1
|
Chalesh A, Khaki P, Moradi Bidhendi S, Tebianian M, Tarnabi MT. Expression and Immunogenicity Analysis of Recombinant Leptospira Interrogans Surface Protein LigA in Mouse Model. Vet Med Sci 2025; 11:e70360. [PMID: 40388240 PMCID: PMC12087437 DOI: 10.1002/vms3.70360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/15/2025] [Accepted: 04/07/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Pathogenic strains of spirochetes of Leptospira spp. cause a globally distributed zoonotic disease called leptospirosis. The disease has several clinical manifestations, ranging from asymptomatic and subclinical infection to fatal and severe forms. HYPOTHESIS/OBJECTIVES The aim of this study was to produce a recombinant Leptospiral immunoglobulin-like surface protein-A (r-LigA) antigen of Leptospira interrogans in a prokaryotic expression system and to assess its efficacy in a mouse model. MATERIALS AND METHODS The optimal epitopes of the LigA protein were identified via bioinformatics studies. The pET32a+-LigA plasmid construct was cloned into E. coli Top10-DH5α, expressed in E. coli pLysS strains, and subjected to different IPTG concentrations at different times and temperatures. The expressed r-LigA was purified using nickel-affinity (Ni-NTA) chromatography from the insoluble fraction and reassessed by SDS-PAGE, western blotting, dot blotting, and Bradford assay. Female Balb/C mice were immunised subcutaneously with r-LigA alone or emulsified in Freund's adjuvant and subsequently boosted at 2 and 4 weeks. Specific antibody levels were evaluated by indirect ELISA. RESULTS Bioinformatics analysis identified the key antigenic region of LigA spanning amino acids 852 to 1210. Colony PCR and digestion confirmed the successful transformation. Induction using 0.5 mM IPTG at 30°C for 5 h was found to be optimal. Overexpression of r-LigA under optimised conditions accumulated proteins as inclusion bodies. Purification of r-LigA under native conditions using optimised Ni-NTA yielded 1050 µg/mL protein and high immunogenicity by effectively stimulating the immune system in female Balb/C mice. CONCLUSIONS These findings support r-LigA as a strong candidate for future leptospirosis diagnostic tools and subunit vaccine development.
Collapse
Affiliation(s)
- Aida Chalesh
- Department of Microbiology, North Tehran BranchIslamic Azad UniversityTehranIran
| | - Pejvak Khaki
- Department of MicrobiologyRazi Vaccine and Serum Research InstituteAgricultural Research, Education and Extension Organization (AREEO)KarajIran
| | | | - Majid Tebianian
- Department of ImmunologyRazi Vaccine and Serum Research InstituteAgricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Morteza Taghizadeh Tarnabi
- Department of Medical VaccineRazi Vaccine and Serum Research InstituteAgricultural Research, Education and Extension Organization (AREEO)KarajIran
| |
Collapse
|
2
|
Çobanoğlu Ş, Arslan E, Yazıcı A, Örtücü S. Expression of Human β-defensin 2 (hBD-2) in Pichia Pastoris and Investigation of Its Binding Efficiency with ACE-2. Protein J 2023; 42:399-407. [PMID: 37291459 PMCID: PMC10250178 DOI: 10.1007/s10930-023-10130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
COVID-19 is a disease that have affected the entire world, and it continues to spread with new variants. A patient's innate immune system plays a critical role in the mild and severe transition of COVID-19. Antimicrobial peptides (AMPs), which are important components of the innate immune system, are potential molecules to fight pathogenic bacteria, fungi, and viruses. Human β-defensin 2 (hBD-2), a 41-amino-acid antimicrobial peptide, is one of the defensins inducibly expressed in the skin, lungs, and trachea in humans. In this study, it was aimed to investigate the interaction of hBD-2 produced recombinantly in Pichia pastoris with the human angiotensin-converting enzyme 2 (ACE-2) under in vitro conditions. First, hBD-2 was cloned in P. pastoris X-33 via the pPICZαA vector, a yeast expression platform, and its expression was confirmed by SDS-PAGE, western blotting, and qRT-PCR. Then, the interaction between recombinant hBD-2 and ACE-2 proteins was revealed by a pull-down assay. In light of these preliminary experiments, we suggest that the recombinantly produced hBD-2 may be protective against SARS-CoV-2 and be used as a supplement in treatment. However, current findings need to be supported by cell culture studies, toxicity analyses, and in vivo experiments.
Collapse
Affiliation(s)
- Şeymanur Çobanoğlu
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey
| | - Elif Arslan
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey
| | - Ayşenur Yazıcı
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey.
| | - Serkan Örtücü
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey
- EcoTech Biotechnology, Ata Teknokent, Erzurum, Turkey
| |
Collapse
|
3
|
Kong D, Hua X, Zhou R, Cui J, Wang T, Kong F, You H, Liu X, Adu-Amankwaah J, Guo G, Zheng K, Wu J, Tang R. Antimicrobial and Anti-Inflammatory Activities of MAF-1-Derived Antimicrobial Peptide Mt6 and Its D-Enantiomer D-Mt6 against Acinetobacter baumannii by Targeting Cell Membranes and Lipopolysaccharide Interaction. Microbiol Spectr 2022; 10:e0131222. [PMID: 36190276 PMCID: PMC9603722 DOI: 10.1128/spectrum.01312-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/30/2022] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance in Acinetobacter baumannii is on the rise around the world, highlighting the urgent need for novel antimicrobial drugs. Antimicrobial peptides (AMPs) contribute to effective protection against infections by pathogens, making them the most promising options for next-generation antibiotics. Here, we report two designed, cationic, antimicrobial-derived peptides: Mt6, and its dextroisomer D-Mt6, belonging to the analogs of MAF-1, which is isolated from the instar larvae of houseflies. Both Mt6 and D-Mt6 have a broad-spectrum antimicrobial activity that is accompanied by strong antibacterial activities, especially against A. baumannii planktonic bacteria and biofilms. Additionally, the effect of D-Mt6 against A. baumannii is stable in a variety of physiological settings, including enzyme, salt ion, and hydrogen ion environments. Importantly, D-Mt6 cleans the bacteria on Caenorhabditis elegans without causing apparent toxicity and exhibits good activity in vivo. Both Mt6 and D-Mt6 demonstrated synergistic or additive capabilities with traditional antibiotics against A. baumannii, demonstrating their characteristics as potential complements to combination therapy. Scanning electron microscopy (SEM) and laser scanning confocal microscope (LSCM) experiments revealed that two analogs displayed rapid bactericidal activity by destroying cell membrane integrity. Furthermore, in lipopolysaccharide (LPS)-stimulated macrophage cells, these AMPs drastically decreased IL-1β and TNF-a gene expression and protein secretion, implying anti-inflammatory characteristics. This trait is likely due to its dual function of directly binding LPS and inhibiting the LPS-activated mitogen-activated protein kinase (MAPK) signaling pathways in macrophages. Our findings suggested that D-Mt6 could be further developed as a novel antimicrobial/anti-inflammatory agent and used in the treatment of A. baumannii infections. IMPORTANCE Around 700,000 people worldwide die each year from antibiotic-resistant pathogens. Acinetobacter baumannii in clinical specimens increases year by year, and it is developing a strong resistance to clinical drugs, which is resulting in A. baumannii becoming the main opportunistic pathogen. Antimicrobial peptides show great potential as new antibacterial drugs that can replace traditional antibiotics. In our study, Mt6 and D-Mt6, two new antimicrobial peptides, were designed based on a natural peptide that we first discovered in the hemlymphocytes of housefly larvae. Both Mt6 and D-Mt6 showed broad-spectrum antimicrobial activity, especially against A. baumannii, by damaging membrane integrity. Moreover, D-Mt6 showed better immunoregulatory activity against LPS induced inflammation through its LPS-neutralizing and suppression on MAPK signaling. This study suggested that D-Mt6 is a promising candidate drug as a derived peptide against A. baumannii.
Collapse
Affiliation(s)
- Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xuan Hua
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Rui Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jie Cui
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Tao Wang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | | | - Guo Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Jianwei Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Shahrabi Farahani M, Saraygord-Afshari N, M Farajollahi M. Optimizing the Preparation Procedure of Recombinant PSCA, as a Practical Biomarker in Prostate Cancer. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2631. [PMID: 34435055 PMCID: PMC8358172 DOI: 10.30498/ijb.2021.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: The unique expression pattern of prostate stem cell antigen (PSCA) in a number of prevalent neoplasms has made the antigen a great target for cancer researches,
and many clinical methods have been developed based on the application of this tumor marker. Hence, optimal PSCA laboratory production can be considered a hallmark for many researchers. Objective: An analytical study was designed to improve the quality and quantity of PSCA production. Materials and Methods: The effects of different compositions of lysis buffers and some ultrasound durations were assessed by calculation of the protein recovery followed by PSCA specific blotting experiments.
Then, based on the results of the web-based characterization, interference removal, followed by re-solubilization of the protein in various buffers, was designed, applied, and assessed. Results: Since the selection of an appropriate methodology depends merely on the research purposes, we tried to discuss the pros and cons of the investigated methods according
to the hydrophobic nature of PSCA as well as its dramatic tendency to aggregate in the form of inclusion bodies in the expression hosts. Conclusions: We introduced a newly designed method to fit the delicate immunological surveys and overcome some limiting factors in PSCA production.
Collapse
Affiliation(s)
- Mahboube Shahrabi Farahani
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Dang X, Zheng X, Wang Y, Wang L, Ye L, Jiang J. Antimicrobial peptides from the edible insect
Musca domestica
and their preservation effect on chilled pork. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiangli Dang
- School of Plant Protection Anhui Agricultural University Hefei China
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Xiaoxia Zheng
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Yansheng Wang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Lifang Wang
- School of Horticulture Anhui Agricultural University Hefei China
| | - Liang Ye
- School of Plant Protection Anhui Agricultural University Hefei China
| | - Junqi Jiang
- School of Plant Protection Anhui Agricultural University Hefei China
| |
Collapse
|
6
|
Peng J, Wu Z, Liu W, Long H, Zhu G, Guo G, Wu J. Antimicrobial functional divergence of the cecropin antibacterial peptide gene family in Musca domestica. Parasit Vectors 2019; 12:537. [PMID: 31727142 PMCID: PMC6857134 DOI: 10.1186/s13071-019-3793-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND It has been reported that there are more than ten antimicrobial peptides (AMPs) belonging to the cecropin family in Musca domestica; however, few of them have been identified, and the functions of the other molecules are poorly understood. METHODS Sequences of the M. domestica cecropin family of genes were cloned from cDNA template, which was reverse-transcribed from total mRNA isolated from third-instar larvae of M. domestica that were challenged with pathogens. Sequence analysis was performed using DNAMAN comprehensive analysis software, and a molecular phylogenetic tree of the cecropin family was constructed using the Neighbour-Joining method in MEGA v.5.0 according to the mature peptide sequences. Antibacterial activity of the synthetic M. domestica cecropin protein was detected and the minimum inhibitory concentration (MIC) values were determined using broth microdilution techniques. Time-killing assays were performed on the Gram-negative bacteria, Acinetobacter baumannii, at the logarithmic or stabilizing stages of growth, and its morphological changes when treated with Cec4 were assessed by scanning electron microscopy (SEM) and detection of leakage of 260 nm absorbing material. RESULTS Eleven cecropin family genes, namely Cec01, Cec02 and Cec1-9, show homology to the Cec form in a multigene family on the Scaffold18749 of M. domestica. In comparing the encoded cecropin protein sequences, most of them have the basic characteristics of the cecropin family, containing 19 conservative amino acid residues. To our knowledge, this is the first experimental demonstration that most genes in the Cec family are functional. Cec02, Cec1, Cec2, Cec5 and Cec7 have similar antibacterial spectra and antibacterial effects against Gram-negative bacteria, while Cec4 displays a more broad-spectrum of antimicrobial activity and has a very strong effect on A. baumannii. Cec4 eliminated A. baumannii in a rapid and concentration-dependent manner, with antibacterial effects within 24 h at 1× MIC and 2× MIC. Furthermore, SEM analysis and the leakage of 260 nm absorbing material detection indicated that Cec4 sterilized the bacteria through the disruption of cell membrane integrity. CONCLUSIONS Although there are more than ten cecropin genes related to M. domestica, some of them have no preferred antibacterial activity other than Cec4 against A. baumannii.
Collapse
Affiliation(s)
- Jian Peng
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550004, People's Republic of China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550004, People's Republic of China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Zhaoying Wu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Weiwei Liu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Huiling Long
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Guiming Zhu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| | - Jianwei Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
7
|
Liu Q, Yao L, Xu Y, Cheng H, Wang W, Liu Z, Liu J, Cui X, Zhou Y, Ning W. In vitro evaluation of hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase expression and regulation in Taraxacum antungense in relation to 5-caffeoylquinic acid production. PHYTOCHEMISTRY 2019; 162:148-156. [PMID: 30897352 DOI: 10.1016/j.phytochem.2019.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 05/27/2023]
Abstract
Chlorogenic acids (CGA; including 5-caffeoylquinic acid and its regio-isomers) in Taraxacum antungense Kitag. have antioxidant and anti-inflammatory properties and exert other pharmacological effects. T. antungense hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (TaHQT)1 and TaHQT2, which belong to the BAHD acyltransferase family, are candidates for synthesizing 5-caffeoylquinic acid and that have not been extensively characterized. In this study, we cloned the TaHQT1 and TaHQT2 genes and analysed the properties of the expressed enzymes both in vitro and in vivo. Quantitative reverse transcription PCR analysis revealed that TaHQT1 was highly expressed in the root, whereas the strongest TaHQT2 expression was observed in T. antungense leaves. In Nicotiana benthamiana leaf cells, TaHQT1 and TaHQT2 were localized at the cell periphery as well as in the cytoplasm and nucleus. The 5-caffeoylquinic acid concentrations in T. antungense calli were reduced by TaHQT1 and TaHQT2 knockdown relative to the control. Conversely, inoculation of T. antungense plants tissues with recombinant TaHQT1 and TaHQT2 increased 5-caffeoylquinic acid levels in situ. These in vitro and in vivo findings demonstrate that both HQTs are involved in regulating 5-caffeoylquinic acid biosynthesis in T. antungense, which can be exploited to increase 5-caffeoylquinic acid production in plants for medicinal or other beneficial purposes.
Collapse
Affiliation(s)
- Qun Liu
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Lixiang Yao
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Yachen Xu
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Haitao Cheng
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiting Wang
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Zijia Liu
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Jia Liu
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Xin Cui
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Yujie Zhou
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China
| | - Wei Ning
- College of Horticulture, Shenyang Agricultural University, Shen Yang, 110866, China; Exsitu Conservation Garden Evaluation Centre of Wild Vegetable Germplasm in Northeast China under Ministry of Agriculture, Shen Yang, 110866, China.
| |
Collapse
|
8
|
Hwang HJ, Han JW, Kim GH, Han JW. Functional Expression and Characterization of the Recombinant N-Acetyl-Glucosamine/N-Acetyl-Galactosamine-Specific Marine Algal Lectin BPL3. Mar Drugs 2018; 16:E13. [PMID: 29303968 PMCID: PMC5793061 DOI: 10.3390/md16010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/16/2017] [Accepted: 12/28/2017] [Indexed: 01/29/2023] Open
Abstract
Lectins, characterized by their carbohydrate-binding ability, have extensive practical applications. However, their industrial use is limited due to impurity. Thus, quality-controlled production of recombinant lectin is necessary. In this study, the algal lectin BPL3 (Bryopsis plumosa lectin 3) was successfully produced using a bacterial expression system, BL21(DE3), with an artificial repeated structure (dimeric construct). Recombinant dimeric BPL3 (rD2BPL3) was confirmed by LC-MS/MS spectrometry. Expression efficiency was greater for the construct with the repeat structure (rD2BPL3) than the monomeric form (rD1BPL3). Optimal conditions for expression were 1 mM IPTG at 20 °C. Recombinant lectin was purified under denaturing conditions and refolded by the flash dilution method. Recombinant BPL3 was solubilized in 1× PBS containing 2 M urea. rD2BPL3 showed strong hemagglutination activity using human erythrocyte. rD2BPL3 had a similar sugar specificity to that of the native protein, i.e., to N-acetyl-glucosamine (GlcNAc) and N-acetyl-galactosamine (GalNAc). Glycan array results showed that recombinant BPL3 and native BPL3 exhibited different binding properties. Both showed weak binding activity to α-Man-Sp. Native BPL3 showed strong binding specificity to the alpha conformation of amino sugars, and rD2BPL3 had binding activity to the beta conformation. The process developed in this study was suitable for the quality-controlled large-scale production of recombinant lectins.
Collapse
Affiliation(s)
- Hyun-Ju Hwang
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jin-Woo Han
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju 32588, Korea.
| | - Jong Won Han
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| |
Collapse
|
9
|
Guo G, Tao R, Li Y, Ma H, Xiu J, Fu P, Wu J. Identification and characterization of a novel antimicrobial protein from the housefly Musca domestica. Biochem Biophys Res Commun 2017. [PMID: 28645609 DOI: 10.1016/j.bbrc.2017.06.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides/proteins are immune-related molecules that are widely distributed in bacteria, fungi, plants, invertebrates and higher animals. They have exhibited great potential to be developed into antimicrobial drugs. The housefly, Musca domestica, lives in a highly contaminated environment and has adapted a robust immune system against various pathogens. As an effort to search for new antimicrobial molecules in the housefly, we investigated the function of an uncharacterized gene firstly by confirming that its expression was induced by infection in M. domestica. The corresponding protein was then shown to have potent antimicrobial activity. Scanning Electron Microscopy data showed that treatment of C. albicans cells with the protein caused cell size decreasing and cell elongation. The results here suggest the protein a novel class of antimicrobial protein and provide new insights into the immunological mechanisms by which M. domestica combats invading C. albicans.
Collapse
Affiliation(s)
- Guo Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China.
| | - Ruyu Tao
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Department of Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, 556000, China
| | - Yan Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Huiling Ma
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jiangfan Xiu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Ping Fu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jianwei Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|