1
|
Nagel S, Meyer C. Aberrant Expression and Oncogenic Activity of SPP1 in Hodgkin Lymphoma. Biomedicines 2025; 13:735. [PMID: 40149711 PMCID: PMC11940585 DOI: 10.3390/biomedicines13030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Hodgkin lymphoma (HL) is a B-cell-derived malignancy and one of the most frequent types of lymphoma. The tumour cells typically exhibit multiple genomic alterations together with aberrantly activated signalling pathways, driven by paracrine and/or autocrine modes. SPP1 (alias osteopontin) is a cytokine acting as a signalling activator and has been connected with relapse in HL patients. To understand its pathogenic role, here, we investigated the mechanisms and function of deregulated SPP1 in HL. Methods: We screened public patient datasets and cell lines for aberrant SPP1 expression. HL cell lines were stimulated with SPP1 and subjected to siRNA-mediated knockdown. Gene and protein activities were analyzed by RQ-PCR, ELISA, Western blot, and immuno-cytology. Results: SPP1 expression was detected in 8.3% of classic HL patients and in HL cell line SUP-HD1, chosen to serve as an experimental model. The gene encoding SPP1 is located at chromosomal position 4q22 and is genomically amplified in SUP-HD1. Transcription factor binding site analysis revealed TALE and HOX factors as potential regulators. Consistent with this finding, we showed that aberrantly expressed PBX1 and HOXB9 mediate the transcriptional activation of SPP1. RNA-seq data and knockdown experiments indicated that SPP1 signals via integrin ITGB1 in SUP-HD1. Accordingly, SPP1 activated NFkB in addition to MAPK/ERK which in turn mediated the nuclear import of ETS2, activating oncogenic JUNB expression. Conclusions: SPP1 is aberrantly activated in HL cell line SUP-HD1 via genomic copy number gain and by homeodomain transcription factors PBX1 and HOXB9. SPP1-activated NFkB and MAPK merit further investigation as potential therapeutic targets in affected HL patients.
Collapse
Affiliation(s)
- Stefan Nagel
- Human and Animal Cell Lines, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | |
Collapse
|
2
|
Han H, Jiang G, Kumari R, Silic MR, Owens JL, Hu C, Mittal SK, Zhang G. Loss of smarcad1a accelerates tumorigenesis of malignant peripheral nerve sheath tumors in zebrafish. Genes Chromosomes Cancer 2021; 60:743-761. [PMID: 34296799 PMCID: PMC9585957 DOI: 10.1002/gcc.22983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a type of sarcoma that generally originates from Schwann cells. The prognosis for this type of malignancy is relatively poor due to complicated genetic alterations and the lack of specific targeted therapy. Chromosome fragment 4q22-23 is frequently deleted in MPNSTs and other human tumors, suggesting tumor suppressor genes may reside in this region. Here, we provide evidence that SMARCAD1, a known chromatin remodeler, is a novel tumor suppressor gene located in 4q22-23. We identified two human homologous smarcad1 genes (smarcad1a and smarcad1b) in zebrafish, and both genes share overlapping expression patterns during embryonic development. We demonstrated that two smarcad1a loss-of-function mutants, sa1299 and p403, can accelerate MPNST tumorigenesis in the tp53 mutant background, suggesting smarcad1a is a bona fide tumor suppressor gene for MPNSTs. Moreover, we found that DNA double-strand break (DSB) repair might be compromised in both mutants compared to wildtype zebrafish, as indicated by pH2AX, a DNA DSB marker. In addition, both SMARCAD1 gene knockdown and overexpression in human cells were able to inhibit tumor growth and displayed similar DSB repair responses, suggesting proper SMARCAD1 gene expression level or gene dosage is critical for cell growth. Given that mutations of SMARCAD1 sensitize cells to poly ADP ribose polymerase inhibitors in yeast and the human U2OS osteosarcoma cell line, the identification of SMARCAD1 as a novel tumor suppressor gene might contribute to the development of new cancer therapies for MPNSTs.
Collapse
Affiliation(s)
- Han Han
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Guangzhen Jiang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Present address:
College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Rashmi Kumari
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Martin R. Silic
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Jake L. Owens
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
| | - Chang‐Deng Hu
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
| | - Suresh K. Mittal
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Inflammation, Immunology and Infectious Disease (PI4D)Purdue UniversityWest LafayetteIndianaUSA
| | - GuangJun Zhang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Inflammation, Immunology and Infectious Disease (PI4D)Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience (PIIN)Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
3
|
Koenigstein F, Boekstegers F, Wilson JF, Fuentes-Guajardo M, Gonzalez-Jose R, Bedoya G, Bortolini MC, Acuña-Alonzo V, Gallo C, Linares AR, Rothhammer F, Bermejo JL. Inbreeding, native American ancestry and child mortality: Linking human selection and paediatric medicine. Hum Mol Genet 2021; 31:975-984. [PMID: 34673976 PMCID: PMC8947305 DOI: 10.1093/hmg/ddab302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
The children of related parents show increased risk of early mortality. The Native American genome typically exhibits long stretches of homozygosity, and Latin Americans are highly heterogeneous regarding the individual burden of homozygosity, the proportion, and the type of Native American ancestry. We analysed nationwide mortality and genome-wide genotype data from admixed Chileans to investigate the relationship between common causes of child mortality, homozygosity and Native American ancestry. Results from two-stage linear-Poisson regression revealed a strong association between the sum length of runs of homozygosity (SROH) above 1.5 Megabases (Mb) in each genome and mortality due to intracranial non-traumatic haemorrhage of foetus and new-born (5% increased risk of death per Mb in SROH, P = 1 × 10-3) and disorders related to short gestation and low birth weight (P = 3 × 10-4). The major indigenous populations in Chile are Aymara-Quechua in the north of the country, and the Mapuche-Huilliche in the south. The individual proportion of Aymara-Quechua ancestry was associated with an increased risk of death due to anencephaly and similar malformations (P = 4 × 10-5), and the risk of death due to Edwards and Patau trisomy syndromes decreased 4% per 1% Aymara-Quechua ancestry proportion (P = 4 × 10-4) and 5% per 1% Mapuche-Huilliche ancestry proportion (P = 2 × 10-3). The present results suggest that short gestation, low birth weight and intracranial non-traumatic haemorrhage mediate the negative effect of inbreeding on human selection. Independent validation of the identified associations between common causes of child death, homozygosity and fine-scale ancestry proportions may inform paediatric medicine.
Collapse
Affiliation(s)
- Fabienne Koenigstein
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - Felix Boekstegers
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Tarapacá University, Arica, Chile
| | - Rolando Gonzalez-Jose
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Gabriel Bedoya
- Instituto de Biología, Grupo Genmol, Universidad de Antioquía, Medellín, Colombia
| | - Maria Cátira Bortolini
- Instituto de Biociências, Universidad Federal do Rio Grande do Sul, Puerto Alegre, Brazil
| | | | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Andres Ruiz Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.,Aix-Marseille Université, CNRS, EFS, ADES, Marseille, France.,Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
| | | | - Justo Lorenzo Bermejo
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Moore A, Machiela MJ, Machado M, Wang SS, Kane E, Slager SL, Zhou W, Carrington M, Lan Q, Milne RL, Birmann BM, Adami HO, Albanes D, Arslan AA, Becker N, Benavente Y, Bisanzi S, Boffetta P, Bracci PM, Brennan P, Brooks-Wilson AR, Canzian F, Caporaso N, Clavel J, Cocco P, Conde L, Cox DG, Cozen W, Curtin K, De Vivo I, de Sanjose S, Foretova L, Gapstur SM, Ghesquières H, Giles GG, Glenn M, Glimelius B, Gao C, Habermann TM, Hjalgrim H, Jackson RD, Liebow M, Link BK, Maynadie M, McKay J, Melbye M, Miligi L, Molina TJ, Monnereau A, Nieters A, North KE, Offit K, Patel AV, Piro S, Ravichandran V, Riboli E, Salles G, Severson RK, Skibola CF, Smedby KE, Southey MC, Spinelli JJ, Staines A, Stewart C, Teras LR, Tinker LF, Travis RC, Vajdic CM, Vermeulen RCH, Vijai J, Weiderpass E, Weinstein S, Doo NW, Zhang Y, Zheng T, Chanock SJ, Rothman N, Cerhan JR, Dean M, Camp NJ, Yeager M, Berndt SI. Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:200-217. [PMID: 34622145 PMCID: PMC8494431 DOI: 10.20517/jtgg.2021.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM Recessive genetic variation is thought to play a role in non-Hodgkin lymphoma (NHL) etiology. Runs of homozygosity (ROH), defined based on long, continuous segments of homozygous SNPs, can be used to estimate both measured and unmeasured recessive genetic variation. We sought to examine genome-wide homozygosity and NHL risk. METHODS We used data from eight genome-wide association studies of four common NHL subtypes: 3061 chronic lymphocytic leukemia (CLL), 3814 diffuse large B-cell lymphoma (DLBCL), 2784 follicular lymphoma (FL), and 808 marginal zone lymphoma (MZL) cases, as well as 9374 controls. We examined the effect of homozygous variation on risk by: (1) estimating the fraction of the autosome containing runs of homozygosity (FROH); (2) calculating an inbreeding coefficient derived from the correlation among uniting gametes (F3); and (3) examining specific autosomal regions containing ROH. For each, we calculated beta coefficients and standard errors using logistic regression and combined estimates across studies using random-effects meta-analysis. RESULTS We discovered positive associations between FROH and CLL (β = 21.1, SE = 4.41, P = 1.6 × 10-6) and FL (β = 11.4, SE = 5.82, P = 0.02) but not DLBCL (P = 1.0) or MZL (P = 0.91). For F3, we observed an association with CLL (β = 27.5, SE = 6.51, P = 2.4 × 10-5). We did not find evidence of associations with specific ROH, suggesting that the associations observed with FROH and F3 for CLL and FL risk were not driven by a single region of homozygosity. CONCLUSION Our findings support the role of recessive genetic variation in the etiology of CLL and FL; additional research is needed to identify the specific loci associated with NHL risk.
Collapse
Affiliation(s)
- Amy Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Moara Machado
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Eleanor Kane
- Department of Health Sciences, University of York, York YO10 5DD, UK
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD 20892, USA
- Ragon Institute of MGH, Cambridge, MA 02139, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria 3800, Australia
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17176, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Institute of Health and Society, Clinical Effectiveness Research Group, University of Oslo, Oslo 0315, Norway
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016, USA
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Comprehensive Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg 69120, Germany
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona 08036, Spain
| | - Simonetta Bisanzi
- Regional Cancer Prevention Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence 50139, Italy
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 41026, Italy
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94118, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon 69372, France
| | - Angela R Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jacqueline Clavel
- Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), UMR1153, INSERM, Villejuif 75004, France
| | - Pierluigi Cocco
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - David G Cox
- INSERM U1052, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon 69008, France
| | - Wendy Cozen
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Karen Curtin
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Silvia de Sanjose
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona 08036, Spain
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno 656 53, Czech Republic
| | - Susan M Gapstur
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Hervè Ghesquières
- Department of Hematology, Centre Léon Bérard, Lyon 69008, France
- INSERM U1052, Cancer Research Center of Lyon, Lyon-1 University, Pierre-Bénite Cedex 69008, France
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria 3800, Australia
| | - Martha Glenn
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75105, Sweden
| | - Chi Gao
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen 2300, Denmark
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH 43210, USA
| | - Mark Liebow
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian K Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Marc Maynadie
- U1231, Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, Dijon 21070, France
| | - James McKay
- International Agency for Research on Cancer (IARC), Lyon 69372, France
| | - Mads Melbye
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen 2300, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucia Miligi
- Environmental and Occupational Epidemiology Branch-Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence 50139, Italy
| | - Thierry J Molina
- Department of Pathology, AP-HP, Necker Enfants Malades, Université Paris Descartes, EA 7324, Sorbonne Paris Cité 75015, France
| | - Alain Monnereau
- Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), UMR1153, INSERM, Villejuif 75004, France
- Registre des Hémopathies Malignes de la Gironde, Institut Bergonié, Bordeaux Cedex 33076, France
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Baden-Württemberg 79108, Germany
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Sara Piro
- Environmental and Occupational Epidemiology Branch-Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence 50139, Italy
| | - Vignesh Ravichandran
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London W2 1PG, UK
| | - Gilles Salles
- INSERM U1052, Cancer Research Center of Lyon, Lyon-1 University, Pierre-Bénite Cedex 69008, France
- Department of Hematology, Hospices Civils de Lyon, Pierre Benite Cedex 69495, France
- Department of Hematology, Université Lyon-1, Pierre Benite Cedex 69495, France
| | - Richard K Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Christine F Skibola
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Karin E Smedby
- Department of Medicine, Solna, Karolinska Institutet, Stockholm 17176, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John J Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Anthony Staines
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin 9, Ireland
| | - Carolyn Stewart
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98117, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Claire M Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicole Wong Doo
- Concord Clinical School, University of Sydney, Concord, New South Wales 2139, Australia
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI 02903, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Wu J, Zhang M, Faruq O, Zacksenhaus E, Chen W, Liu A, Chang H. SMAD1 as a biomarker and potential therapeutic target in drug-resistant multiple myeloma. Biomark Res 2021; 9:48. [PMID: 34134766 PMCID: PMC8207655 DOI: 10.1186/s40364-021-00296-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND SMAD1, a central mediator in TGF-β signaling, is involved in a broad range of biological activities including cell growth, apoptosis, development and immune response, and is implicated in diverse type of malignancies. Whether SMAD1 plays an important role in multiple myeloma (MM) pathogenesis and can serve as a therapeutic target are largely unknown. METHODS Myeloma cell lines and primary MM samples were used. Cell culture, cytotoxicity and apoptosis assay, siRNA transfection, Western blot, RT-PCR, Soft-agar colony formation, and migration assay, Chromatin immunoprecipitation (Chip), animal xenograft model studies and statistical analysis were applied in this study. RESULTS We demonstrate that SMAD1 is highly expressed in myeloma cells of MM patients with advanced stages or relapsed disease, and is associated with significantly shorter progression-free and overall survivals. Mechanistically, we show that SMAD1 is required for TGFβ-mediated proliferation in MM via an ID1/p21/p27 pathway. TGF-β also enhanced TNFα-Induced protein 8 (TNFAIP8) expression and inhibited apoptosis through SMAD1-mediated induction of NF-κB1. Accordingly, depletion of SMAD1 led to downregulation of NF-κB1 and TNFAIP8, resulting in caspase-8-induced apoptosis. In turn, inhibition of NF-κB1 suppressed SMAD1 and ID1 expression uncovering an autoregulatory loop. Dorsomorphin (DM), a SMAD1 inhibitor, exerted a dose-dependent cytotoxic effect on drug-resistant MM cells with minimal cytotoxicity to normal hematopoietic cells, and further synergized with the proteasomal-inhibitor bortezomib to effectively kill drug-resistant MM cells in vitro and in a myeloma xenograft model. CONCLUSIONS This study identifies SMAD1 regulation of NF-κB1/TNFAIP8 and ID1-p21/p27 as critical axes of MM drug resistance and provides a potentially new therapeutic strategy to treat drug resistance MM through targeted inhibition of SMAD1.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Min Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Omar Faruq
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
6
|
Yang X, Luo Z, Todd J, Sood S, Wang J. Genome-wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (Saccharum spp.). THE PLANT GENOME 2020; 13:e20006. [PMID: 33016641 DOI: 10.1002/tpg2.20006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/12/2019] [Indexed: 06/11/2023]
Abstract
Sugarcane (Saccharum spp.) is an important economic crop, contributing up to 80% of sugar and approximately 60% of biofuel globally. To meet the increased demand for sugar and biofuel supplies, it is critical to breed sugarcane cultivars with robust performance in yield traits. Therefore, dissection of causal DNA sequence variants is of great importance, as it provides genetic resources and fundamental information for crop improvement. In this study, we analyzed nine yield traits in a sugarcane diversity panel consisting of 308 accessions primarily selected from the World Collection of Sugarcane and Related Grasses. By genotyping the diversity panel via target enrichment sequencing, we identified a large number of sequence variants. Genome-wide association studies between the markers and traits were conducted, taking dosages and gene actions into consideration. In total, 217 nonredundant markers and 225 candidate genes were identified to be significantly associated with the yield traits, which can serve as a comprehensive genetic resource database for future gene identification, characterization, and selection for sugarcane improvement. We further investigated runs of homozygosity (ROH) in the sugarcane diversity panel. We characterized 282 ROHs and found that the occurrence of ROHs in the genome were nonrandom and probably under selection. The ROHs were associated with total weight and dry weight, and high ROHs resulted in a decrease in the two traits. This study suggests that genomic inbreeding has led to negative impacts on sugarcane yield.
Collapse
Affiliation(s)
- Xiping Yang
- Guangxi Key Lab for Sugarcane Biology, Guangxi Univ., Nanning, Guangxi, 530005, China
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - James Todd
- Sugarcane Research Unit, USDA-ARS, Houma, LA, 70360, USA
| | - Sushma Sood
- Sugarcane Field Station, USDA, ARS, Canal Point, FL, 33438, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
7
|
Loveday C, Sud A, Litchfield K, Levy M, Holroyd A, Broderick P, Kote-Jarai Z, Dunning AM, Muir K, Peto J, Eeles R, Easton DF, Dudakia D, Orr N, Pashayan N, Reid A, Huddart RA, Houlston RS, Turnbull C. Runs of homozygosity and testicular cancer risk. Andrology 2019; 7:555-564. [PMID: 31310061 DOI: 10.1111/andr.12667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Testicular germ cell tumour (TGCT) is highly heritable but > 50% of the genetic risk remains unexplained. Epidemiological observation of greater relative risk to brothers of men with TGCT compared to sons has long alluded to recessively acting TGCT genetic susceptibility factors, but to date none have been reported. Runs of homozygosity (RoH) are a signature indicating underlying recessively acting alleles and have been associated with increased risk of other cancer types. OBJECTIVE To examine whether RoH are associated with TGCT risk. METHODS We performed a genome-wide RoH analysis using GWAS data from 3206 TGCT cases and 7422 controls uniformly genotyped using the OncoArray platform. RESULTS Global measures of homozygosity were not significantly different between cases and controls, and the frequency of individual consensus RoH was not significantly different between cases and controls, after correction for multiple testing. RoH at three regions, 11p13-11p14.3, 5q14.1-5q22.3 and 13q14.11-13q.14.13, were, however, nominally statistically significant at p < 0.01. Intriguingly, RoH200 at 11p13-11p14.3 encompasses Wilms tumour 1 (WT1), a recognized cancer susceptibility gene with roles in sex determination and developmental transcriptional regulation, processes repeatedly implicated in TGCT aetiology. DISCUSSION AND CONCLUSION Overall, our data do not support a major role in the risk of TGCT for recessively acting alleles acting through homozygosity, as measured by RoH in outbred populations of cases and controls.
Collapse
Affiliation(s)
- C Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - A Sud
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - K Litchfield
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK
| | - M Levy
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - A Holroyd
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - P Broderick
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Z Kote-Jarai
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - A M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - K Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Warwick, UK
- Institute of Population Health, University of Manchester, Manchester, UK
| | - J Peto
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - R Eeles
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - D F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - D Dudakia
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - N Orr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - N Pashayan
- Department of Applied Health Research, University College London, London, UK
| | - A Reid
- Academic Uro-oncology Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - R A Huddart
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, UK
| | - R S Houlston
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - C Turnbull
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
- William Harvey Research Institute, Queen Mary University, London, UK
- Guys and St Thomas' NHS Foundation Trust, London, UK
- Public Health England, National Cancer Registration and Analysis Service, London, UK
| |
Collapse
|
8
|
Szpiech ZA, Blant A, Pemberton TJ. GARLIC: Genomic Autozygosity Regions Likelihood-based Inference and Classification. Bioinformatics 2018; 33:2059-2062. [PMID: 28205676 DOI: 10.1093/bioinformatics/btx102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022] Open
Abstract
Summary Runs of homozygosity (ROH) are important genomic features that manifest when identical-by-descent haplotypes are inherited from parents. Their length distributions and genomic locations are informative about population history and they are useful for mapping recessive loci contributing to both Mendelian and complex disease risk. Here, we present software implementing a model-based method ( Pemberton et al., 2012 ) for inferring ROH in genome-wide SNP datasets that incorporates population-specific parameters and a genotyping error rate as well as provides a length-based classification module to identify biologically interesting classes of ROH. Using simulations, we evaluate the performance of this method. Availability and Implementation GARLIC is written in C ++. Source code and pre-compiled binaries (Windows, OSX and Linux) are hosted on GitHub ( https://github.com/szpiech/garlic ) under the GNU General Public License version 3. Contact zachary.szpiech@ucsf.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, CA 94158, USA
| | - Alexandra Blant
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
9
|
Blant A, Kwong M, Szpiech ZA, Pemberton TJ. Weighted likelihood inference of genomic autozygosity patterns in dense genotype data. BMC Genomics 2017; 18:928. [PMID: 29191164 PMCID: PMC5709839 DOI: 10.1186/s12864-017-4312-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Background Genomic regions of autozygosity (ROA) arise when an individual is homozygous for haplotypes inherited identical-by-descent from ancestors shared by both parents. Over the past decade, they have gained importance for understanding evolutionary history and the genetic basis of complex diseases and traits. However, methods to infer ROA in dense genotype data have not evolved in step with advances in genome technology that now enable us to rapidly create large high-resolution genotype datasets, limiting our ability to investigate their constituent ROA patterns. Methods We report a weighted likelihood approach for inferring ROA in dense genotype data that accounts for autocorrelation among genotyped positions and the possibilities of unobserved mutation and recombination events, and variability in the confidence of individual genotype calls in whole genome sequence (WGS) data. Results Forward-time genetic simulations under two demographic scenarios that reflect situations where inbreeding and its effect on fitness are of interest suggest this approach is better powered than existing state-of-the-art methods to infer ROA at marker densities consistent with WGS and popular microarray genotyping platforms used in human and non-human studies. Moreover, we present evidence that suggests this approach is able to distinguish ROA arising via consanguinity from ROA arising via endogamy. Using subsets of The 1000 Genomes Project Phase 3 data we show that, relative to WGS, intermediate and long ROA are captured robustly with popular microarray platforms, while detection of short ROA is more variable and improves with marker density. Worldwide ROA patterns inferred from WGS data are found to accord well with those previously reported on the basis of microarray genotype data. Finally, we highlight the potential of this approach to detect genomic regions enriched for autozygosity signals in one group relative to another based upon comparisons of per-individual autozygosity likelihoods instead of inferred ROA frequencies. Conclusions This weighted likelihood ROA inference approach can assist population- and disease-geneticists working with a wide variety of data types and species to explore ROA patterns and to identify genomic regions with differential ROA signals among groups, thereby advancing our understanding of evolutionary history and the role of recessive variation in phenotypic variation and disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4312-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Blant
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Michelle Kwong
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Zachary A Szpiech
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
10
|
Denic S, Agarwal MM. Breast cancer protection by genomic imprinting in close kin families. BMC MEDICAL GENETICS 2017; 18:136. [PMID: 29157216 PMCID: PMC5696730 DOI: 10.1186/s12881-017-0498-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/09/2017] [Indexed: 12/31/2022]
Abstract
Human inbreeding generally reduces breast cancer risk (BCR). When the parents are biologically related, their infants have a lower birth weight due to smaller body organs. The undersized breasts, because of fewer mammary stem cells, have a lower likelihood of malignant conversion. Fetal growth is regulated by genomically imprinted genes which are in conflict; they promote growth when derived from the father and suppress growth when derived from the mother. The kinship theory explicates that the intensity of conflict between these genes affects growth and therefore the size of the newborn. In descendants of closely related parents, this gene clash is less resulting in a smaller infant. In this review, we elucidate the different mechanisms by which human inbreeding affects BCR, and why this risk is dissimilar in different inbred populations.
Collapse
Affiliation(s)
- Srdjan Denic
- Department of Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Mukesh M Agarwal
- Department of Pathology, California University of Science and Medicine, 217 E Club Center Drive, San Bernardino, CA, 92408, USA
| |
Collapse
|
11
|
Schubert SA, Ruano D, Elsayed FA, Boot A, Crobach S, Sarasqueta AF, Wolffenbuttel B, van der Klauw MM, Oosting J, Tops CM, van Eijk R, Vasen HFA, Vossen RHAM, Nielsen M, Castellví-Bel S, Ruiz-Ponte C, Tomlinson I, Dunlop MG, Vodicka P, Wijnen JT, Hes FJ, Morreau H, de Miranda NFCC, Sijmons RH, van Wezel T. Evidence for genetic association between chromosome 1q loci and predisposition to colorectal neoplasia. Br J Cancer 2017; 117:1215-1223. [PMID: 28742792 PMCID: PMC5589990 DOI: 10.1038/bjc.2017.240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/31/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A substantial fraction of familial colorectal cancer (CRC) and polyposis heritability remains unexplained. This study aimed to identify predisposing loci in patients with these disorders. METHODS Homozygosity mapping was performed using 222 563 SNPs in 302 index patients with various colorectal neoplasms and 3367 controls. Linkage analysis, exome and whole-genome sequencing were performed in a family affected by microsatellite stable CRCs. Candidate variants were genotyped in 10 554 cases and 21 480 controls. Gene expression was assessed at the mRNA and protein level. RESULTS Homozygosity mapping revealed a disease-associated region at 1q32.3 which was part of the linkage region 1q32.2-42.2 identified in the CRC family. This includes a region previously associated with risk of CRC. Sequencing identified the p.Asp1432Glu variant in the MIA3 gene (known as TANGO1 or TANGO) and 472 additional rare, shared variants within the linkage region. In both cases and controls the population frequency was 0.02% for this MIA3 variant. The MIA3 mutant allele showed predominant mRNA expression in normal, cancer and precancerous tissues. Furthermore, immunohistochemistry revealed increased expression of MIA3 in adenomatous tissues. CONCLUSIONS Taken together, our two independent strategies associate genetic variations in chromosome 1q loci and predisposition to familial CRC and polyps, which warrants further investigation.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Fadwa A Elsayed
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Arnoud Boot
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Arantza Farina Sarasqueta
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Bruce Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Melanie M van der Klauw
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Hans FA Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Rolf HAM Vossen
- Department of Human Genetics, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Sergi Castellví-Bel
- Department of Gastroenterology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Catalonia 08036, Spain
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Grupo de Medicina Xenómica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), Centro de Investigación en Red de Enfermedades Raras (CIBERER), Santiago de Compostela 15706, Spain
| | - Ian Tomlinson
- Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, MRC Human Genetics Unit, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Pavel Vodicka
- Institute of Experimental Medicine, Institute of Biology and Medical Genetics, Prague 142 00, Czech Republic
| | - Juul T Wijnen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Noel FCC de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| | - Rolf H Sijmons
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen 9700 RB, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden 2300 RC, The Netherlands
| |
Collapse
|
12
|
Thomsen H, Inacio da Silva Filho M, Fuchs M, Ponader S, Pogge von Strandmann E, Eisele L, Herms S, Hoffmann P, Engert A, Hemminki K, Försti A. Evidence of Inbreeding in Hodgkin Lymphoma. PLoS One 2016; 11:e0154259. [PMID: 27123581 PMCID: PMC4849743 DOI: 10.1371/journal.pone.0154259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/10/2016] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified several, mainly co-dominantly acting, single-nucleotide polymorphisms (SNPs) associated with Hodgkin lymphoma (HL). We searched for recessively acting disease loci by performing an analysis of runs of homozygosity (ROH) based on windows of homozygous SNP-blocks and by calculating genomic inbreeding coefficients on a SNP-wise basis. We used data from a previous GWAS with 906 cases and 1217 controls from a population with a long history of no matings between relatives. Ten recurrent ROHs were identified among 25 055 ROHs across all individuals but their association with HL was not genome-wide significant. All recurrent ROHs showed significant evidence for natural selection. As a novel finding genomic inbreeding among cases was significantly higher than among controls (P = 2.11*10-14) even after correcting for covariates. Higher inbreeding among the cases was mainly based on a group of individuals with a higher average length of ROHs per person. This result suggests a correlation of higher levels of inbreeding with higher cancer incidence and might reflect the existence of recessive alleles causing HL. Genomic inbreeding may result in a higher expression of deleterious recessive genes within a population.
Collapse
Affiliation(s)
- Hauke Thomsen
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
| | - Miguel Inacio da Silva Filho
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
| | - Michael Fuchs
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, 50924, Germany
| | - Sabine Ponader
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, 50924, Germany
| | | | - Lewin Eisele
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, 45122, Germany
| | - Stefan Herms
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, 53127, Germany
- Department of Biomedicine, Division of Medical Genetics, Basel, University of Basel, 4058, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, 53127, Germany
- Department of Biomedicine, Division of Medical Genetics, Basel, University of Basel, 4058, Switzerland
| | - Andreas Engert
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, 50924, Germany
| | - Kari Hemminki
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
- Center for Primary Health Care Research, Lund University, Malmö, 20502, Sweden
| | - Asta Försti
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
- Center for Primary Health Care Research, Lund University, Malmö, 20502, Sweden
| |
Collapse
|