1
|
Pitsillou E, Liang JJ, Kino N, Lockwood JL, Hung A, El-Osta A, AbuMaziad AS, Karagiannis TC. An In Silico Investigation of the Pathogenic G151R G Protein-Gated Inwardly Rectifying K + Channel 4 Variant to Identify Small Molecule Modulators. BIOLOGY 2024; 13:992. [PMID: 39765659 PMCID: PMC11727529 DOI: 10.3390/biology13120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025]
Abstract
Primary aldosteronism is characterised by the excessive production of aldosterone, which is a key regulator of salt metabolism, and is the most common cause of secondary hypertension. Studies have investigated the association between primary aldosteronism and genetic alterations, with pathogenic mutations being identified. This includes a glycine-to-arginine substitution at position 151 (G151R) of the G protein-activated inward rectifier potassium (K+) channel 4 (GIRK4), which is encoded by the KCNJ5 gene. Mutations in GIRK4 have been found to reduce the selectivity for K+ ions, resulting in membrane depolarisation, the activation of voltage-gated Ca2+ channels, and an increase in aldosterone secretion. As a result, there is an interest in identifying and exploring the mechanisms of action of small molecule modulators of wildtype (WT) and mutant channels. In order to investigate the potential modulation of homotetrameric GIRK4WT and GIRK4G151R channels, homology models were generated. Molecular dynamics (MD) simulations were performed, followed by a cluster analysis to extract starting structures for molecular docking. The central cavity has been previously identified as a binding site for small molecules, including natural compounds. The OliveNetTM database, which consists of over 600 compounds from Olea europaea, was subsequently screened against the central cavity. The binding affinities and interactions of the docked ligands against the GIRK4WT and GIRK4G151R channels were then examined. Based on the results, luteolin-7-O-rutinoside, pheophorbide a, and corosolic acid were identified as potential lead compounds. The modulatory activity of olive-derived compounds against the WT and mutated forms of the GIRK4 channel can be evaluated further in vitro.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Julia J. Liang
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Noa Kino
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jessica L. Lockwood
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 2200 Copenhagen, Denmark
| | - Asmaa S. AbuMaziad
- Department of Pediatrics, College of Medicine Tucson, The University of Arizona, Tucson, AZ 85724, USA
| | - Tom C. Karagiannis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Steinmann ME, Schmidt RS, Bütikofer P, Mäser P, Sigel E. TbIRK is a signature sequence free potassium channel from Trypanosoma brucei locating to acidocalcisomes. Sci Rep 2017; 7:656. [PMID: 28386071 PMCID: PMC5429665 DOI: 10.1038/s41598-017-00752-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
Potassium channels from prokaryotes and eukaryotes are usually recognized by a typical amino acid sequence TXTGY(F)G representing the ionic selectivity filter. Using a screening approach with ion channel family profiles but without the above motif, we identified a gene in Trypanosoma brucei that exhibits homology to inward rectifying potassium channels. We report here cloning of this ion channel named TbIRK. The protein is localized to acidocalcisomes in procyclic and in bloodstream form parasites. Functional properties of this channel were established after expression in Xenopus oocytes. Currents recorded in potassium medium show inward rectification and little time dependence. Surprisingly, this channel retains selectivity for potassium ions over sodium ions >7, in spite of the lack of the classical selectivity filter. The sequence GGYVG was predicted in silico to replace this filter motif. Point mutations of the corresponding glycine residues confirmed this at the functional level. The channel is inhibited by caesium ions but remains unaffected by barium ions up to 10 mM. TbIRK is to our knowledge the first potassium channel in T. brucei that localizes to the acidocalcisomes, organelles involved in the storage of phosphates and the response to osmotic stress that occurs during the life cycle of trypanosomes.
Collapse
Affiliation(s)
- Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|