein synthesis efficiency in silkworms reared on artificial diets have not been resolved. Here, we used high-throughput sequencing to analyse the differences between the gut microbiota of 5th-instar larvae reared on mulberry leaves and larvae reared on an artificial diet. The results showed that at the phylum level, Cyanobacteria, Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria are the dominant bacteria in the intestines of silkworm larvae of all the strains. But the abundance of dominant bacteria in the gut microbiota differed between the silkworm strains that were reared on mulberry leaves, as well as between the silkworm strains that were reared on the artificial diet, while the gut microbiota diversity was lower in the silkworm strains that were reared on the artificial diet. Prediction of the functions of the gut microbiota in the hosts indicated that there was no significant difference between the silkworm strains that were reared on mulberry leaves, while there were significant differences between silkworm strains reared on the artificial diet. When the silkworm diet changed from mulberry leaves to the artificial diet, changes in gut microbiota in the silkworms affected host nutrient metabolism and immune resistance. These changes may be related to the adaptation of silkworms to their long evolutionary history of eating mulberry leaves.
Collapse
Affiliation(s)
- Hui-Ling Dong
- School of Biology and Basic Medical Sciences, Medical College, Soochow University Suzhou 215123 China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University Suzhou 215123 China
| | - Sheng-Xiang Zhang
- College of Forestry, Shandong Agricultural University Taian Shandong 271018 China
| | - Zhuo-Hua Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University Suzhou 215123 China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University Suzhou 215123 China
| | - Hui Tao
- School of Biology and Basic Medical Sciences, Medical College, Soochow University Suzhou 215123 China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University Suzhou 215123 China
| | - Xue Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University Suzhou 215123 China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University Suzhou 215123 China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University Suzhou 215123 China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University Suzhou 215123 China
| | - Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Medical College, Soochow University Suzhou 215123 China
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University Suzhou 215123 China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University Suzhou 215123 China
- National Engineering Laboratory for Modern Silk (NEAER), Soochow University Suzhou 215123 China
| | - Wei-Zheng Cui
- College of Forestry, Shandong Agricultural University Taian Shandong 271018 China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University Suzhou 215123 China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University Suzhou 215123 China
- National Engineering Laboratory for Modern Silk (NEAER), Soochow University Suzhou 215123 China
| |
Collapse
|
10
|
Wang H, Tang L, Wei H, Lu J, Mu C, Wang C. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drop in the mud crab, Scylla paramamosain. BMC Genomics 2018; 19:421. [PMID: 29855258 PMCID: PMC5984308 DOI: 10.1186/s12864-018-4803-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Background Scylla paramamosain (Crustacea: Decapoda: Portunidae: Syclla De Hann) is a commercially important mud crab distributed along the coast of southern China and other Indo-Pacific countries (Lin Z, Hao M, Zhu D, et al, Comp Biochem Physiol B Biochem Mol Biol 208-209:29–37, 2017; Walton ME, Vay LL, Lebata JH, et al, Estuar Coast Shelf Sci 66(3–4):493–500, 2006; Wang Z, Sun B, Zhu F, Fish Shellfish Immunol 67:612–9, 2017). While S. paramamosain is a euryhaline species, a sudden drop in salinity induces a negative impact on growth, molting, and reproduction, and may even cause death. The mechanism of osmotic regulation of marine crustaceans has been recently under investigation. However, the mechanism of adapting to a sudden drop in salinity has not been reported. Methods In this study, transcriptomics analysis was conducted on the gills of S. paramamosain to test its adaptive capabilities over 120 h with a sudden drop in salinity from 23 ‰ to 3 ‰. Results At the level of transcription, 135 DEGs (108 up-regulated and 27 down-regulated) annotated by NCBI non-redundant (nr) protein database were screened. GO analysis showed that the catalytic activity category showed the most participating genes in the 24 s-tier GO terms, indicating that intracellular metabolic activities in S. paramamosain were enhanced. Of the 164 mapped KEGG pathways, seven of the top 20 pathways were closely related to regulation of the Na+ / K+ -ATPase. Seven additional amino acid metabolism-related pathways were also found, along with other important signaling pathways. Conclusion Ion transport and amino acid metabolism were key factors in regulating the salinity adaptation of S. paramamosain in addition to several important signaling pathways. Electronic supplementary material The online version of this article (10.1186/s12864-018-4803-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Lei Tang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Hongling Wei
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Junkai Lu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China. .,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
11
|
Chen XD, Wang YF, Wang YL, Li QY, Ma HY, Wang L, Sima YH, Xu SQ. Induced Hyperproteinemia and Its Effects on the Remodeling of Fat Bodies in Silkworm, Bombyx mori. Front Physiol 2018; 9:302. [PMID: 29651251 PMCID: PMC5884952 DOI: 10.3389/fphys.2018.00302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/13/2018] [Indexed: 01/04/2023] Open
Abstract
Hyperproteinemia, which is characterized by an abnormally elevated plasma protein concentration (PPC), is a high-mortality, metabolic complication associated with severe liver and kidney disease. It is difficult to clinically distinguish the difference between the impacts of primary diseases and hyperproteinemia on tissues and organs, and there are no available animal models of hyperproteinemia. Here, we constructed an animal model of hyperproteinemia with a controllable PPC and no primary disease effects in the silkworm Bombyx mori that has attracted interest owing to its potential use in the pathological analysis of model animals. Silkworm have an open circulatory system in which each organ is directly immersed in hemolymph. The fat body (FB) of a silkworm, as a major organ for nutrient storage and energy metabolism, can effectively reflect hyperproteinemia-induced metabolic abnormalities in damaged visceral tissues. A pathogenesis study showed that hyperproteinemia attenuated cell autophagy and apoptosis by attenuating an endocrine hormone, thereby preventing FB remodeling during metamorphosis. Meanwhile, hyperproteinemia increased oxidative stress in the FB and resulted in a dysfunction of amino acid conversion. Supplementation with exogenous 20-hydroxyecdysone effectively mitigated the hyperproteinemia-mediated inhibition of FB remodeling.
Collapse
Affiliation(s)
- Xue-Dong Chen
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESER), Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Yong-Feng Wang
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESER), Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Yu-Long Wang
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESER), Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Qiu-Ying Li
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESER), Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Huan-Yu Ma
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESER), Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Lu Wang
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESER), Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Yang-Hu Sima
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESER), Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Shi-Qing Xu
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESER), Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|
12
|
Dong HL, Zhang SX, Tao H, Chen ZH, Li X, Qiu JF, Cui WZ, Sima YH, Cui WZ, Xu SQ. Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets. Sci Rep 2017; 7:10972. [PMID: 28887546 PMCID: PMC5591246 DOI: 10.1038/s41598-017-11592-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Silkworms (Bombyx mori) reared on artificial diets have great potential applications in sericulture. However, the mechanisms underlying the enhancement of metabolic utilization by altering silkworm nutrition are unclear. The aim of this study was to investigate the mechanisms responsible for the poor development and low silk protein synthesis efficiency of silkworms fed artificial diets. After multi-generational selection of the ingestive behavior of silkworms to artificial diets, we obtained two strains, one of which developed well and another in which almost all its larvae starved to death on the artificial diets. Subsequently, we analyzed the metabolomics of larval hemolymph by gas chromatography/liquid chromatography–mass spectrometry, and the results showed that vitamins were in critically short supply, whereas the nitrogen metabolic end product of urea and uric acid were enriched substantially, in the hemolymph of the silkworms reared on the artificial diets. Meanwhile, amino acid metabolic disorders, as well as downregulation of carbohydrate metabolism, energy metabolism, and lipid metabolism, co-occurred. Furthermore, 10 male-dominant metabolites and 27 diet-related metabolites that differed between male and female silkworms were identified. These findings provide important insights into the regulation of silkworm metabolism and silk protein synthesis when silkworms adapt to an artificial diet.
Collapse
Affiliation(s)
- Hui-Ling Dong
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Sheng-Xiang Zhang
- College of Forestry, Shandong Agricultural University, Taian Shandong, 271018, China
| | - Hui Tao
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Zhuo-Hua Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Xue Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China.,National Engineering Laboratory for Modern Silk (NEAER), Soochow University, Suzhou, 215123, China
| | - Wei-Zheng Cui
- College of Forestry, Shandong Agricultural University, Taian Shandong, 271018, China.
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China. .,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China. .,National Engineering Laboratory for Modern Silk (NEAER), Soochow University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Changes in 30K protein synthesis during delayed degeneration of the silk gland by a caspase-dependent pathway in a Bombyx (silkworm) mutant. J Comp Physiol B 2016; 186:689-700. [DOI: 10.1007/s00360-016-0990-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 12/19/2022]
|