1
|
Huang C, Wu C, Chou Y. Direct Growth of Wafer-Scale Self-Separated GaN on Reusable 2D Material Substrates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406126. [PMID: 39225659 PMCID: PMC11538651 DOI: 10.1002/advs.202406126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Free-standing gallium nitride has been prepared using various methods; however, the removal of the original substrate is still challenging with low success rates. In this work, 2-inch free-standing GaN films are obtained by direct growth on a fluoro phlogopite mica by hydride vapor-phase epitaxy. Depending on the van der Waals (vdW) interaction between GaN and mica, the effect of the significant lattice mismatch is effectively reduced; thus, enabling the production of a high-quality wafer-scale GaN film on mica. The vdW-induced cracks at GaN-mica interface are found to be initiated near the interface so that GaN can easily separate from mica during rapid cooling. Owing to the hydrophilic nature of mica, the residual GaN on the mica can be lifted off by following deionized water treatment, and the mica substrate can be repeatedly used to grow free-standing GaN films. The self-separated GaN films grown on both pristine and used mica substrates are single crystallinity and strain-free. Additionally, a fully functional ultraviolet light-emitting diode is demonstrated to show that the self-separated GaN films are of device quality. The proposed approach achieves epitaxial growth of wafer-scale single-crystalline GaN on 2D materials and provides a new substrate option in the technology of III-V materials.
Collapse
Affiliation(s)
- Chang‐Hsun Huang
- Department of Material Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Chia‐Yi Wu
- Department of Material Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Chia Chou
- Department of Material Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
2
|
Xu P, Qin Y, Ma M, Liu T, Ruan F, Xue L, Cao J, Xiao G, Chen Y, Fu H, Zhou G, Xie Y, Xia D. Genome-wide association study reveals the genetic basis of rice resistance to three herbicides. FRONTIERS IN PLANT SCIENCE 2024; 15:1476829. [PMID: 39411656 PMCID: PMC11473433 DOI: 10.3389/fpls.2024.1476829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Crop resistance to herbicides is crucial for agricultural productivity and sustainability amidst escalating challenges of weed resistance. Uncovering herbicide resistant genes is particularly important for rice production. In this study, we tested the resistance to three commonly used herbicides: glufosinate, glyphosate and mesotrione of 421 diverse rice cultivars and employed genome-wide association studies (GWAS) to unravel the genetic underpinnings of resistance to these three herbicides in rice. We discovered that cultivated rice exhibited rich variation in resistance to the three herbicides, and the differences among subpopulations were significant. Six identified associations harboring candidate genes for resistance to these herbicides were significant. Among them, RGlu6 and RGly8 were the major QTL for resistance to glufosinate and glyphosate, respectively. The favorable alleles of RGlu6 and RGly8 were primarily present in japonica cultivars that originated from Europe, highlighting the geographic and genetic diversity of herbicide resistance and emphasizing the localized selection pressures in European rice varieties. Moreover, our findings might suggest that traditional target genes may not contain tolerant alleles in nature, and alternative mechanisms with novel loci associated with resistance may work. By mapping the genes for herbicide resistance, our results may help develop new strategies to combat the dual challenges on effective weed management and herbicide sustainability.
Collapse
Affiliation(s)
- Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuhe Qin
- Department of Research and Development, Luzhou Taifeng Seed Industry Co., Ltd., Luzhou, Sichuan, China
| | - Maosen Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tengfei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fenhua Ruan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Le Xue
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiying Cao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guizong Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongyan Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Gege Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yonghua Xie
- Department of Research and Development, Zoeve Seed Co., Ltd., Chengdu, Sichuan, China
| | - Duo Xia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Kababji AM, Butt H, Mahfouz M. Synthetic directed evolution for targeted engineering of plant traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1449579. [PMID: 39286837 PMCID: PMC11402689 DOI: 10.3389/fpls.2024.1449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and cis-regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.
Collapse
Affiliation(s)
- Ahad Moussa Kababji
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Sang S, Wang Y, Yao G, Ma T, Sun X, Zhang Y, Su N, Tan X, Abbas HMK, Ji S, Zaman QU. A Critical Review of Conventional and Modern Approaches to Develop Herbicide-Resistance in Rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14254. [PMID: 38499939 DOI: 10.1111/ppl.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Together with rice, weeds strive for nutrients and space in farmland, resulting in reduced rice yield and quality. Planting herbicide-resistant rice varieties is one of the effective ways to control weeds. In recent years, a series of breakthroughs have been made to generate herbicide-resistant germplasm, especially the emergence of biotechnological tools such as gene editing, which provides an inherent advantage for the knock-out or knock-in of the desired genes. In order to develop herbicide-resistant rice germplasm resources, gene manipulation has been conducted to enhance the herbicide tolerance of rice varieties through the utilization of techniques such as physical and chemical mutagenesis, as well as genome editing. Based on the current research and persisting problems in rice paddy fields, research on the generation of herbicide-resistant rice still needs to explore genetic mechanisms, stacking multiple resistant genes in a single genotype, and transgene-free genome editing using the CRISPR system. Current rapidly developing gene editing technologies can be used to mutate herbicide target genes, enabling targeted genes to maintain their biological functions, and reducing the binding ability of target gene encoded proteins to corresponding herbicides, ultimately resulting in herbicide-resistant crops. In this review article, we have summarized the utilization of conventional and modern approaches to develop herbicide-resistant cultivars in rice as an effective strategy for weed control in paddy fields, and discussed the technology and research directions for creating herbicide-resistant rice in the future.
Collapse
Affiliation(s)
- Shifei Sang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Yanan Wang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Guoqin Yao
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Tengyun Ma
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Xiaohan Sun
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Yijing Zhang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Nan Su
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Xiaoyu Tan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agricultural and Forestry, Jiangsu Province, P. R. China
| | | | - Shengdong Ji
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Qamar U Zaman
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, China
- College of Tropical Crops and Forestry, Hainan University, Haikou, China
| |
Collapse
|
5
|
Oliveira-Filho ER, Voiniciuc C, Hanson AD. Adapting enzymes to improve their functionality in plants: why and how. Biochem Soc Trans 2023; 51:1957-1966. [PMID: 37787016 PMCID: PMC10657173 DOI: 10.1042/bst20230532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Synthetic biology creates new metabolic processes and improves existing ones using engineered or natural enzymes. These enzymes are often sourced from cells that differ from those in the target plant organ with respect to, e.g. redox potential, effector levels, or proteostasis machinery. Non-native enzymes may thus need to be adapted to work well in their new plant context ('plantized') even if their specificity and kinetics in vitro are adequate. Hence there are two distinct ways in which an enzyme destined for use in plants can require improvement: In catalytic properties such as substrate and product specificity, kcat, and KM; and in general compatibility with the milieu of cells that express the enzyme. Continuous directed evolution systems can deliver both types of improvement and are so far the most broadly effective way to deliver the second type. Accordingly, in this review we provide a short account of continuous evolution methods, emphasizing the yeast OrthoRep system because of its suitability for plant applications. We then cover the down-to-earth and increasingly urgent issues of which enzymes and enzyme properties can - or cannot - be improved in theory, and which in practice are the best to target for crop improvement, i.e. those that are realistically improvable and important enough to warrant deploying continuous directed evolution. We take horticultural crops as examples because of the opportunities they present and to sharpen the focus.
Collapse
Affiliation(s)
| | - Cătălin Voiniciuc
- Horticultural Sciences Department, University of Florida, Gainesville, FL, U.S.A
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
6
|
Ghosh S, Kundu R, Chandana M, Das R, Anand A, Beura S, Bobde RC, Jain V, Prabhu SR, Behera PK, Mohanty AK, Chakrapani M, Satyamoorthy K, Suryawanshi AR, Dixit A, Padmanaban G, Nagaraj VA. Distinct evolution of type I glutamine synthetase in Plasmodium and its species-specific requirement. Nat Commun 2023; 14:4216. [PMID: 37452051 PMCID: PMC10349072 DOI: 10.1038/s41467-023-39670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.
Collapse
Affiliation(s)
- Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Rajib Kundu
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Subhashree Beura
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Ruchir Chandrakant Bobde
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Vishal Jain
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Sowmya Ramakant Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Akshaya Kumar Mohanty
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Ispat General Hospital, Sector 19, Rourkela, 769005, Odisha, India
| | - Mahabala Chakrapani
- Department of Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Anshuman Dixit
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Govindarajan Padmanaban
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
7
|
Oszvald M, Hassall KL, Hughes D, Torres-Ballesteros A, Clark I, Riche AB, Heuer S. Genetic Diversity in Nitrogen Fertiliser Responses and N Gas Emission in Modern Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:816475. [PMID: 35646002 PMCID: PMC9137425 DOI: 10.3389/fpls.2022.816475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 06/08/2023]
Abstract
Crops assimilate nitrogen (N) as ammonium via the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway which is of central importance for N uptake and potentially represents a bottle neck for N fertiliser-use efficiency. The aim of this study was to assess whether genetic diversity for N-assimilation capacity exists in wheat and could be exploited for breeding. Wheat plants rapidly, within 6 h, responded to N application with an increase in GS activity. This was not accompanied by an increase in GS gene transcript abundance and a comparison of GS1 and GS2 protein models revealed a high degree of sequence conservation. N responsiveness amongst ten wheat varieties was assessed by measuring GS enzyme activity, leaf tissue ammonium, and by a leaf-disc assay as a proxy for apoplastic ammonia. Based on these data, a high-GS group showing an overall positive response to N could be distinguished from an inefficient, low-GS group. Subsequent gas emission measurements confirmed plant ammonia emission in response to N application and also revealed emission of N2O when N was provided as nitrate, which is in agreement with our current understanding that N2O is a by-product of nitrate reduction. Taken together, the data suggest that there is scope for improving N assimilation capacity in wheat and that further investigations into the regulation and role of GS-GOGAT in NH3 emission is justified. Likewise, emission of the climate gas N2O needs to be reduced, and future research should focus on assessing the nitrate reductase pathway in wheat and explore fertiliser management options.
Collapse
Affiliation(s)
- Maria Oszvald
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| | - Kirsty L. Hassall
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - David Hughes
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | | | - Ian Clark
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Andrew B. Riche
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| | - Sigrid Heuer
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
- Department of Crop Improvement and Resilience, NIAB, Cambridge, United Kingdom
| |
Collapse
|
8
|
Zhang C, Yu Q, Han H, Yu C, Nyporko A, Tian X, Beckie H, Powles S. A naturally evolved mutation (Ser59Gly) in glutamine synthetase confers glufosinate resistance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2251-2262. [PMID: 35029685 PMCID: PMC8982429 DOI: 10.1093/jxb/erac008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 05/25/2023]
Abstract
Glufosinate is an important and widely used non-selective herbicide active on a wide range of plant species. Evolution of resistance to glufosinate in weedy plant species (including the global weed Eleusine indica) is underway. Here, we established the molecular basis of target site glufosinate resistance in Eleusine indica. Full-length E. indica glutamine synthetase (GS) iso-genes (EiGS1-1, 1-2, 1-3, and EiGS2) were cloned, and expression of EiGS1-1 and EiGS1-2 was higher than that of EiGS2. A novel point mutation resulting in a Ser59Gly substitution in EiGS1-1 was identified in glufosinate-resistant plants. Rice calli and seedlings transformed with the mutant EiGS1-1 gene were resistant to glufosinate. Purified mutant EiGS1-1 expressed in yeast was more tolerant to glufosinate than the wild-type variant. These transgenic results correlate with a more glufosinate-resistant GS in the crude tissue extract of resistant versus susceptible E. indica plants. Structural modelling of the mutant EiGS1-1 revealed that Ser59 is not directly involved in glufosinate binding but is in contact with some important binding residues (e.g. Glu297) and especially with Asp56 that forms an intratoroidal contact interface. Importantly, the same Ser59Gly mutation was also found in geographically isolated glufosinate-resistant populations from Malaysia and China, suggesting parallel evolution of this resistance mutation.
Collapse
Affiliation(s)
- Chun Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Chaojie Yu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Alex Nyporko
- Taras Shevchenko National University of Kyiv, Kiev, Ukraine
| | - Xingshan Tian
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Hugh Beckie
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Stephen Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
9
|
Iqbal Z, Sadaf S. Forty Years of Directed Evolution and its Continuously Evolving Technology Toolbox - A Review of the Patent Landscape. Biotechnol Bioeng 2021; 119:693-724. [PMID: 34923625 DOI: 10.1002/bit.28009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022]
Abstract
Generating functional protein variants with novel or improved characteristics has been a goal of the biotechnology industry and life sciences, for decades. Rational design and directed evolution are two major pathways to achieve the desired ends. Whilst rational protein design approach has made substantial progress, the idea of using a method based on cycles of mutagenesis and natural selection to develop novel binding proteins, enzymes and structures has attracted great attention. Laboratory evolution of proteins/enzymes requires new tools and analytical approaches to create genetic diversity and identifying variants with desired traits. In this pursuit, construction of sufficiently large libraries of target molecules to search for improved variants and the need for new protocols to alter the properties of target molecules has been a continuing challenge in the directed evolution experiments. This review will discuss the in vivo and in vitro gene diversification tools, library screening or selection approaches, and artificial intelligence/machine-learning-based strategies to mutagenesis developed in the last forty years to accelerate the natural process of evolution in creating new functional protein variants, optimization of microbial strains and transformation of enzymes into industrial machines. Analyzing patent position over these techniques and mechanisms also constitutes an integral and distinctive part of this review. The aim is to provide an up-to-date resource/technology toolbox for research-based and pharmaceutical companies to discover the boundaries of competitor's intellectual property (IP) portfolio, their freedom-to-operate in the relevant IP landscape, and the need for patent due diligence analysis to rule out whether use of a particular patented mutagenesis method, library screening/selection technique falls outside the safe harbor of experimental use exemption. While so doing, we have referred to some recent cases that emphasize the significance of selecting a suitable gene diversification strategy in directed evolution experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zarina Iqbal
- PakPat World Intellectual Property Protection Services, Lahore, 54000, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
10
|
James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M, Sheri V, Panditi V, Yadav R, Achary VMM, Reddy MK. Concurrent Overexpression of OsGS1;1 and OsGS2 Genes in Transgenic Rice ( Oryza sativa L.): Impact on Tolerance to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:786. [PMID: 29977247 PMCID: PMC6021690 DOI: 10.3389/fpls.2018.00786] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/23/2018] [Indexed: 05/18/2023]
Abstract
Glutamine synthetase (GS) is a key enzyme involved in the nitrogen metabolism of higher plants. Abiotic stresses have adverse effects on crop production and pose a serious threat to global food security. GS activity and expression is known to be significantly modulated by various abiotic stresses. However, very few transgenic overexpression studies of GS have studied its impact on abiotic stress tolerance. GS is also the target enzyme of the broad spectrum herbicide Glufosinate (active ingredient: phosphinothricin). In this study, we investigated the effect of concurrent overexpression of the rice cytosolic GS1 (OsGS1;1) and chloroplastic GS2 (OsGS2) genes in transgenic rice on its tolerance to abiotic stresses and the herbicide Glufosinate. Our results demonstrate that the co-overexpression of OsGS1;1 and OsGS2 isoforms in transgenic rice plants enhanced its tolerance to osmotic and salinity stress at the seedling stage. The transgenic lines maintained significantly higher fresh weight, chlorophyll content, and relative water content than wild type (wt) and null segregant (ns) controls, under both osmotic and salinity stress. The OsGS1;1/OsGS2 co-overexpressing transgenic plants accumulated higher levels of proline but showed lower electrolyte leakage and had lower malondialdehyde (MDA) content under the stress treatments. The transgenic lines showed considerably enhanced photosynthetic and agronomic performance under drought and salinity stress imposed during the reproductive stage, as compared to wt and ns control plants. The grain filling rates of the transgenic rice plants under reproductive stage drought stress (64.6 ± 4.7%) and salinity stress (58.2 ± 4.5%) were significantly higher than control plants, thereby leading to higher yields under these abiotic stress conditions. Preliminary analysis also revealed that the transgenic lines had improved tolerance to methyl viologen induced photo-oxidative stress. Taken together, our results demonstrate that the concurrent overexpression of OsGS1;1 and OsGS2 isoforms in rice enhanced physiological tolerance and agronomic performance under adverse abiotic stress conditions, apparently acting through multiple mechanistic routes. The transgenic rice plants also showed limited tolerance to the herbicide Glufosinate. The advantages and limitations of glutamine synthetase overexpression in crop plants, along with future strategies to overcome these limitations for utilization in crop improvement have also been discussed briefly.
Collapse
Affiliation(s)
- Donald James
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhabesh Borphukan
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dhirendra Fartyal
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Babu Ram
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Jitender Singh
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- National Institute of Plant Genome Research, New Delhi, India
| | - Mrinalini Manna
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vijay Sheri
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Varakumar Panditi
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Renu Yadav
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - V. Mohan M. Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mallireddy K. Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
11
|
Patrick GJ, Fang L, Schaefer J, Singh S, Bowman GR, Wencewicz TA. Mechanistic Basis for ATP-Dependent Inhibition of Glutamine Synthetase by Tabtoxinine-β-lactam. Biochemistry 2018; 57:117-135. [PMID: 29039929 PMCID: PMC5934995 DOI: 10.1021/acs.biochem.7b00838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tabtoxinine-β-lactam (TβL), also known as wildfire toxin, is a time- and ATP-dependent inhibitor of glutamine synthetase produced by plant pathogenic strains of Pseudomonas syringae. Here we demonstrate that recombinant glutamine synthetase from Escherichia coli phosphorylates the C3-hydroxyl group of the TβL 3-(S)-hydroxy-β-lactam (3-HβL) warhead. Phosphorylation of TβL generates a stable, noncovalent enzyme-ADP-inhibitor complex that resembles the glutamine synthetase tetrahedral transition state. The TβL β-lactam ring remains intact during enzyme inhibition, making TβL mechanistically distinct from traditional β-lactam antibiotics such as penicillin. Our findings could enable the design of new 3-HβL transition state inhibitors targeting enzymes in the ATP-dependent carboxylate-amine ligase superfamily with broad therapeutic potential in many disease areas.
Collapse
Affiliation(s)
- Garrett J. Patrick
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Luting Fang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Jacob Schaefer
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| |
Collapse
|
12
|
Characterization of an L-phosphinothricin resistant glutamine synthetase from Exiguobacterium sp. and its improvement. Appl Microbiol Biotechnol 2017; 101:3653-3661. [PMID: 28175947 DOI: 10.1007/s00253-017-8103-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
A glutamine synthetase (GS; 1341 bp) gene with potent L-phosphinothricin (PPT) resistance was isolated and characterized from a marine bacterium Exiguobacterium sp. Molecular docking analysis indicated that the substitution of residues Glu60 and Arg64 may lead to significant changes in binding pocket. To enhance the enzymatic property of GS, variants E60A and R64G were obtained by site-directed mutagenesis. The results revealed a noteworthy change in the thermostability and activity in comparison to the wild type (WT). WT exhibited optimum activity at 35 °C, while E60A and R64G exhibited optimum activity at 45 and 40 °C, respectively. The mutant R64G was 4.3 times more stable at 70 °C in comparison to WT, while E60A was 5.7 times more stable. Kinetic analysis revealed that the k cat value of R64G mutant was 8.10-, 7.25- and 7.63-fold that of WT for ADP, glutamine and hydroxylamine, respectively. The kinetic inhibition (K i, 4.91 ± 0.42 mM) of R64G was 2.02-fold that of WT (2.43 ± 0.14 mM) for L-phosphinothricin. The analysis of structure and function relationship showed that the binding pocket underwent dramatic changes when Arg site of 64 was substituted by Gly, thus promoting the rapid capture of substrates and leading to increase in activity and PPT-resistance of mutant R64G. The rearrangements of the residues at the molecular level formed new hydrogen bonds around the active site, which contributed to the increase of thermostability of enzymes. This study provides new insights into substrate binding mechanism of glutamine synthetase and the improved GS gene also has a potential for application in transgenic crops with L-phosphinothricin tolerance.
Collapse
|
13
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
14
|
Zhuang J, Li MY, Wu B, Liu YJ, Xiong AS. Arg156 in the AP2-Domain Exhibits the Highest Binding Activity among the 20 Individuals to the GCC Box in BnaERF-B3-hy15, a Mutant ERF Transcription Factor from Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1603. [PMID: 27833627 PMCID: PMC5081391 DOI: 10.3389/fpls.2016.01603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 05/29/2023]
Abstract
To develop mutants of the ERF factor with more binding activities to the GCC box, we performed in vitro directed evolution by using DNA shuffling and screened mutants through yeast one-hybrid assay. Here, a series of mutants were obtained and used to reveal key amino acids that induce changes in the DNA binding activity of the BnaERF-B3 protein. With the BnaERF-B3-hy15 as the template, we produced 12 mutants which host individual mutation of potential key residues. We found that amino acid 156 is the key site, and the other 18 mutants host the 18 corresponding individual amino acid residues at site 156. Among the 20 individuals comprising WT (Gly156), Mu3 (Arg156), and 18 mutants with other 18 amino acid residues, Arg156 in the AP2-domain is the amino acid residue with the highest binding activity to the GCC box. The structure of the α-helix in the AP2-domain affects the binding activity. Other residues within AP2-domain modulated binding activity of ERF protein, suggesting that these positions are important for binding activity. Comparison of the mutant and wild-type transcription factors revealed the relationship of protein function and sequence modification. Our result provides a potential useful resource for understanding the trans-activation of ERF proteins.
Collapse
|
15
|
Tian YS, Wang RT, Zhao W, X J, Xing XJ, Fu XY, Peng RH, Yao QH. Distinct properties of two glutamine synthetase isoforms in soybean root nodules. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|