1
|
Lai Y, Wang S. Epigenetic Regulation in Insect-Microbe Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:293-311. [PMID: 39374433 DOI: 10.1146/annurev-ento-022724-010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insects have evolved diverse interactions with a variety of microbes, such as pathogenic fungi, bacteria, and viruses. The immune responses of insect hosts, along with the dynamic infection process of microbes in response to the changing host environment and defenses, require rapid and fine-tuned regulation of gene expression programs. Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA regulation, play important roles in regulating the expression of genes involved in insect immunity and microbial pathogenicity. This review highlights recent discoveries and insights into epigenetic regulatory mechanisms that modulate insect-microbe interactions. A deeper understanding of these regulatory mechanisms underlying insect-microbe interactions holds promise for the development of novel strategies for biological control of insect pests and mitigation of vector-borne diseases.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| | - Sibao Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| |
Collapse
|
2
|
Abbas MN, Kausar S, Asma B, Ran W, Li J, Lin Z, Li T, Cui H. MicroRNAs reshape the immunity of insects in response to bacterial infection. Front Immunol 2023; 14:1176966. [PMID: 37153604 PMCID: PMC10161253 DOI: 10.3389/fimmu.2023.1176966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The interaction between bacteria and insects can significantly impact a wide range of different areas because bacteria and insects are widely distributed around the globe. The bacterial-insect interactions have the potential to directly affect human health since insects are vectors for disease transmission, and their interactions can also have economic consequences. In addition, they have been linked to high mortality rates in economically important insects, resulting in substantial economic losses. MicroRNAs (miRNAs) are types of non-coding RNAs involved in regulating gene expression post-transcriptionally. The length of miRNAs ranges from 19 to 22 nucleotides. MiRNAs, in addition to their ability to exhibit dynamic expression patterns, have a diverse range of targets. This enables them to govern various physiological activities in insects, like innate immune responses. Increasing evidence suggests that miRNAs have a crucial biological role in bacterial infection by influencing immune responses and other mechanisms for resistance. This review focuses on some of the most recent and exciting discoveries made in recent years, including the correlation between the dysregulation of miRNA expression in the context of bacterial infection and the progression of the infection. Furthermore, it describes how they profoundly impact the immune responses of the host by targeting the Toll, IMD, and JNK signaling pathways. It also emphasizes the biological function of miRNAs in regulating immune responses in insects. Finally, it also discusses current knowledge gaps about the function of miRNAs in insect immunity, in addition to areas that require more research in the future.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Bibi Asma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhao Ran
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Jingui Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Zini Lin
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Tiejun Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| |
Collapse
|
3
|
Jiang S, Chen J, Li X, Ren W, Li F, Wang T, Li C, Dong Z, Tian X, Zhang L, Wang L, Lu C, Chi J, Feng L, Yan M. Identification and integrated analysis of lncRNAs and miRNAs in IPEC-J2 cells provide novel insight into the regulation of the innate immune response by PDCoV infection. BMC Genomics 2022; 23:486. [PMID: 35787252 PMCID: PMC9251034 DOI: 10.1186/s12864-022-08722-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are pivotal regulators involved in the pathogenic mechanism of multiple coronaviruses. Porcine deltacoronavirus (PDCoV) has evolved multiple strategies to escape the innate immune response of host cells, but whether ncRNAs are involved in this process during PDCoV infection is still unknown. Results In this study, the expression profiles of miRNAs, lncRNAs and mRNAs in IPEC-J2 cells infected with PDCoV at 0, 12 and 24 hours postinfection (hpi) were identified through small RNA and RNA sequencing. The differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were screened from the comparison group of IPEC-J2 cells at 0 and 12 hpi as well as the comparison group of IPEC-J2 cells at 12 and 24 hpi. The target genes of these DEncRNAs were predicted. The bioinformatics analysis of the target genes revealed multiple significantly enriched functions and pathways. Among them, the genes that were associated with innate immunity were specifically screened. The expression of innate immunity-related ncRNAs and mRNAs was validated by RT–qPCR. Competing endogenous RNA (ceRNA) regulatory networks among innate immunity-related ncRNAs and their target mRNAs were established. Moreover, we found that the replication of PDCoV was significantly inhibited by two innate immunity-related miRNAs, ssc-miR-30c-3p and ssc-miR-374b-3p, in IPEC-J2 cells. Conclusions This study provides a data platform to conduct studies of the pathogenic mechanism of PDCoV from a new perspective and will be helpful for further elucidation of the functional role of ncRNAs involved in PDCoV escaping the innate immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08722-2.
Collapse
Affiliation(s)
- Shan Jiang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiuli Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Weike Ren
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Fengxiang Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Cheng Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Zhimin Dong
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Xiangxue Tian
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Li Zhang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Lili Wang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Chao Lu
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Jingjing Chi
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Minghua Yan
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China. .,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China.
| |
Collapse
|
4
|
Guan R, Hu S, Li X, An S, Miao X, Li H. A TIL-Type Serine Protease Inhibitor Involved in Humoral Immune Response of Asian Corn Borer Ostrinia furnaculis. Front Immunol 2022; 13:900129. [PMID: 35651613 PMCID: PMC9149172 DOI: 10.3389/fimmu.2022.900129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
To elucidate the application value of insect endogenous protease and its inhibitor genes in pest control, we analyzed in detail the transcriptome sequence of the Asian corn borer, Ostrinia furnacalis. We obtained 12 protease genes and 11 protease inhibitor genes, and comprehensively analyzed of their spatiotemporal expression by qRT-PCR. In which, a previous unstudied serine protease inhibitor gene attracted our attention. It belongs to the canonical serine proteinase inhibitor family, a trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitor, but its TIL domain lacks two cysteine residues, and it was named as ACB-TIL. Its expression level is relatively very low in the absence of pathogen stimulation, and can be up-regulated expression induced by Gram-negative bacteria (Escherichia coli), virus (BmNPV), and dsRNA (dsEGFP), but cannot be induced by fungus spores (Metarrhizium anisopliae). Prokaryotic expressed ACB-TIL protein can significantly inhibit the melanization in vitro. Injecting this protein into insect body can inhibit the production of antimicrobial peptides of attacin, lebocin and gloverin. Inhibition of ACB-TIL by RNAi can cause the responses of other immune-, protease- and inhibitor-related genes. ACB-TIL is primarily involved in Asian corn borer humoral immunity in responses to Gram-negative bacteria and viruses. This gene can be a potential target for pest control since this will mainly affect insect immune response.
Collapse
Affiliation(s)
- Ruobing Guan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shaoru Hu
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Haichao Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
5
|
Gonçalves KB, Appel RJC, Bôas LAV, Cardoso PF, Bôas GTV. Genomic insights into the diversity of non-coding RNAs in Bacillus cereus sensu lato. Curr Genet 2022; 68:449-466. [PMID: 35552506 DOI: 10.1007/s00294-022-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Bacillus cereus sensu lato is a group of bacteria of medical and agricultural importance in different ecological niches and with controversial taxonomic relationships. Studying the composition of non-coding RNAs (ncRNAs) in several bacterial groups has been an important tool for identifying genetic information and better understanding genetic regulation towards environment adaptation. However, to date, no comparative genomics study of ncRNA has been performed in this group. Thus, this study aimed to identify and characterize the set of ncRNAs from 132 strains of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis to obtain an overview of the diversity and distribution of these genetic elements in these species. We observed that the number of ncRNAs differs in the chromosomes of the three species, but not in the plasmids, when species or phylogenetic clusters were compared. The prevailing functional/structural category was Cis-reg and the most frequent class was Riboswitch. However, in plasmids, the class Group II intron was the most frequent. Also, nine ncRNAs were selected for validation in the strain B. thuringiensis 407 by RT-PCR, which allowed to identify the expression of the ncRNAs. The wide distribution and diversity of ncRNAs in the B. cereus group, and more intensely in B. thuringiensis, may help improve the abilities of these species to adapt to various environmental changes. Further studies should address the expression of these genetic elements in different conditions.
Collapse
Affiliation(s)
- Kátia B Gonçalves
- Depto Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | | | | |
Collapse
|
6
|
Wu B, Li Y, Li J, Xie Z, Luan M, Gao C, Shi Y, Chen S. Genome-Wide Analysis of Alternative Splicing and Non-Coding RNAs Reveal Complicated Transcriptional Regulation in Cannabis sativa L. Int J Mol Sci 2021; 22:ijms222111989. [PMID: 34769433 PMCID: PMC8584933 DOI: 10.3390/ijms222111989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
It is of significance to mine the structural genes related to the biosynthetic pathway of fatty acid (FA) and cellulose as well as explore the regulatory mechanism of alternative splicing (AS), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the biosynthesis of cannabinoids, FA and cellulose, which would enhance the knowledge of gene expression and regulation at post-transcriptional level in Cannabis sativa L. In this study, transcriptome, small RNA and degradome libraries of hemp 'Yunma No.1' were established, and comprehensive analysis was performed. As a result, a total of 154, 32 and 331 transcripts encoding key enzymes involved in the biosynthesis of cannabinoids, FA and cellulose were predicted, respectively, among which AS occurred in 368 transcripts. Moreover, 183 conserved miRNAs, 380 C. sativa-specific miRNAs and 7783 lncRNAs were predicted. Among them, 70 miRNAs and 17 lncRNAs potentially targeted 13 and 17 transcripts, respectively, encoding key enzymes or transporters involved in the biosynthesis of cannabinoids, cellulose or FA. Finally, the crosstalk between AS and miRNAs or lncRNAs involved in cannabinoids and cellulose was also predicted. In summary, all these results provided insights into the complicated network of gene expression and regulation in C. sativa.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Yanni Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Jishuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Zhenzhen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
- Correspondence:
| |
Collapse
|
7
|
Yang J, Xu X, Lin S, Chen S, Lin G, Song Q, Bai J, You M, Xie M. Profiling of MicroRNAs in Midguts of Plutella xylostella Provides Novel Insights Into the Bacillus thuringiensis Resistance. Front Genet 2021; 12:739849. [PMID: 34567090 PMCID: PMC8455949 DOI: 10.3389/fgene.2021.739849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023] Open
Abstract
The diamondback moth (DBM), Plutella xylostella, one of the most destructive lepidopteran pests worldwide, has developed field resistance to Bacillus thuringiensis (Bt) Cry toxins. Although miRNAs have been reported to be involved in insect resistance to multiple insecticides, our understanding of their roles in mediating Bt resistance is limited. In this study, we constructed small RNA libraries from midguts of the Cry1Ac-resistant (Cry1S1000) strain and the Cry1Ac-susceptible strain (G88) using a high-throughput sequencing analysis. A total of 437 (76 known and 361 novel miRNAs) were identified, among which 178 miRNAs were classified into 91 miRNA families. Transcripts per million analysis revealed 12 differentially expressed miRNAs between the Cry1S1000 and G88 strains. Specifically, nine miRNAs were down-regulated and three up-regulated in the Cry1S1000 strain compared to the G88 strain. Next, we predicted the potential target genes of these differentially expressed miRNAs and carried out GO and KEGG pathway analyses. We found that the cellular process, metabolism process, membrane and the catalytic activity were the most enriched GO terms and the Hippo, MAPK signaling pathway might be involved in Bt resistance of DBM. In addition, the expression patterns of these miRNAs and their target genes were determined by RT-qPCR, showing that partial miRNAs negatively while others positively correlate with their corresponding target genes. Subsequently, novel-miR-240, one of the differentially expressed miRNAs with inverse correlation with its target genes, was confirmed to interact with Px017590 and Px007885 using dual luciferase reporter assays. Our study highlights the characteristics of differentially expressed miRNAs in midguts of the Cry1S1000 and G88 strains, paving the way for further investigation of miRNA roles in mediating Bt resistance.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuejiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sujie Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiyao Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Jianlin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Miao Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Zhang BZ, Hu GL, Lu LY, Hu SF, Li YS, Su X, Dong WY, Zhen CA, Liu RQ, Kong FB, Shi MW, Chen XL. Identification of differentially expressed microRNAs under imidacloprid exposure in Sitobion miscanthi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104885. [PMID: 34301353 DOI: 10.1016/j.pestbp.2021.104885] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Imidacloprid is a neonicotinoid that targets sucking pests, such as aphids and the green leaf bug and has been widely applied in wheat fields to control wheat aphids in China. To investigate the involvement of miRNAs in imidacloprid resistance, we sequenced small RNA libraries of Sitobion miscanthi Fabricius, across two different treatments using Illumina short-read sequencing technology. As a result, 265 microRNAs (miRNAs), of which 242 were known and 23 were novel, were identified. Quantitative analysis of miRNA levels showed that 23 miRNAs were significantly up-regulated, and 54 miRNAs were significantly down-regulated in the nymphs of S. miscanthi treated with imidacloprid in comparison with those of the control. Modulation of the abundances of differentially expressed miRNAs, smi-miR-316, smi-miR-1000, and smi-miR-iab-4 by the addition of the corresponding antagomir/inhibitor to the artificial diet significantly changed the susceptibility of S. miscanthi to imidacloprid. Subsequently, the post-transcriptional regulatory mechanism was conducted, smi-miR-278 and smi-miR-316 were confirmed to be participated in the post-transcriptional regulation of nAChRα1A and CYP4CJ6, respectively. The results suggested that miRNAs differentially expressed in response to imidacloprid could play a critical regulatory role in the metabolism of S. miscanthi to imidacloprid.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China.
| | - Gui-Lei Hu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Liu-Yang Lu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Shuai-Fei Hu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Ya-She Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xu Su
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Wen-Yang Dong
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Cong-Ai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Run-Qiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Fan-Bin Kong
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Ming-Wang Shi
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xi-Ling Chen
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| |
Collapse
|
9
|
Yang X, Fishilevich E, German MA, Gandra P, McEwan RE, Billion A, Knorr E, Vilcinskas A, Narva KE. Elucidation of the microRNA Transcriptome in Western Corn Rootworm Reveals Its Dynamic and Evolutionary Complexity. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:800-814. [PMID: 33607298 PMCID: PMC9170749 DOI: 10.1016/j.gpb.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/21/2018] [Accepted: 03/28/2019] [Indexed: 11/25/2022]
Abstract
Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation. More specifically, the involvement of small RNAs (sRNAs), especially microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate various biological processes, has not been examined, and the datasets of putative sRNA sequences have not previously been generated for WCR. To achieve a comprehensive collection of sRNA transcriptomes in WCR, we constructed, sequenced, and analyzed sRNA libraries from different life stages of WCR and northern corn rootworm (NCR), and identified 101 conserved precursor miRNAs (pre-miRNAs) in WCR and other Arthropoda. We also identified 277 corn rootworm specific pre-miRNAs. Systematic analyses of sRNA populations in WCR revealed that its sRNA transcriptome, which includes PIWI-interacting RNAs (piRNAs) and miRNAs, undergoes a dynamic change throughout insect development. Phylogenetic analysis of miRNA datasets from model species reveals that a large pool of species-specific miRNAs exists in corn rootworm; these are potentially evolutionarily transient. Comparisons of WCR miRNA clusters to other insect species highlight conserved miRNA-regulated processes that are common to insects. Parallel Analysis of RNA Ends (PARE) also uncovered potential miRNA-guided cleavage sites in WCR. Overall, this study provides a new resource for studying the sRNA transcriptome and miRNA-mediated gene regulation in WCR and other Coleopteran insects.
Collapse
Affiliation(s)
- Xiaozeng Yang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States.
| | - Elane Fishilevich
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States; University of Nebraska-Lincoln, Department of Entomology, Nebraska, 68583, United States
| | - Marcelo A German
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States
| | - Premchand Gandra
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States
| | - Robert E McEwan
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States
| | - André Billion
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany
| | - Eileen Knorr
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany
| | - Kenneth E Narva
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States.
| |
Collapse
|
10
|
Wang X, Xu Y, Huang J, Jin W, Yang Y, Wu Y. CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin. Toxins (Basel) 2020; 12:toxins12040246. [PMID: 32290427 PMCID: PMC7232378 DOI: 10.3390/toxins12040246] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
The adoption of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystalline (Cry) proteins has reduced insecticide application, increased yields, and contributed to food safety worldwide. However, the efficacy of transgenic Bt crops is put at risk by the adaptive resistance evolution of target pests. Previous studies indicate that resistance to Bacillus thuringiensis Cry1A and Cry1F toxins was genetically linked with mutations of ATP-binding cassette (ABC) transporter subfamily C gene ABCC2 in at least seven lepidopteran insects. Several strains selected in the laboratory of the Asian corn borer, Ostrinia furnacalis, a destructive pest of corn in Asian Western Pacific countries, developed high levels of resistance to Cry1A and Cry1F toxins. The causality between the O. furnacalisABCC2 (OfABCC2) gene and resistance to Cry1A and Cry1F toxins remains unknown. Here, we successfully generated a homozygous strain (OfC2-KO) of O. furnacalis with an 8-bp deletion mutation of ABCC2 by the CRISPR/Cas9 approach. The 8-bp deletion mutation results in a frame shift in the open reading frame of transcripts, which produced a predicted protein truncated in the TM4-TM5 loop region. The knockout strain OfC2-KO showed much more than a 300-fold resistance to Cry1Fa, and low levels of resistance to Cry1Ab and Cry1Ac (<10-fold), but no significant effects on the toxicities of Cry1Aa and two chemical insecticides (abamectin and chlorantraniliprole), compared to the background NJ-S strain. Furthermore, we found that the Cry1Fa resistance was autosomal, recessive, and significantly linked with the 8-bp deletion mutation of OfABCC2 in the OfC2-KO strain. In conclusion, in vivo functional investigation demonstrates the causality of the OfABCC2 truncating mutation with high-level resistance to the Cry1Fa toxin in O. furnacalis. Our results suggest that the OfABCC2 protein might be a functional receptor for Cry1Fa and reinforces the association of this gene to the mode of action of the Cry1Fa toxin.
Collapse
Affiliation(s)
| | | | | | | | | | - Yidong Wu
- Correspondence: ; Tel.: +86-25-8439-6062
| |
Collapse
|
11
|
Zhu B, Sun X, Nie X, Liang P, Gao X. MicroRNA-998-3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103283. [PMID: 31759051 DOI: 10.1016/j.ibmb.2019.103283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Cry protein toxins produced by Bacillus thuringiensis (Bt) are now widely used in sprays and transgenic crops to control insect pests. Most recently, ATP-binding cassette transporter proteins (ABC transporter), including ABCC2, ABCC3, ABCG1, ABCA2 and ABCB1, were reported as putative receptors for different Cry toxins. However, little is known about the regulatory mechanism involved in the expression of these ABC transporter genes. In the present study, a conserved target site of miR-998-3p was identified from the coding sequence (CDS) of ABCC2 in diverse lepidopteran insects. Luciferase reporter assays demonstrated that miR-998-3p could bind to the CDS of ABCC2 and down-regulate its expression through a conserved site and several non-conserved sites in three representative lepidopteran pests, including Helicoverpa armigera, Spodoptera exigua and Plutella xylostella. Injection of miR-998-3p agomir significantly reduced the abundance of ABCC2, accompanied by increased tolerance to Cry1Ac toxin in H. armigera, S. exigua and P. xylostella (Cry-S) larvae, while injection of miR-998-3p antagomir increased the abundance of ABCC2 dramatically, and thereby reduced the Cry1Ac resistance in a Cry1Ac resistant population of P. xylostella (GX-R). These results give a better understanding of the mechanisms of post-transcriptional regulation of ABCC2, and will be helpful for further studies on the role of miRNAs in the regulation of Cry1Ac resistance in lepidopteran pests.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Xi Sun
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Ximan Nie
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
12
|
Fabrick JA, Mathew LG, LeRoy DM, Hull JJ, Unnithan GC, Yelich AJ, Carrière Y, Li X, Tabashnik BE. Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. PEST MANAGEMENT SCIENCE 2020; 76:67-74. [PMID: 31140680 DOI: 10.1002/ps.5496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Better understanding of the molecular basis of resistance is needed to improve management of pest resistance to transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Here we analyzed resistance of the pink bollworm (Pectinophora gossypiella) to Bt toxin Cry1Ac, which is used widely in transgenic Bt cotton. Field-evolved practical resistance of pink bollworm to Cry1Ac is widespread in India, but not in China or the United States. Previous work with laboratory- and field-selected pink bollworm indicated that resistance to Cry1Ac is caused by changes in the amino acid sequence of a midgut cadherin protein (PgCad1) that binds Cry1Ac in susceptible larvae. RESULTS Relative to a susceptible strain, the laboratory-selected APHIS-R strain had 530-fold resistance to Cry1Ac with autosomal recessive inheritance. Unlike previous results, resistance in this strain was not consistently associated with insertions or deletions in the expected amino acid sequence of PgCad1. However, this resistance was associated with 79- to 190-fold reduced transcription of the PgCad1 gene and markedly lower abundance of PgCad1 protein. CONCLUSION The ability of pink bollworm and other major pests to evolve resistance to Bt toxins via both qualitative and quantitative changes in receptor proteins demonstrates their remarkable adaptability and presents challenges for monitoring and managing resistance to Bt crops. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Lolita G Mathew
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
- Pairwise Plants, Research Triangle Park, NC, USA
| | - Dannialle M LeRoy
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - J Joe Hull
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | | | - Alex J Yelich
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
13
|
You L, Bi HL, Wang YH, Li XW, Chen XE, Li ZQ. CRISPR/Cas9-based mutation reveals Argonaute 1 is essential for pigmentation in Ostrinia furnacalis. INSECT SCIENCE 2019; 26:1020-1028. [PMID: 29938905 DOI: 10.1111/1744-7917.12628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/27/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Ostrinia furnacalis (Lepidoptera: Pyralidae) is one of the most destructive agricultural pests in Asia. Traditional pest-management methods include sex pheromone capture, transgenic crops that produce Bacillus thuringiensis toxin, and pesticides. Although these strategies control pest populations effectively, they also cause negative side effects, including dramatically increased pesticide resistance, severe pollution, and hazards for human health. Recently developed genome editing tools provide new prospects for pest management and have been successfully used in several species. However, few examples have been reported in the agricultural pest O. furnacalis due to a lack in genomic information. In this report, we identified only one transcript of O. furnacalis Argonaute 1 (OfAgo1) gene from the genome and cloned the open reading frame. OfAgo1 presented the maximum expression at the embryo stage or in the fat body during the larval stages. To understand its function, an OfAgo1 mutant was constructed using the Clustered Regularly Interspaced Short Palindromic Repeat/RNA-guided Cas9 nuclease (CRISPR/Cas9). Mutagenesis of OfAgo1 disrupted cuticle pigmentation by down-regulating micro RNAs and pigmentation-related genes. This is the first report for the cloning and functional analysis of OfAgo1, revealing a role of OfAgo1 in cuticle pigmentation. The current report also established a CRISPR/Cas9 system in O. furnacalis, providing a new insight for pest management.
Collapse
Affiliation(s)
- Lang You
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Lun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yao-Hui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Wei Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xi-En Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qian Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Ražná K, Cagáň Ľ. The Role of MicroRNAs in Genome Response to Plant-Lepidoptera Interaction. PLANTS (BASEL, SWITZERLAND) 2019; 8:E529. [PMID: 31757090 PMCID: PMC6963388 DOI: 10.3390/plants8120529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
RNA interference is a known phenomenon of plant immune responses, involving the regulation of gene expression. The key components triggering the silencing of targeted sequences are double-stranded RNA molecules. The regulation of host-pathogen interactions is controlled by miRNA molecules, which regulate the expression of host resistance genes or the genes of the pathogen. The review focused on basic principles of RNA interference as a gene-silencing-based defense mechanism and the role of miRNA molecules in insect genomes. RNA interference as a tool for plant protection management is discussed. The review summarizes current miRNA-based biotechnology approaches for plant protection management.
Collapse
Affiliation(s)
- Katarína Ražná
- Department of Genetics and Plant Breeding, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Ľudovít Cagáň
- Department of Plant Protection; Slovak University of Agriculture, 94976 Nitra, Slovakia;
| |
Collapse
|
15
|
Qiao J, Du Y, Yu J, Guo J. MicroRNAs as Potential Biomarkers of Insecticide Exposure: A Review. Chem Res Toxicol 2019; 32:2169-2181. [PMID: 31625722 DOI: 10.1021/acs.chemrestox.9b00236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Insecticides are key weapons for the control of pests. Large scale use of insecticides is harmful to the ecosystem, which is made up of a wide range of species and environments. MicroRNAs (miRNAs) are a class of endogenous single-stranded noncoding small RNAs in length of 20-24 nucleotides (nt), which extensively regulate expression of genes at transcriptional and post-transcriptional levels. The current research on miRNA-induced insecticide resistance reveals that dysregulated miRNAs cause significant changes in detoxification genes, particularly cytochrome P450s. Meanwhile, insecticide-induced changes in miRNAs are related to the decline of honeybees and threatened the development of zebrafish and other animals. Additionally, miRNAs are involved in insecticide-induced cytotoxicity, and dysregulated miRNAs are associated with human occupational and environmental exposure to insecticides. Therefore, miRNAs are valuable novel biomarkers of insecticide exposure, and they are potential factors to explain the toxicological effects of insecticides.
Collapse
Affiliation(s)
- Jiakai Qiao
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Yuting Du
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Junjie Yu
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Jiangfeng Guo
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| |
Collapse
|
16
|
Dhania NK, Chauhan VK, Chaitanya R, Dutta-Gupta A. Midgut de novo transcriptome analysis and gene expression profiling of Achaea janata larvae exposed with Bacillus thuringiensis (Bt)-based biopesticide formulation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:81-90. [DOI: 10.1016/j.cbd.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 02/14/2019] [Indexed: 11/24/2022]
|
17
|
Wang Y, Peng M, Wang W, Chen Y, He Z, Cao J, Lin Z, Yang Z, Gong M, Yin Y. Verification of miRNAs in ginseng decoction by high-throughput sequencing and quantitative real-time PCR. Heliyon 2019; 5:e01418. [PMID: 30984884 PMCID: PMC6446053 DOI: 10.1016/j.heliyon.2019.e01418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Panax ginseng C. A. Meyer is a precious traditional Chinese medicine that has been clinically used for over thousands of years. In general, ginseng needs to be prepared to ginseng decoction before taking it. MicroRNAs are a class of small (18–24 nt), single-stranded molecules that regulate gene expression at the post-transcriptional level. Considering that ginseng miRNAs may be bioactive compounds, we used Illumina high-throughput sequencing and quantitative real-time PCR (qRT-PCR) to validate the existence of miRNAs in fresh ginseng decoction which have been boiled at high temperature. Our previous studies have demonstrated that there are several miRNAs in fresh ginseng. The roots of fresh Panax ginseng were prepared according to routine methods, from which miRNAs were extracted and sequenced. A total of 43 miRNAs were identified from water decoction by Illumina high-throughput sequencing, belonging to 71 miRNA families. The target genes of these miRNAs were predicted by sequencing, and were annotated by GO, KEGG and Nr databases. The functions of these target genes mainly included plant hormone signal transduction, transcription regulation, macromolecular metabolism and auxin signaling. Nine highly expressed miRNAs (miR159, miR167, miR396, miR166, miR168, miR156, miR165, miR162 and miR394) were verified by qRT-PCR, and the results of Illumina high-throughput sequencing and qRT-PCR were consistent. Results from this study indicate that miRNAs remained stable in P. ginseng after high-temperature boiling. Additionally, Illumina high-throughput sequencing was superior in the acquisition of higher amount of small RNAs.
Collapse
Affiliation(s)
- Yingfang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangzhou 510006, china
- Corresponding author.
| | - Mengyuan Peng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjuan Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanlin Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhihua He
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingjing Cao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiyun Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zemin Yang
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengjuan Gong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongqin Yin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
18
|
Li S, Xu X, Zheng Z, Zheng J, Shakeel M, Jin F. MicroRNA expression profiling of Plutella xylostella after challenge with B. thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:115-124. [PMID: 30582949 DOI: 10.1016/j.dci.2018.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The diamondback moth, Plutella xylostella, the main pest of brassica crops, has developed resistance to almost all major classes of insecticides as the farmers rely on insecticides to control this pest. An extensive use of broad-spectrum insecticides against P. xylostella promotes the selection of insecticide resistance, destroy natural enemies, and pollute the environment. In this scenario, it is imperative to use genetic methods such as gene silencing technology as an alternate approach against this pest. Evidence shows that microRNAs play pivotal roles in the regulation of target genes at the post-transcription level and show differential expression under various biological processes. However, the knowledge of their role in insect immunity is still in its infancy. In the present study, we aimed at exploring the response of P. xylostella miRNAs against B. thuringiensis at different time courses (6, 12, 18, 24, and 36 h) by using small RNA sequencing. After data filtration, a combined set of 149 miRNAs was identified from all the libraries. Interestingly, a couple of conserved miRNAs such as miR-1, Let-7, miR-275, miR-184, and miR-10 were listed as abundantly expressed miRNAs after exposure to B. thuringiensis. It is worth mentioning that the differential expression analysis revealed that miR-2, a conserved miRNA, was up-regulated following infection. Furthermore, we experimentally validated the involvement of miR-2b-3p in the regulation of corresponding target trypsin. Our luciferase assay results revealed that miR-2b-3p mimic significantly down-regulated the target gene trypsin indicating that it might play a crucial role in the defense mechanism of P. xylostella against B. thuringiensis infection. On the whole, our findings provide insights into the possible regulatory role of miRNAs in insect immunity in response to microorganisms.
Collapse
Affiliation(s)
- Shuzhong Li
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Zhihua Zheng
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Jinlong Zheng
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Muhammad Shakeel
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China.
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China.
| |
Collapse
|
19
|
Chen J, Li TC, Pang R, Yue XZ, Hu J, Zhang WQ. Genome-Wide Screening and Functional Analysis Reveal That the Specific microRNA nlu-miR-173 Regulates Molting by Targeting Ftz-F1 in Nilaparvata lugens. Front Physiol 2018; 9:1854. [PMID: 30618850 PMCID: PMC6306441 DOI: 10.3389/fphys.2018.01854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 01/28/2023] Open
Abstract
Background: Molting is a crucial physiological behavior during arthropod growth. In the past few years, molting as well as chitin biosynthesis triggered by molting, is subject to regulation by miRNAs. However, how many miRNAs are involved in insect molting at the genome-wide level remains unknown. Results: We deeply sequenced four samples obtained from nymphs at the 2nd-3rd and 4th-5th instars, and then identified 61 miRNAs conserved in the Arthropoda and 326 putative novel miRNAs in the brown planthopper Nilaparvata lugens, a fearful pest of rice. A total of 36 mature miRNAs with significant different expression levels at the genome scale during molting, including 19 conserved and 17 putative novel miRNAs were identified. After comparing the expression profiles, we found that most of the targets of 36 miRNAs showing significantly differential expression were involved in energy and hormone pathways. One of the 17 putative novel miRNAs, nlu-miR-173 was chosen for functional study. nlu-miR-173 acts in 20-hydroxyecdysone signaling through its direct target, N. lugens Ftz-F1(NlFtz-F1), a transcription factor. Furthermore, we found that the transcription of nlu-miR-173 was promoted by Broad-Complex (BR-C), suggesting that its involvement in the 20-hydroxyecdysone pathway contributes to proper molting function. Conclusion: We provided a comprehensive resource of miRNAs associated with insect molting and identified a novel miRNA as a potential target for pest control.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Teng Chao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhao Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Qing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Yu T, Li X, Coates BS, Zhang Q, Siegfried BD, Zhou X. microRNA profiling between Bacillus thuringiensis Cry1Ab-susceptible and -resistant European corn borer, Ostrinia nubilalis (Hübner). INSECT MOLECULAR BIOLOGY 2018; 27:279-294. [PMID: 29451334 DOI: 10.1111/imb.12376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transgenic maize hybrids that express insecticidal Bacillus thuringiensis (Bt) crystalline (Cry) protein toxins effectively protect against the European corn borer, Ostrinia nubilalis, a devastating maize pest. Field monitoring and laboratory selections have detected varying levels of O. nubilalis resistance to Cry1Ab toxin. MicroRNAs (miRNAs) are short noncoding RNAs that are involved in post-transcriptional gene regulation. Their potential roles in the evolution of Bt resistance, however, remain largely unknown. Sequencing of small RNA libraries from the midgut of Cry1Ab-susceptible and resistant O. nubilalis larvae resulted in the discovery of 277 miRNAs, including 248 conserved and 29 novel. Comparative analyses of miRNA expression profiles between the laboratory strains predicted 26 and nine significantly up- and down-regulated transcripts, respectively, in the midgut of Cry1Ab resistant larvae. Amongst 15 differentially regulated miRNAs examined by quantitative real-time PCR, nine (60%) were validated as cosegregating with Cry1Ab resistance in a backcross progeny. Differentially expressed miRNAs were predicted to affect transcripts involved in cell membrane components with functions in metabolism and binding, and the putative Bt-resistance genes aminopeptidase N and cadherin. These results lay the foundation for future investigation of the potential role of miRNAs in the evolution of Bt resistance.
Collapse
Affiliation(s)
- T Yu
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - X Li
- Department of Entomology, University of Kentucky, Lexington, KY, USA
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - B-S Coates
- Corn Insects & Crop Genetics Research Unit, USDA-ARS, Ames, IA, USA
| | - Q Zhang
- Department of Entomology, University of Kentucky, Lexington, KY, USA
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - B-D Siegfried
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - X Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Differentially expressed microRNAs associated with changes of transcript levels in detoxification pathways and DDT-resistance in the Drosophila melanogaster strain 91-R. PLoS One 2018; 13:e0196518. [PMID: 29698530 PMCID: PMC5919617 DOI: 10.1371/journal.pone.0196518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Dichloro-diphenyl-trichloroethane (DDT) resistance among arthropod species is a model for understanding the molecular adaptations in response to insecticide exposures. Previous studies reported that DDT resistance may involve one or multiple detoxification genes, such as cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), esterases, and ATP binding cassette (ABC) transporters, or changes in the voltage-sensitive sodium channel. However, the possible involvement of microRNAs (miRNAs) in the post-transcriptional regulation of genes associated with DDT resistance in the Drosophila melanogaster strain 91-R remains poorly understood. In this study, the majority of the resulting miRNAs discovered in small RNA libraries from 91-R and the susceptible control strain, 91-C, ranged from 16-25 nt, and contained 163 precursors and 256 mature forms of previously-known miRNAs along with 17 putative novel miRNAs. Quantitative analyses predicted the differential expression of ten miRNAs between 91-R and 91-C, and, based on Gene Ontology and pathway analysis, these ten miRNAs putatively target transcripts encoding proteins involved in detoxification mechanisms. RT-qPCR validated an inverse correlation between levels of differentially-expressed miRNAs and their putatively targeted transcripts, which implies a role of these miRNAs in the differential regulation of detoxification pathways in 91-R compared to 91-C. This study provides evidence associating the differential expression of miRNAs in response to multigenerational DDT selection in Drosophila melanogaster and provides important clues for understanding the possible roles of miRNAs in mediating insecticide resistance traits.
Collapse
|
22
|
Shakeel M, Xu X, Xu J, Li S, Yu J, Zhou X, Xu X, Hu Q, Yu X, Jin F. Genome-Wide Identification of Destruxin A-Responsive Immunity-Related MicroRNAs in Diamondback Moth, Plutella xylostella. Front Immunol 2018; 9:185. [PMID: 29472927 PMCID: PMC5809476 DOI: 10.3389/fimmu.2018.00185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Plutella xylostella, a global key pest, is one of the major lepidopteran pests of cruciferous vegetables owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of the entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects and has been used as an alternative control strategy to reduce harmful effects of insecticides. However, microRNA (miRNA)-regulated reactions against destruxin A have not been elucidated yet. Therefore, here, to identify immunity-related miRNAs, we constructed four small RNA libraries from destruxin A-injected larvae of P. xylostella at three different time courses (2, 4, and 6 h) with a control, and sequenced by Illumina. Our results showed that totally 187 known and 44 novel miRNAs were identified in four libraries by bioinformatic analysis. Interestingly, among differentially expressed known miRNAs, some conserved miRNAs, such as miR-263, miR-279, miR-306, miR-2a, and miR-308, predicted to be involved in regulating immunity-related genes, were also identified. Worthy to mention, miR-306 and miR-279 were also listed as common abundantly expressed miRNA in all treatments. The Kyoto Encyclopedia of Genes and Genomes pathway analysis also indicated that differentially expressed miRNAs were involved in several immunity-related signaling pathways, including toll signaling pathway, IMD signaling pathway, JAK-STAT signaling pathway, and cell adhesion molecules signaling pathway. To the best of our knowledge, this is the first comprehensive report of destruxin A-responsive immunity-related miRNAs in P. xylostella. Our findings will improve in understanding the role of destruxin A-responsive miRNAs in the host immune system and would be useful to develop biological control strategies for controlling P. xylostella.
Collapse
Affiliation(s)
- Muhammad Shakeel
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Jin Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Shuzhong Li
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Jialin Yu
- Beijing Genomic Institute, Shenzhen, China
| | | | | | - Qiongbo Hu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Xiaoqiang Yu
- School of Life Sciences, Institute of Insect Science and Technology, South China Normal University, Guangzhou, China
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| |
Collapse
|
23
|
Xu J, Xu X, Li S, Wang S, Xu X, Zhou X, Yu J, Yu X, Shakeel M, Jin F. Genome-Wide Profiling of Plutella xylostella Immunity-Related miRNAs after Isaria fumosorosea Infection. Front Physiol 2017; 8:1054. [PMID: 29311981 PMCID: PMC5735356 DOI: 10.3389/fphys.2017.01054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level.
Collapse
Affiliation(s)
- Jin Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shuzhong Li
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shuang Wang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | | | - Jialin Yu
- Beijing Genomic Institute, Shenzhen, China
| | - Xiaoqiang Yu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Muhammad Shakeel
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Zhang T, Coates BS, Wang Y, Wang Y, Bai S, Wang Z, He K. Down-regulation of aminopeptidase N and ABC transporter subfamily G transcripts in Cry1Ab and Cry1Ac resistant Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Int J Biol Sci 2017; 13:835-851. [PMID: 28808417 PMCID: PMC5555102 DOI: 10.7150/ijbs.18868] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
The Asian corn borer (ACB), Ostrinia furnacalis (Lepidoptera: Crambidae), is a highly destructive pest of cultivated maize throughout East Asia. Bacillus thuringiensis (Bt) crystalline protein (Cry) toxins cause mortality by a mechanism involving pore formation or signal transduction following toxin binding to receptors along the midgut lumen of susceptible insects, but this mechanism and mutations therein that lead to resistance are not fully understood. In the current study, quantitative comparisons were made among midgut expressed transcripts from O. furnacalis susceptible (ACB-BtS) and laboratory selected strains resistant to Cry1Ab (ACB-AbR) and Cry1Ac toxins (ACB-AcR) when feeding on non-Bt diet. From a combined de novo transcriptome assembly of 83,370 transcripts, ORFs of ≥ 100 amino acids were predicted and annotated for 28,940 unique isoforms derived from 12,288 transcripts. Transcriptome-wide expression estimated from RNA-seq read depths predicted significant down-regulation of transcripts for previously known Bt resistance genes, aminopeptidase N1 (apn1) and apn3, as well as a putative ATP binding cassette transporter group G (abcg) gene in both ACB-AbR and -AcR (log2[fold-change] ≥ 1.36; P < 0.0001). The transcripts that were most highly differentially regulated in both ACB-AbR and -AcR compared to ACB-BtS (log2[fold-change] ≥ 2.0; P < 0.0001) included up- and down-regulation of serine proteases, storage proteins and cytochrome P450 monooxygenases, as well as up-regulation of genes with predicted transport function. This study predicted the significant down-regulation of transcripts for previously known Bt resistance genes, aminopeptidase N1 (apn1) and apn3, as well as abccg gene in both ACB-AbR and -AcR. These data are important for the understanding of systemic differences between Bt resistant and susceptible genotypes.
Collapse
Affiliation(s)
- Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Brad S. Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yidong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
25
|
Su Y, Zhang Y, Huang N, Liu F, Su W, Xu L, Ahmad W, Wu Q, Guo J, Que Y. Small RNA sequencing reveals a role for sugarcane miRNAs and their targets in response to Sporisorium scitamineum infection. BMC Genomics 2017; 18:325. [PMID: 28438123 PMCID: PMC5404671 DOI: 10.1186/s12864-017-3716-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sugarcane smut caused by Sporisorium scitamineum leads to a significant reduction in cane yield and sucrose content. MicroRNAs (miRNAs) play an important role in regulating plant responses to biotic stress. The present study was the first to use two sugarcane genotypes, YA05-179 (smut-resistant) and ROC22 (smut-susceptible), to identify differentially expressed miRNAs in sugarcane challenged with S. scitamineum by using high-throughput sequencing. RESULTS The predicted target gene number corresponding to known differentially expressed miRNAs in YA05-179 was less than that in ROC22, however most of them were in common. Expression of differential miRNAs under S. scitamineum challenge was mostly downregulated, with similar trends in the two varieties. Gene ontology (GO) analysis showed that the target gene classification of known miRNAs was similar to that of the newly identified miRNAs. These were mainly associated with cellular processes and metabolic processes in the biological process category, as well as combination and catalytic activity in the molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these predicted target genes involved in a series of physiological and biochemical pathways or disease resistance-related physiological metabolism and signal transduction pathways, suggesting that the molecular interaction mechanism between sugarcane and S. scitamineum was a complex network system. These findings also showed certain predicted target genes of miR5671, miR5054, miR5783, miR5221, and miR6478 play roles in the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction. Quantitative real-time PCR (qRT-PCR) analysis showed that majority of the known miRNAs and its predicted target genes followed a negatively regulated mode. Seven out of eight predicted target genes showed identical expression after 12 h treatment and reached the highest degree of matching at 48 h, indicating that the regulatory role of miRNAs on the target genes in sugarcane was maximized at 48 h after S. scitamineum challenge. CONCLUSIONS Taken together, our findings serve as evidence for the association of miRNA expression with the molecular mechanism underlying the pathogenesis of sugarcane smut, particularly on the significance of miRNA levels in relation to the cultivation of smut-resistant sugarcane varieties.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuye Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Waqar Ahmad
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
26
|
Zhu B, Li X, Liu Y, Gao X, Liang P. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.). Sci Rep 2017; 7:40713. [PMID: 28098189 PMCID: PMC5241650 DOI: 10.1038/srep40713] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/08/2016] [Indexed: 01/10/2023] Open
Abstract
The diamondback moth (DBM), Plutella xylostella (L.), is one of the most serious cruciferous pests and has developed high resistance to most insecticides, including chlorantraniliprole. Previous studies have reported several protein-coding genes that involved in chlorantraniliprole resistance, but research on resistance mechanisms at the post-transcription level is still limited. In this study, a global screen of microRNAs (miRNAs) associated with chlorantraniliprole resistance in P. xylostella was performed. The small RNA libraries for a susceptible (CHS) and two chlorantraniliprole resistant strains (CHR, ZZ) were constructed and sequenced, and a total of 199 known and 30 novel miRNAs were identified. Among them, 23 miRNAs were differentially expressed between CHR and CHS, and 90 miRNAs were differentially expressed between ZZ and CHS, of which 11 differentially expressed miRNAs were identified in both CHR and ZZ. Using miRanda and RNAhybrid, a total of 1,411 target mRNAs from 102 differentially expressed miRNAs were predicted, including mRNAs in several groups of detoxification enzymes. The expression of several differentially expressed miRNAs and their potential targets was validated by qRT-PCR. The results may provide important clues for further study of the mechanisms of miRNA-mediated chlorantraniliprole resistance in DBM and other target insects.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiuxia Li
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
27
|
Cui L, Rui C, Yang D, Wang Z, Yuan H. De novo transcriptome and expression profile analyses of the Asian corn borer (Ostrinia furnacalis) reveals relevant flubendiamide response genes. BMC Genomics 2017; 18:20. [PMID: 28056803 PMCID: PMC5217215 DOI: 10.1186/s12864-016-3431-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Background The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), has become the most damaging insect pest of corn in Asia. However, the lack of genome or transcriptome information heavily hinders our further understanding of ACB in every aspect at a molecular level and on a genome-wide scale. Here, we used the Ion Torrent Personal Genome Machine (PGM) Sequencer to explore the ACB transcriptome and to identify relevant genes in response to flubendiamide, showing high selective activity against ACB. Results We obtained 35,430 unigenes, with an average length of 716 bp, representing a dramatic expansion of existing cDNA sequences available for ACB. These sequences were annotated with Non-redundant Protein (Nr), Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to better understand their functions. A total of 31 cytochrome P450 monooxygenases (P450s), 27 carboxyl/cholinesterases (CCEs) and 19 glutathione S-transferases (GSTs) were manually curated to construct phylogenetic trees, and 25 unigenes encoding target proteins (acetylcholinesterase, nicotinic acetylcholine receptor, gamma-aminobutyric acid receptor, glutamate-gated chloride channel, voltage-gated sodium channel and ryanodine receptor) were identified. In addition, we compared and validated the differentially expressed unigenes upon flubendiamide treatment, revealing that the genes for detoxification enzymes (P450s and esterase), calcium signaling pathways and muscle control pathways (twitchin and tropomyosin), immunoglobulin (hemolin), chemosensory protein and heat shock protein 70 were significantly overexpressed in response to flubendiamide, while the genes for cuticular protein, protease and oxidoreductase showed much lower expression levels. Conclusion The obtained transcriptome information provides large genomic resources available for further studies of ACB. The differentially expressed gene data will elucidate the molecular mechanisms of ACB in response to the novel diamide insecticide, flubendiamide. In particular, these findings will facilitate the identification of the genes involved in insecticide resistance and the development of new compounds to control the ACB. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3431-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Daibin Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Huizhu Yuan
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
28
|
Han L, Jiang X, Peng Y. Potential resistance management for the sustainable use of insect-resistant genetically modified corn and rice in China. CURRENT OPINION IN INSECT SCIENCE 2016; 15:139-143. [PMID: 27436744 DOI: 10.1016/j.cois.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 06/06/2023]
Abstract
Many lines of insect-resistant genetically modified (IRGM) corn and rice containing Bacillus thuringiensis (Bt) insecticidal genes have been developed and undergone different environmental biosafety assessments stages in China, showing robust application prospects. The potential of targeted pests to develop resistance to Bt crops is widespread, which threatens the sustainable utility of IRGM corn and rice. In this study, the potential risks of target pest complexes developing resistance to IRGM corn and rice are evaluated. Theoretical and empirical studies implementing precautionary insect resistance management (IRM) strategies to delay resistance evolution are summarized and challenges to IRM are discussed. Additionally, solutions facing these challenges are proposed. Finally, directions for future studies in developing IRGM corn and rice and IRM plans are discussed.
Collapse
Affiliation(s)
- Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|