1
|
Chen F, Shi L, Hu J, Wang J, Li Z, Xiu Y, He B, Lin S, Liang D. Revelation of enzyme/transporter-mediated metabolic regulatory model for high-quality terpene accumulation in developing fruits of Lindera glauca. Int J Biol Macromol 2024; 264:130763. [PMID: 38467223 DOI: 10.1016/j.ijbiomac.2024.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.
Collapse
Affiliation(s)
- Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jinhe Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zhi Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| |
Collapse
|
2
|
Hu J, Chen F, Zang J, Li Z, Wang J, Wang Z, Shi L, Xiu Y, Lin S. Native promoter-mediated transcriptional regulation of crucial oleosin protein OLE1 from Prunus sibirica for seed development and high oil accumulation. Int J Biol Macromol 2023; 253:126650. [PMID: 37666400 DOI: 10.1016/j.ijbiomac.2023.126650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Oleosin (OLE) is vital to stabilize lipid droplet for seed triacylglycerol (TAG) storage. This work aimed to determine key OLE and to unravel mechanism that governed seed oil accumulation of Prunus sibirica for developing biodiesel. An integrated assay of global identification of LD-related protein and the cross-accessions/developing stages comparisons associated with oil accumulative amount and OLE transcript level was performed on seeds of 12 plus trees of P. sibirica to identify OLE1 (15.5 kDa) as key oleosin protein crucial for high seed oil accumulation. The OLE1 gene and its promoter were cloned from P. sibirica seeds, and overexpression of PsOLE1 in Arabidopsis was conducted under the controls of native promoter and constitutive CaMV35S promoter, respectively. PsOLE1 promoter had seed-specific cis-elements and showed seed specificity, by which PsOLE1 was specifically expressed in seeds. Ectopic overexpression of PsOLE1, especially driven by its promoter, could facilitate seed development and oil accumulation with an increase in unsaturated FAs, and upregulate transcript of TAG assembly enzymes, but suppress transcript of LD/TAG-hydrolyzed lipases and transporters, revealing a role of native promoter-mediated transcription of PsOLE1 in seed development and oil accumulation. PsOLE1 and its promoter have considerable potential for engineering oil accumulation in oilseed plants.
Collapse
Affiliation(s)
- Jinhe Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Junxin Zang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zhi Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zirui Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Chen F, Lin W, Li W, Hu J, Li Z, Shi L, Zhang Z, Xiu Y, Lin S. Determination of superior Pistacia chinensis accession with high-quality seed oil and biodiesel production and revelation of LEC1/WRI1-mediated high oil accumulative mechanism for better developing woody biodiesel. BMC PLANT BIOLOGY 2023; 23:268. [PMID: 37208597 DOI: 10.1186/s12870-023-04267-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Based on our previous studied on different provenances of Pistacia chinensis, some accessions with high quality and quantity of seed oils has emerged as novel source of biodiesel. To better develop P. chinensis seed oils as woody biodiesel, a concurrent exploration of oil content, FA profile, biodiesel yield, and fuel properties was conducted on the seeds from 5 plus germplasms to determine superior genotype for ideal biodiesel production. Another vital challenge is to unravel mechanism that govern the differences in oil content and FA profile of P. chinensis seeds across different accessions. FA biosynthesis and oil accumulation of oil plants are known to be highly controlled by the transcription factors. An integrated analysis of our recent transcriptome data, qRT-PCR detection and functional identification was performed as an attempt to highlight LEC1/WRI1-mediated transcription regulatory mechanism for high-quality oil accumulation in P. chinensis seeds. RESULTS To select ideal germplasm and unravel high oil accumulative mechanism for developing P. chinensis seed oils as biodiesel, five plus trees (accession PC-BJ/PC-AH/PC-SX/PC-HN/PC-HB) with high-yield seeds were selected to assess the variabilities in weight, oil content, FA profile, biodiesel yield and fuel property, revealing a variation in the levels of seed oil (50.76-60.88%), monounsaturated FA (42.80-70.72%) and polyunsaturated FA (18.78-43.35%), and biodiesel yield (84.98-98.15%) across different accessions. PC-HN had a maximum values of seed weight (26.23 mg), oil (60.88%) and biodiesel yield (98.15%), and ideal proportions of C18:1 (69.94%), C18:2 (17.65%) and C18:3 (1.13%), implying that seed oils of accession PC-HN was the most suitable for ideal biodiesel production. To highlight molecular mechanism that govern such differences in oil content and FA profile of different accessions, a combination of our recent transcriptome data, qRT-PCR detection and protein interaction analysis was performed to identify a pivotal role of LEC1/WRI1-mediated transcription regulatory network in high oil accumulation of P. chinensis seeds from different accessions. Notably, overexpression of PcWRI1 or PcLEC1 from P. chinensis seeds in Arabidopsis could facilitate seed development and upregulate several genes relevant for carbon flux allocation (plastidic glycolysis and acetyl-CoA generation), FA synthesis, TAG assembly and oil storage, causing an increase in seed oil content and monounsaturated FA level, destined for biodiesel fuel property improvement. Our findings may present strategies for better developing P. chinensis seed oils as biodiesel feedstock and bioengineering its high oil accumulation. CONCLUSIONS This is the first report on the cross-accessions assessments of P. chinensis seed oils to determine ideal accession for high-quality biodiesel production, and an effective combination of PcWRI1 or PcLEC1 overexpression, morphological assay, oil accumulation and qRT-PCR detection was applied to unravel a role of LEC1/WRI1-mediated regulatory network for oil accumulation in P. chinensis seeds, and to highlight the potential application of PcWRI1 or PcLEC1 for increasing oil production. Our finding may provide new strategies for developing biodiesel resource and molecular breeding.
Collapse
Affiliation(s)
- Feng Chen
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Weijun Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Jinhe Hu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Zhi Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Zhixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yu Xiu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Lin Z, Chen F, Wang H, Hu J, Shi L, Zhang Z, Xiu Y, Lin S. Evaluation of oil accumulation and biodiesel property of Lindera glauca fruits among different germplasms and revelation of high oil producing mechanism for developing biodiesel. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:14. [PMID: 36698212 PMCID: PMC9878744 DOI: 10.1186/s13068-023-02265-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lindera glauca with rich resource and fruit oil has emerged as novel source of biodiesel in China, but different germplasms show a variation for fruit oil content and FA profile. To develop L. glauca fruit oils as biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield, fuel property and prediction model construction was conducted on the fruits from 8 plus germplasms to select superior genotype for ideal biodiesel production. Another vital focus was to highlight mechanism that govern the differences in oil content and FA profile of different germplasms. The cross-accessions comparisons associated with oil-synthesized gene transcriptional level and oil accumulative amount led to the identification of potential determinants (enzymes, transporters or transcription factors) and regulatory mechanisms responsible for high-quality oil accumulation. RESULTS To select superior germplasm and unravel regulatory mechanism of high oil production for developing L. glauca fruit oils as biodiesel, 8 plus trees (accession LG01/02/03/04/05/06/07/08) with high-yield fruits were selected to evaluate the differences in oil content, FA profile, biodiesel yield and fuel property, and to construct fuel property prediction model, revealing a variation in the levels of fruit oil (45.12-60.95%), monounsaturated FA (52.43-78.46%) and polyunsaturated FA (17.69-38.73%), and biodiesel yield (80.12-98.71%) across different accessions. Of note, LG06 had a maximum yield of oil (60.95%) and biodiesel (98.71%), and ideal proportions of C18:1 (77.89%), C18:2 (14.16%) and C18:3 (1.55%), indicating that fruit oils from accession LG06 was the most suitable for high-quality biodiesel production. To highlight molecular mechanism that govern such differences in oil content and FA composition of different accessions, the quantitative relationship between oil-synthesized gene transcription and oil accumulative amount were conducted on different accessions to identify some vital determinants (enzymes, transporters or transcription factors) with a model of carbon metabolic regulatory for high-quality oil accumulation by an integrated analysis of our recent transcriptome data and qRT-PCR detection. Our findings may present strategies for developing L. glauca fruit oils as biodiesel feedstock and engineering its oil accumulation. CONCLUSIONS This is the first report on the cross-accessions evaluations of L. glauca fruit oils to determine ideal accession for producing ideal biodiesel, and the associations of oil accumulative amount with oil-synthesized gene transcription was performed to identify some crucial determinants (enzymes, transporters or transcription factors) with metabolic regulation model established for governing high oil production. Our finding may provide molecular basis for new strategies of developing biodiesel resource and engineering oil accumulation.
Collapse
Affiliation(s)
- Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Feng Chen
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Hongjuan Wang
- Department of Biochemistry and Molecular Biology, Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Jinhe Hu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Zhixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Yu Xiu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
5
|
Fu Y, Huo K, Pei X, Liang C, Meng X, Song X, Wang J, Niu J. Full-length transcriptome revealed the accumulation of polyunsaturated fatty acids in developing seeds of Plukenetia volubilis. PeerJ 2022; 10:e13998. [PMID: 36157055 PMCID: PMC9504451 DOI: 10.7717/peerj.13998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023] Open
Abstract
Background Plukenetia volubilis is cultivated as a valuable oilseed crop, and its mature seeds are rich in polyunsaturated fatty acids (FAs), which are widely used in food and pharmaceutical industries. Recently, next-generation sequencing (NGS) transcriptome studies in P. volubilis indicated that some candidate genes were involved in oil biosynthesis. The NGS were inaccuracies in assembly of some candidate genes, leading to unknown errors in date analyses. However, single molecular real-time (SMRT) sequencing can overcome these assembled errors. Unfortunately, this technique has not been reported in P. volubilis. Methods The total oil content of P. volubilis seed (PVS) was determined using Soxhlet extraction system. The FA composition were analyzed by gas chromatography. Combining PacBio SMRT and Illumina technologies, the transcriptome analysis of developing PVS was performed. Functional annotation and differential expression were performed by BLAST software (version 2.2.26) and RSEM software (version 1.2.31), respectively. The lncRNA-targeted transcripts were predicted in developing PVS using LncTar tool. Results By Soxhlet extraction system, the oil content of superior plant-type (SPT) was 13.47% higher than that of inferior plant-type (IPT) at mature PVS. The most abundant FAs were C18:2 and C18:3, among which C18:3 content of SPT was 1.11-fold higher than that of IPT. Combined with PacBio and Illumina platform, 68,971 non-redundant genes were obtained, among which 7,823 long non-coding RNAs (lncRNAs) and 7,798 lncRNA-targeted genes were predicted. In developing seed, the expressions of 57 TFs showed a significantly positive correlation with oil contents, including WRI1-like1, LEC1-like1, and MYB44-like. Comparative analysis of expression profiles between SPT and IPT implied that orthologs of FAD3, PDCT, PDAT, and DAGT2 were possibly important for the accumulation of polyunsaturated FAs. Together, these results provide a reference for oil biosynthesis of P. volubilis and genetic improvement of oil plants.
Collapse
Affiliation(s)
- Yijun Fu
- College of Forestry, Hainan University, Haikou, Hainan, China
| | - Kaisen Huo
- College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xingjie Pei
- College of Forestry, Hainan University, Haikou, Hainan, China
| | - Chongjun Liang
- College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xinya Meng
- College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xiqiang Song
- College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jia Wang
- College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jun Niu
- College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
6
|
Chen F, Miao X, Lin Z, Xiu Y, Shi L, Zhang Q, Liang D, Lin S, He B. Disruption of metabolic function and redox homeostasis as antibacterial mechanism of Lindera glauca fruit essential oil against Shigella flexneri. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Zhou Y, Feng J, Li Q, Huang D, Chen X, Du Z, Lv Z, Xiao Y, Han Y, Chen J, Chen W. SmMYC2b Enhances Tanshinone Accumulation in Salvia miltiorrhiza by Activating Pathway Genes and Promoting Lateral Root Development. FRONTIERS IN PLANT SCIENCE 2020; 11:559438. [PMID: 33042182 PMCID: PMC7517298 DOI: 10.3389/fpls.2020.559438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is an economically important medicinal plant as well as an emerging model plant. Our previous studies indicate that SmMYC2b is a positive transcription factor that can affect the biosynthesis of phenolic acids and tanshinones in S. miltiorrhiza. Moreover, MYC2s are well known to induce the development of lateral roots. As tanshinones are mainly distributed in the periderm, the promotion of lateral root development probably leads to increased accumulation of tanshinones. In this paper, we firstly discovered that SmMYC2b played a dual regulatory role in effectively enhancing the tanshinone accumulation by activating tanshinone biosynthetic pathway and promoting lateral root development. The expression levels of the previously studied pathway genes SmCPS1, SmKSL1, SmCYP76AH1, SmCYP76AH3, and SmCYP76AK1 dramatically increased. In addition, SmMYC2b was proved to exhibit a similar function as other homologs in promoting lateral root development, which increased the tanshinone produced tissue and further enhanced the biosynthesis of tanshinones. RNA-seq assays revealed that SmMYC2b-regulated genes comprised 30.6% (1,901 of 6,210) of JA-responsive genes, confirming that SmMYC2b played a crucial role in transcriptional regulation of JA-regulated genes. Overall, we concluded that SmMYC2b could enhance tanshinone accumulation by activating the tanshinone biosynthetic pathway and promoting lateral root development. Our study provides an effective approach to enhance the production of desired tanshinones and enriches our knowledge of the related regulatory network.
Collapse
Affiliation(s)
- Yangyun Zhou
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jingxian Feng
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Doudou Huang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiao Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zenan Du
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Li A, Li A, Deng Z, Guo J, Wu H. Cross-Species Annotation of Expressed Genes and Detection of Different Functional Gene Modules Between 10 Cold- and 10 Hot-Propertied Chinese Herbal Medicines. Front Genet 2020; 11:532. [PMID: 32625232 PMCID: PMC7314971 DOI: 10.3389/fgene.2020.00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
According to the traditional Chinese medicine (TCM) system, Chinese herbal medicines (HMs) can be divided into four categories: hot, warm, cold, and cool. A cool nature usually is categorized as a cold nature, and a warm nature is classified as a hot nature. However, the detectable characteristics of the gene expression profile associated with the cold and hot properties have not been studied. To address this question, a strategy for the cross-species annotation of conserved genes was established in the present study by using transcriptome data of 20 HMs with cold and hot properties. Functional enrichment analysis was performed on group-specific expressed genes inferred from the functional genome of the reference species (i.e., Arabidopsis). Results showed that metabolic pathways relevant to chrysoeriol, luteolin, paniculatin, and wogonin were enriched for cold-specific genes, and pathways of inositol, heptadecane, lauric acid, octanoic acid, hexadecanoic acid, and pentadecanoic acid were enriched for hot-specific genes. Six functional modules were identified in the HMs with the cold property: nucleotide biosynthetic process, peptidy-L-cysteine S-palmitoylation, lipid modification, base-excision repair, dipeptide transport, and response to endoplasmic reticulum stress. For the hot HMs, another six functional modules were identified: embryonic meristem development, embryonic pattern specification, axis specification, regulation of RNA polymerase II transcriptional preinitiation complex assembly, mitochondrial RNA modification, and cell redox homeostasis. The research provided a new insight into HMs’ cold and hot properties from the perspective of the gene expression profile of plants.
Collapse
Affiliation(s)
- Arong Li
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Aqian Li
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhijun Deng
- Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jiewen Guo
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Integrative transcriptomics, proteomics, and metabolomics data analysis exploring the injury mechanism of ricin on human lung epithelial cells. Toxicol In Vitro 2019; 60:160-172. [PMID: 31103672 DOI: 10.1016/j.tiv.2019.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/05/2019] [Accepted: 05/15/2019] [Indexed: 11/24/2022]
Abstract
Ricin (RT) is a plant toxin belonging to the family of type II ribosome-inactivating protein with high bioterrorism potential. Aerosol RT exposure is the most lethal route, but its mechanism of injury needs further investigation. In the present study, we performed a comprehensive transcriptomics, proteomics and metabolomics analysis on the potential mechanism of injury caused by RT on human lung epithelial cells. In total, 5872 genes, 187 proteins, and 143 metabolites were shown to be significantly changed in human lung epithelial cells after RT treatment. Molecular function, pathway, and network analyses, the genes and proteins regulated in RT-treated cells were mainly attributed to fatty acid metabolism, arginine and proline metabolism and ubiquitin-mediated proteolysis pathway. Furthermore, a comprehensive analysis of transcripts, proteins, and metabolites was performed. The results revealed the correlated genes, proteins, and metabolic pathways regulated in metabolic pathways, amino acid metabolism, transcription and energy metabolism. These genes, proteins, and metabolites involved in these dis-regulated pathways may provide a more targeted and credible direction to study the mechanism of RT injury on human lung epithelial cells. This study provides large-scale omics data that can be used to develop a new strategy for the prevention, rapid diagnosis, and treatment of RT poisoning, especially of RT aerosol.
Collapse
|
10
|
Deng S, Mai Y, Shui L, Niu J. WRINKLED1 transcription factor orchestrates the regulation of carbon partitioning for C18:1 (oleic acid) accumulation in Siberian apricot kernel. Sci Rep 2019; 9:2693. [PMID: 30804440 PMCID: PMC6389899 DOI: 10.1038/s41598-019-39236-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/21/2019] [Indexed: 11/09/2022] Open
Abstract
WRINKLED1 (WRI1), an APETALA2 (AP2)-type transcription factor, has been shown to be required for the regulation of carbon partitioning into fatty acid (FA) synthesis in plant seeds. To our knowledge, the regulatory network of WRI1 remains unknown in Prunus sibirica kernel (PSK), a novel woody biodiesel feedstock in China. In this study, based on the transcriptional data from developing oilseeds of multiple plant species, we identified 161 WRI1-coexpressed genes using weighted gene co-expression network analysis (WGCNA). The major portion of WRI1-coexpressed genes was characterized to be involved in carbon partitioning and FA biosynthesis. Additionally, we detected the temporal patterns for oil content and FA compositions in developing PSK from two different germplasms (AS-85 and AS-86). The major differences between the two germplasms are higher contents of oil and C18:1 in AS-85 than in AS-86 at a mature stage. Thus, AS-85 and AS-86 are desirable materials to explore the molecular and metabolic mechanisms of oil accumulation in Siberian apricot. Expression analysis in developing PSK of AS-85 and AS-86 indicated that the expression level of P. sibirica WRI1 (PsWRI1) was closely correlated to accumulative rate of oil. Also, the comparison of expression profiles in developing PSK of AS-85 and AS-86 displayed that the pPK, E1-α, E2, TAL, BC, MCMT, BS, SAD and FAD2 have a high correlation with PsWRI1. Transient expression showed that ProSAD- and ProBS-driving GUS expression showed no substantial difference between AS-85 and AS-86, while the expression level of ProPEPCK-AS-85 driving GUS was significantly higher than that of ProPEPCK-AS-86 driving GUS. Additionally, transient co-transformation with PsWRI1 revealed that ProSAD, ProPEPCK and ProBS activity could be specifically up-regulated by PsWRI1. This regulatory mechanism of PsWRI1 may create a steep concentration difference, thereby facilitating carbon flux into C18:1 accumulation in developing PSK. Overall, all our findings imply a versatile mechanism of WRI1 to optimize carbon allocation for oil accumulation, which can provide reference for researching the woody biodiesel plants.
Collapse
Affiliation(s)
- Shuya Deng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570228, China
| | - Yiting Mai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570228, China
| | - Lanya Shui
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570228, China
| | - Jun Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
11
|
Zhang Z, Dunwell JM, Zhang YM. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. BMC PLANT BIOLOGY 2018; 18:328. [PMID: 30514240 PMCID: PMC6280547 DOI: 10.1186/s12870-018-1542-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/20/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) and soybean (Glycine max L.) seeds are rich in both protein and oil, which are major sources of biofuels and nutrition. Although the difference in seed oil content between soybean (~ 20%) and rapeseed (~ 40%) exists, little is known about its underlying molecular mechanism. RESULTS An integrated omics analysis was performed in soybean, rapeseed, Arabidopsis (Arabidopsis thaliana L. Heynh), and sesame (Sesamum indicum L.), based on Arabidopsis acyl-lipid metabolism- and carbon metabolism-related genes. As a result, candidate genes and their transcription factors and microRNAs, along with phylogenetic analysis and co-expression network analysis of the PEPC gene family, were found to be largely associated with the difference between the two species. First, three soybean genes (Glyma.13G148600, Glyma.13G207900 and Glyma.12G122900) co-expressed with GmPEPC1 are specifically enriched during seed storage protein accumulation stages, while the expression of BnPEPC1 is putatively inhibited by bna-miR169, and two genes BnSTKA and BnCKII are co-expressed with BnPEPC1 and are specifically associated with plant circadian rhythm, which are related to seed oil biosynthesis. Then, in de novo fatty acid synthesis there are rapeseed-specific genes encoding subunits β-CT (BnaC05g37990D) and BCCP1 (BnaA03g06000D) of heterogeneous ACCase, which could interfere with synthesis rate, and β-CT is positively regulated by four transcription factors (BnaA01g37250D, BnaA02g26190D, BnaC01g01040D and BnaC07g21470D). In triglyceride synthesis, GmLPAAT2 is putatively inhibited by three miRNAs (gma-miR171, gma-miR1516 and gma-miR5775). Finally, in rapeseed there was evidence for the expansion of gene families, CALO, OBO and STERO, related to lipid storage, and the contraction of gene families, LOX, LAH and HSI2, related to oil degradation. CONCLUSIONS The molecular mechanisms associated with differences in seed oil content provide the basis for future breeding efforts to improve seed oil content.
Collapse
Affiliation(s)
- Zhibin Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AS UK
| | - Yuan-Ming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
12
|
Wang L, Ruan C, Liu L, Du W, Bao A. Comparative RNA-Seq Analysis of High- and Low-Oil Yellow Horn During Embryonic Development. Int J Mol Sci 2018; 19:ijms19103071. [PMID: 30297676 PMCID: PMC6212864 DOI: 10.3390/ijms19103071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022] Open
Abstract
Yellow horn (Xanthoceras sorbifolium Bunge) is an endemic oil-rich shrub that has been widely cultivated in northern China for bioactive oil production. However, little is known regarding the molecular mechanisms that contribute to oil content in yellow horn. Herein, we measured the oil contents of high- and low-oil yellow horn embryo tissues at four developmental stages and investigated the global gene expression profiles through RNA-seq. The results found that at 40, 54, 68, and 81 days after anthesis, a total of 762, 664, 599, and 124 genes, respectively, were significantly differentially expressed between the high- and low-oil lines. Gene ontology (GO) enrichment analysis revealed some critical GO terms related to oil accumulation, including acyl-[acyl-carrier-protein] desaturase activity, pyruvate kinase activity, acetyl-CoA carboxylase activity, and seed oil body biogenesis. The identified differentially expressed genes also included several transcription factors, such as, AP2-EREBP family members, B3 domain proteins and C2C2-Dof proteins. Several genes involved in fatty acid (FA) biosynthesis, glycolysis/gluconeogenesis, and pyruvate metabolism were also up-regulated in the high-oil line at different developmental stages. Our findings indicate that the higher oil accumulation in high-oil yellow horn could be mostly driven by increased FA biosynthesis and carbon supply, i.e. a source effect.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Lingyue Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Wei Du
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Aomin Bao
- Institute of economic forest, Tongliao Academy of Forestry Science and Technology, Tongliao 028000, China.
| |
Collapse
|
13
|
Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, Ong CK, Mayes S, Chew FT, Appleton DR, Kulaveerasingam H. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm. BMC Genomics 2017; 18:470. [PMID: 28637447 DOI: 10.1186/s12864-017-3855-3857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/09/2017] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. RESULTS A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. CONCLUSIONS Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.
Collapse
Affiliation(s)
- Yick Ching Wong
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Huey Fang Teh
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Katharina Mebus
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Institute of Research Management & Monitoring (IPPP), Research Management & Innovation Comlex, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tony Eng Keong Ooi
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Qi Bin Kwong
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ka Loo Koo
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Chuang Kee Ong
- European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Sean Mayes
- Plant and Crop Sciences, Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, off Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - David R Appleton
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Harikrishna Kulaveerasingam
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, Ong CK, Mayes S, Chew FT, Appleton DR, Kulaveerasingam H. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm. BMC Genomics 2017. [PMID: 28637447 PMCID: PMC5480177 DOI: 10.1186/s12864-017-3855-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. Results A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Conclusions Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3855-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yick Ching Wong
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Huey Fang Teh
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Katharina Mebus
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Institute of Research Management & Monitoring (IPPP), Research Management & Innovation Comlex, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tony Eng Keong Ooi
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Qi Bin Kwong
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ka Loo Koo
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Chuang Kee Ong
- European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Sean Mayes
- Plant and Crop Sciences, Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, off Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - David R Appleton
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Harikrishna Kulaveerasingam
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Integrated mRNA and miRNA transcriptome reveal a cross-talk between developing response and hormone signaling for the seed kernels of Siberian apricot. Sci Rep 2016; 6:35675. [PMID: 27762296 PMCID: PMC5071837 DOI: 10.1038/srep35675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022] Open
Abstract
Recently, our transcriptomic analysis has identified some functional genes responsible for oil biosynthesis in developing SASK, yet miRNA-mediated regulation for SASK development and oil accumulation is poorly understood. Here, 3 representative periods of 10, 30 and 60 DAF were selected for sRNA sequencing based on the dynamic patterns of growth tendency and oil content of developing SASK. By miRNA transcriptomic analysis, we characterized 296 known and 44 novel miRNAs in developing SASK, among which 36 known and 6 novel miRNAs respond specifically to developing SASK. Importantly, we performed an integrated analysis of mRNA and miRNA transcriptome as well as qRT-PCR detection to identify some key miRNAs and their targets (miR156-SPL, miR160-ARF18, miR164-NAC1, miR171h-SCL6, miR172-AP2, miR395-AUX22B, miR530-P2C37, miR393h-TIR1/AFB2 and psi-miRn5-SnRK2A) potentially involved in developing response and hormone signaling of SASK. Our results provide new insights into the important regulatory function of cross-talk between development response and hormone signaling for SASK oil accumulation.
Collapse
|
16
|
Zhu S, Ding Y, Yap Z, Qiu Y. De novo assembly and characterization of the floral transcriptome of an economically important tree species, Lindera glauca (Lauraceae), including the development of EST-SSR markers for population genetics. Mol Biol Rep 2016; 43:1243-1250. [PMID: 27553669 DOI: 10.1007/s11033-016-4056-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/12/2016] [Indexed: 11/30/2022]
Abstract
Lindera glauca (Lauraceae) is an economically important East Asian forest tree characterized by a dioecy in China and apomixis in Japan. However, patterns of population genetic diversity and structure of this species remain unknown for this species due to a lack of efficient molecular markers. In this study, we employed Illumina sequencing to analyze the transcriptomes of the female and male flower buds of L. glauca. We retrieved 59,753 and 75,075 unigenes for the female and male buds, respectively. Based on sequence similarity, 44,379 (74.27 %) unigenes for the female and 45,414 (60.49 %) unigenes for the male were matched to public databases. We identified 11,127 putative differentially expressed genes between the female and male buds and 20,048 expressed sequence tag-simple sequence repeats (EST-SSRs). From 3147 primer pairs designed successfully, 120 were selected for validation of polymorphism, and 13 could reliably amplify polymorphic bands and exhibited moderate levels of genetic diversity (e.g., N A = 4.42; H E = 0.56) when surveyed across 96 individuals of altogether six L. glauca populations from China and Japan. One of the three population genetic clusters identified in China was fixed in Japan, suggesting a historical population bottleneck following island immigration. The present study has generated a wealth of transcriptome data for future functional genomic research focused on the variable reproductive system of L. glauca (dioecy, apomixis) as well as EST-SSR markers for population genetics studies and its intriguing evolutionary shift from dioecy to apomixis in the wake of island colonization.
Collapse
Affiliation(s)
- Shanshan Zhu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanqian Ding
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoyan Yap
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|