1
|
Forray FL, Dumitru OA, Atlas ZD, Onac BP. Past anthropogenic impacts revealed by trace elements in cave guano. CHEMOSPHERE 2024; 360:142447. [PMID: 38801901 DOI: 10.1016/j.chemosphere.2024.142447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Natural and human-induced toxic elements can accumulate in the environment, posing significant risks to human health and ecosystems. This study explores cave bat guano, an unconventional and relatively under-researched environmental repository, to reveal historical pollution trends and sources. Through trace elements analysis of a 1.5-m-thick guano deposit from Zidită Cave (Romania), we track changes in mining and metallurgy from 1000 CE-2012. We identified substantial pollution primarily from porphyry copper and Au-Ag-Te mines, but also impacts from usage of leaded gasoline and agricultural practices. Our record shows disruptions caused by the Bubonic plague around 1250 CE and a major surge ∼ 1500 CE. After the decline triggered by the European silver market collapse in 1525 CE, our study reveals a brief mining revival. This resurgence was followed by a continuous decline lasting until the early 1800s, driven by socio-economic upheavals and recurrent outbreaks of the bubonic plagues. The Industrial Revolution sparked prolonged growth that lasted until 1989 CE, only briefly interrupted by the Great Depression and World War II. Consequently, cave bat guano proves to be a critical resource for understanding spatial pollution patterns, both locally and regionally, and for identifying specific pollution sources.
Collapse
Affiliation(s)
- Ferenc L Forray
- Department of Geology, Babeş-Bolyai University, Cluj-Napoca, 400084, Romania
| | - Oana A Dumitru
- Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary D Atlas
- Karst Research Group, School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
| | - Bogdan P Onac
- Karst Research Group, School of Geosciences, University of South Florida, Tampa, FL, 33620, USA; Emil G. Racoviţă Institute, Babeş-Bolyai University, Cluj-Napoca, 400006, Romania.
| |
Collapse
|
2
|
Ahmad N, Singh SP, Sahu S, Bhattacharyya R, Maurya AS, Kumar N, Rout RK, Tripathy GR. Isotopic evidence of autochthonous organic matter acting as a major sink of anthropogenic heavy metals in modern lacustrine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123964. [PMID: 38631445 DOI: 10.1016/j.envpol.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The knowledge of major sources, sinks, and the burial fate of various pollutants added to modern aquatic ecosystems under changing environmental conditions is limited but crucial for our sustainability. In this context, the spatial distributions and causative factors of organic matter (OM) and heavy metal accumulations have been explored in modern lacustrine sediments of a large urbanized and protected wetland (ULB: Upper Lake Bhopal) in Central India. For this purpose, geochemical properties, in particular, stable isotopes (δ13C and δ15N) were measured in the ULB surficial sediments (core depth ∼0-1 cm; n = 19), and additionally collected riverbed sediments (n = 2) and atmospheric free-fall dust samples (n = 3) from the lake periphery. The major and trace element data indicate widespread mafic sediment provenance and nearly dysoxic lacustrine conditions. The riverine supply of soil OM from cropped lands and the lake productivity (algae, largely sustained by nutrients from sewage and agricultural runoff) are the major OM sources to the western and eastern lake portions, respectively. The fractional contribution from autochthonous TOC (∼0.19-0.95, mean ∼0.62) predominates that of allochthonous TOC (∼0.05-0.81, mean ∼0.38). Whereas, atmospheric dust deposition is a primary anthropogenic source of heavy metals (Pb and Zn). The lake productivity rather than soil OM or any mineral sorbent is found responsible for the anthropogenic enrichments of Pb and Zn in the ULB surficial sediments, especially on the eastern ULB portion under high anthropogenic pressure. Therefore, the settled OM (primarily autochthonous) being oxidizable acts as a temporary but major sink of anthropogenic heavy metals in modern lacustrine sediments, which are vulnerable to heavy metal efflux to the water column by sediment diagenesis.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Satinder Pal Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India.
| | - Shivam Sahu
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Rohan Bhattacharyya
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Abhayanand Singh Maurya
- Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nitish Kumar
- Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Rakesh Kumar Rout
- Department of Earth and Climate Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Gyana Ranjan Tripathy
- Department of Earth and Climate Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
3
|
A Neandertal dietary conundrum: Insights provided by tooth enamel Zn isotopes from Gabasa, Spain. Proc Natl Acad Sci U S A 2022; 119:e2109315119. [PMID: 36252021 PMCID: PMC9618064 DOI: 10.1073/pnas.2109315119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The characterization of Neandertals' diets has mostly relied on nitrogen isotope analyses of bone and tooth collagen. However, few nitrogen isotope data have been recovered from bones or teeth from Iberia due to poor collagen preservation at Paleolithic sites in the region. Zinc isotopes have been shown to be a reliable method for reconstructing trophic levels in the absence of organic matter preservation. Here, we present the results of zinc (Zn), strontium (Sr), carbon (C), and oxygen (O) isotope and trace element ratio analysis measured in dental enamel on a Pleistocene food web in Gabasa, Spain, to characterize the diet and ecology of a Middle Paleolithic Neandertal individual. Based on the extremely low δ66Zn value observed in the Neandertal's tooth enamel, our results support the interpretation of Neandertals as carnivores as already suggested by δ15N isotope values of specimens from other regions. Further work could help identify if such isotopic peculiarities (lowest δ66Zn and highest δ15N of the food web) are due to a metabolic and/or dietary specificity of the Neandertals.
Collapse
|
4
|
Marques C, Roberts C, Matos VMJ, Buikstra JE. Cancers as rare diseases: Terminological, theoretical, and methodological biases. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 32:111-122. [PMID: 33524843 DOI: 10.1016/j.ijpp.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Was cancer a rare disease in the past? Our objective is to consider the various terminological, theoretical, and methodological biases that may affect perceptions of the rarity of cancer in the past. MATERIALS AND METHODS We discuss relevant malignant neoplastic biomedical and paleopathological literature and evaluate skeletal data. We selected 108 archaeological sites (n = 151 cancer cases) with published malignant neoplasms and that were amenable to calculating cancer crude prevalence. Furthermore, datasets from four medieval/postmedieval Portuguese and 12 postmedieval UK sites were used to compare age-adjusted rates for metastatic bone disease and tuberculosis. RESULTS In the literature review, mean cancer crude prevalence (1.2 %; 95 % CI = 0.96-1.4) exceeded the threshold for a rare disease (RD). Age-standardized rates of MBD and TB were not markedly different in the sites surveyed. CONCLUSIONS Methodological, theoretical and historical factors contribute to assumptions that cancers were rare diseases. The assumption that cancers are extremely rare in the paleopathological literature was not fully supported. Cancer is a heterogeneous concept, and it is important to view it as such. If a disease is considered rare, we may fail to recognize it or dismiss it as unimportant in the past. SIGNIFICANCE We present a re-evaluation of the idea that cancer is a rare disease. We present a more nuanced way of comparing rates of pathological conditions in archaeological contexts. LIMITATIONS Variation in the amount of useable information in published literature on malignant neoplasms. SUGGESTIONS FOR FURTHER RESEARCH More large-scale studies of cancer in the past alongside comparative studies of cancer prevalence with other assumed rare diseases.
Collapse
Affiliation(s)
- Carina Marques
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Portugal.
| | - Charlotte Roberts
- Department of Archaeology, Durham University, South Road, Durham, DL8 5NP, Durham University, UK.
| | - Vitor M J Matos
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Portugal.
| | | |
Collapse
|
5
|
Tregubova P, Koptsik G, Stepanov A, Koptsik S, Spiers G. Organic amendments potentially stabilize metals in smelter contaminated Arctic soils: An incubation study. Heliyon 2021; 7:e06022. [PMID: 33537481 PMCID: PMC7841320 DOI: 10.1016/j.heliyon.2021.e06022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/23/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022] Open
Abstract
The long-term emission impacts of the nickel processing industry in the Kola Peninsula, the largest source of sulfur dioxide and heavy metals emissions in Northern Europe, have created vast technogenic barrens near the mineral industry complexes. The pace of rehabilitation using the improved remediation technologies to enhance sustainable environmental management and regional economic development is of crucial social and economic importance. In a 120-day incubation experiment, we evaluated the prospects for the restoration of two soils at different degradation stages via carbon pool regulation comparing to mineral ameliorants - NPK fertilizer, and liming agent. Organic additives used included a humic preparation based on an alkaline brown coal extract, wood-derived biochar, and peat-derived gel, supplied by mycorrhizae fungi. The results demonstrate that the selected organic amendments are suitable for restoration of acidic metal contaminated soils. Specifically, the treatments provided a measurable increase in soil carbon content, a marked decrease in acidity, a decrease in extractable metal contents, together with an enhanced nutrient uptake and vegetative growth. A stabilization effect increased from biochar to peat-gel, liming agent and humic preparation, with an accompanying increase in soil pH. Although biochar showed a reduced ability to metal stabilization, the associated treatments were the most productive. The most effective amendments in multi-metallic contaminated soils need to be able to stabilize bioavailability of metals, adjust pH to the optimum for plant growth, and regulate nutrient consumption.
Collapse
Affiliation(s)
- Polina Tregubova
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russian Federation
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Galina Koptsik
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Andrey Stepanov
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey Koptsik
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Graeme Spiers
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russian Federation
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| |
Collapse
|
6
|
Rouhani A, Shahivand R. Potential ecological risk assessment of heavy metals in archaeology on an example of the Tappe Rivi (Iran). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3085-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
7
|
Trumble BC, Finch CE. THE EXPOSOME IN HUMAN EVOLUTION: FROM DUST TO DIESEL. THE QUARTERLY REVIEW OF BIOLOGY 2019; 94:333-394. [PMID: 32269391 PMCID: PMC7141577 DOI: 10.1086/706768] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global exposures to air pollution and cigarette smoke are novel in human evolutionary history and are associated with about 16 million premature deaths per year. We investigate the history of the human exposome for relationships between novel environmental toxins and genetic changes during human evolution in six phases. Phase I: With increased walking on savannas, early human ancestors inhaled crustal dust, fecal aerosols, and spores; carrion scavenging introduced new infectious pathogens. Phase II: Domestic fire exposed early Homo to novel toxins from smoke and cooking. Phases III and IV: Neolithic to preindustrial Homo sapiens incurred infectious pathogens from domestic animals and dense communities with limited sanitation. Phase V: Industrialization introduced novel toxins from fossil fuels, industrial chemicals, and tobacco at the same time infectious pathogens were diminishing. Thereby, pathogen-driven causes of mortality were replaced by chronic diseases driven by sterile inflammogens, exogenous and endogenous. Phase VI: Considers future health during global warming with increased air pollution and infections. We hypothesize that adaptation to some ancient toxins persists in genetic variations associated with inflammation and longevity.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution & Social Change and Center for Evolution and Medicine, Arizona State University Tempe, Arizona 85287 USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California Los Angeles, California 90089-0191 USA
| |
Collapse
|
8
|
Bhak Y, Jeon Y, Jeon S, Chung O, Jho S, Jun J, Kim HM, Cho Y, Yoon C, Lee S, Kang JH, Lim JD, An J, Cho YS, Ryu DY, Bhak J. Myotis rufoniger genome sequence and analyses: M. rufoniger's genomic feature and the decreasing effective population size of Myotis bats. PLoS One 2017; 12:e0180418. [PMID: 28678835 PMCID: PMC5498047 DOI: 10.1371/journal.pone.0180418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022] Open
Abstract
Myotis rufoniger is a vesper bat in the genus Myotis. Here we report the whole genome sequence and analyses of the M. rufoniger. We generated 124 Gb of short-read DNA sequences with an estimated genome size of 1.88 Gb at a sequencing depth of 66× fold. The sequences were aligned to M. brandtii bat reference genome at a mapping rate of 96.50% covering 95.71% coding sequence region at 10× coverage. The divergence time of Myotis bat family is estimated to be 11.5 million years, and the divergence time between M. rufoniger and its closest species M. davidii is estimated to be 10.4 million years. We found 1,239 function-altering M. rufoniger specific amino acid sequences from 929 genes compared to other Myotis bat and mammalian genomes. The functional enrichment test of the 929 genes detected amino acid changes in melanin associated DCT, SLC45A2, TYRP1, and OCA2 genes possibly responsible for the M. rufoniger's red fur color and a general coloration in Myotis. N6AMT1 gene, associated with arsenic resistance, showed a high degree of function alteration in M. rufoniger. We further confirmed that the M. rufoniger also has bat-specific sequences within FSHB, GHR, IGF1R, TP53, MDM2, SLC45A2, RGS7BP, RHO, OPN1SW, and CNGB3 genes that have already been published to be related to bat's reproduction, lifespan, flight, low vision, and echolocation. Additionally, our demographic history analysis found that the effective population size of Myotis clade has been consistently decreasing since ~30k years ago. M. rufoniger's effective population size was the lowest in Myotis bats, confirming its relatively low genetic diversity.
Collapse
Affiliation(s)
- Youngjune Bhak
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Yeonsu Jeon
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sungwon Jeon
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Oksung Chung
- Personal Genomics Institute, Genome Research Foundation, Cheongju, Republic of Korea
- Geromics, Ulsan, Republic of Korea
| | - Sungwoong Jho
- Personal Genomics Institute, Genome Research Foundation, Cheongju, Republic of Korea
| | - JeHoon Jun
- Personal Genomics Institute, Genome Research Foundation, Cheongju, Republic of Korea
- Geromics, Ulsan, Republic of Korea
| | - Hak-Min Kim
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Yongsoo Cho
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Changhan Yoon
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Science, School of Nano-Bioscience & chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seungwoo Lee
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jung-Hoon Kang
- National Research Institute of Cultural Heritage, Cultural Heritage Administration, Daejeon, Republic of Korea
| | - Jong-Deock Lim
- National Research Institute of Cultural Heritage, Cultural Heritage Administration, Daejeon, Republic of Korea
| | - Junghwa An
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Yun Sung Cho
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Personal Genomics Institute, Genome Research Foundation, Cheongju, Republic of Korea
| | - Doug-Young Ryu
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jong Bhak
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Personal Genomics Institute, Genome Research Foundation, Cheongju, Republic of Korea
- Geromics, Ulsan, Republic of Korea
| |
Collapse
|
9
|
Hájek M, Dresler P, Hájková P, Hettenbergerová E, Milo P, Plesková Z, Pavonič M. Long-lasting Imprint of Former Glassworks on Vegetation Pattern in an Extremely Species-rich Grassland: A Battle of Species Pools on Mesic Soils. Ecosystems 2017. [DOI: 10.1007/s10021-017-0107-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Hubbard TD, Murray IA, Bisson WH, Sullivan AP, Sebastian A, Perry GH, Jablonski NG, Perdew GH. Divergent Ah Receptor Ligand Selectivity during Hominin Evolution. Mol Biol Evol 2016; 33:2648-58. [PMID: 27486223 DOI: 10.1093/molbev/msw143] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event. Functional analysis of the amino acid variant Ala381 within the AHR carried by Neandertals and nonhuman primates indicate enhanced polycyclic aromatic hydrocarbon (PAH) binding, DNA binding capacity, and AHR mediated transcriptional activity compared with the human AHR. Also relative to human AHR, the Neandertal AHR exhibited 150-1000 times greater sensitivity to induction of Cyp1a1 and Cyp1b1 expression by PAHs (e.g., benzo(a)pyrene). The resulting CYP1A1/CYP1B1 enzymes are responsible for PAH first pass metabolism, which can result in the generation of toxic intermediates and perhaps AHR-associated toxicities. In contrast, the human AHR retains the ancestral sensitivity observed in primates to nontoxic endogenous AHR ligands (e.g., indole, indoxyl sulfate). Our findings reveal that a functionally significant change in the AHR occurred uniquely in humans, relative to other primates, that would attenuate the response to many environmental pollutants, including chemicals present in smoke from fire use during cooking.
Collapse
Affiliation(s)
- Troy D Hubbard
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University
| | - William H Bisson
- Department of Environmental and Molecular Toxicology, Oregon State University
| | | | | | - George H Perry
- Department of Biology, Pennsylvania State University Department of Anthropology, Pennsylvania State University
| | | | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University
| |
Collapse
|