1
|
Low TY, Mohtar MA, Ang MY, Jamal R. Connecting Proteomics to Next‐Generation Sequencing: Proteogenomics and Its Current Applications in Biology. Proteomics 2018; 19:e1800235. [DOI: 10.1002/pmic.201800235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI)Universiti Kebangsaan Malaysia 56000 Kuala Lumpur Malaysia
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI)Universiti Kebangsaan Malaysia 56000 Kuala Lumpur Malaysia
| | - Mia Yang Ang
- UKM Medical Molecular Biology Institute (UMBI)Universiti Kebangsaan Malaysia 56000 Kuala Lumpur Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI)Universiti Kebangsaan Malaysia 56000 Kuala Lumpur Malaysia
| |
Collapse
|
2
|
In-depth analysis of Bacillus subtilis proteome identifies new ORFs and traces the evolutionary history of modified proteins. Sci Rep 2018; 8:17246. [PMID: 30467398 PMCID: PMC6250715 DOI: 10.1038/s41598-018-35589-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023] Open
Abstract
Bacillus subtilis is a sporulating Gram-positive bacterium widely used in basic research and biotechnology. Despite being one of the best-characterized bacterial model organism, recent proteomics studies identified only about 50% of its theoretical protein count. Here we combined several hundred MS measurements to obtain a comprehensive map of the proteome, phosphoproteome and acetylome of B. subtilis grown at 37 °C in minimal medium. We covered 75% of the theoretical proteome (3,159 proteins), detected 1,085 phosphorylation and 4,893 lysine acetylation sites and performed a systematic bioinformatic characterization of the obtained data. A subset of analyzed MS files allowed us to reconstruct a network of Hanks-type protein kinases, Ser/Thr/Tyr phosphatases and their substrates. We applied genomic phylostratigraphy to gauge the evolutionary age of B. subtilis protein classes and revealed that protein modifications were present on the oldest bacterial proteins. Finally, we performed a proteogenomic analysis by mapping all MS spectra onto a six-frame translation of B. subtilis genome and found evidence for 19 novel ORFs. We provide the most extensive overview of the proteome and post-translational modifications for B. subtilis to date, with insights into functional annotation and evolutionary aspects of the B. subtilis genome.
Collapse
|
3
|
Niu C, Wang D, Liu X, Liu H, Liu X, Feng E, Pan C, Wang R, Xiao W, Liu X, Liu X, Zhu L, Wang H. An H-NS Family Protein, Sfh, Regulates Acid Resistance by Inhibition of Glutamate Decarboxylase Expression in Shigella flexneri 2457T. Front Microbiol 2017; 8:1923. [PMID: 29051753 PMCID: PMC5633597 DOI: 10.3389/fmicb.2017.01923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 09/21/2017] [Indexed: 11/13/2022] Open
Abstract
The glutamate-dependent acid-resistance system is the most effective acid tolerance pathway in Shigella, allowing survival in extremely acidic environments. However, the regulation of this system in Shigella remains elusive. In the current study, we identified significant differences in the levels of glutamate decarboxylase between three Shigella flexneri strains with different levels of acid resistance using blue native-polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing (IEF)/sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The results showed that the degree of acid resistance and the levels of GadA/B were significantly lower in strain 2457T compared with two other S. flexneri strains. It has been reported that plasmid pSf-R27 is expressed in strain 2457T but not in the other 142 sequenced S. flexneri isolates. pSf-R27 encodes protein Sfh, which belongs to a family of histone-like nucleoid-structuring (H-NS) proteins that participate in the transcriptional control of glutamate-dependent acid resistance, implicating pSf-R27 in the lower acid resistance of strain 2457T. Transformation of pSf-R27 or sfh alone into strain 301 resulted in decreased expression of GadA/B in the recombinant strains. Thus, we confirmed that H-NS family protein Sfh, bound to the gadA/B regulatory region and regulates the expression of glutamate decarboxylase at the transcriptional level. We also examined the acid tolerance of the wild-type and recombinant strains using flow cytometry and determined that the acid tolerance of S. flexneri is closely related to the expression of GadA/B. These findings further our understanding of the acid tolerance of S. flexneri, especially via the glutamate-dependent pathway.
Collapse
Affiliation(s)
- Chang Niu
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaoqing Liu
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China
| | - Hongsheng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiankai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Erling Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Ruifeng Wang
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China
| | - Xingming Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xinrui Liu
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
4
|
Zai X, Yang Q, Liu K, Li R, Qian M, Zhao T, Li Y, Yin Y, Dong D, Fu L, Li S, Xu J, Chen W. A comprehensive proteogenomic study of the human Brucella vaccine strain 104 M. BMC Genomics 2017; 18:402. [PMID: 28535754 PMCID: PMC5442703 DOI: 10.1186/s12864-017-3800-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/16/2017] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Brucella spp. are Gram-negative, facultative intracellular pathogens that cause brucellosis in both humans and animals. The B. abortus vaccine strain 104 M is the only vaccine available in China for the prevention of brucellosis in humans. Although the B. abortus 104 M genome has been fully sequenced, the current genome annotations are not yet complete. In addition, the main mechanisms underpinning its residual toxicity and vaccine-induced immune protection have yet to be elucidated. Mapping the proteome of B. abortus 104 M will help to improve genome annotation quality, thereby facilitating a greater understanding of its biology. RESULTS In this study, we utilized a proteogenomic approach that combined subcellular fractionation and peptide fractionation to perform a whole-proteome analysis and genome reannotation of B. abortus 104 M using high-resolution mass spectrometry. In total, 1,729 proteins (56.3% of 3,072) including 218 hypothetical proteins were identified using the culture conditions that were employed this study. The annotations of the B. abortus 104 M genome were also refined following identification and validation by reverse transcription-PCR. In addition, 14 pivotal virulence factors and 17 known protective antigens known to be involved in residual toxicity and immune protection were confirmed at the protein level following induction by the 104 M vaccine. Moreover, a further insight into the cell biology of multichromosomal bacteria was obtained following the elucidation of differences in protein expression levels between the small and large chromosomes. CONCLUSIONS The work presented in this report used a proteogenomic approach to perform whole-proteome analysis and genome reannotation in B. abortus 104 M; this work helped to improve genome annotation quality. Our analysis of virulence factors, protective antigens and other protein effectors provided the basis for further research to elucidate the mechanisms of residual toxicity and immune protection induced by the 104 M vaccine. Finally, the potential link between replication dynamics, gene function, and protein expression levels in this multichromosomal bacterium was detailed.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Kun Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Mengying Qian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Taoran Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Dayong Dong
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shanhu Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
5
|
Abstract
Omics approaches have become popular in biology as powerful discovery tools, and currently gain in interest for diagnostic applications. Establishing the accurate genome sequence of any organism is easy, but the outcome of its annotation by means of automatic pipelines remains imprecise. Some protein-encoding genes may be missed as soon as they are specific and poorly conserved in a given taxon, while important to explain the specific traits of the organism. Translational starts are also poorly predicted in a relatively important number of cases, thus impacting the protein sequence database used in proteomics, comparative genomics, and systems biology. The use of high-throughput proteomics data to improve genome annotation is an attractive option to obtain a more comprehensive molecular picture of a given organism. Here, protocols for reannotating prokaryote genomes are described based on shotgun proteomics and derivatization of protein N-termini with a positively charged reagent coupled to high-resolution tandem mass spectrometry.
Collapse
|