1
|
Guigueno MF, Coto MA, Sherry DF. Brood-parasitic female cowbirds have better numerical abilities than males on a task resembling nest prospecting behaviour. Biol Lett 2025; 21:20240670. [PMID: 40201986 PMCID: PMC12001982 DOI: 10.1098/rsbl.2024.0670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 04/10/2025] Open
Abstract
Selection can act in a sex-specific manner on cognitive abilities, including numerosity, especially when ecological roles differ between sexes. However, few systems exist in which numerical abilities would be expected to differ between the sexes, and even fewer focus on systems in which females are predicted to outperform males. In obligate brood-parasitic brown-headed cowbirds (Molothrus ater), only females select and parasitize host nests, and would benefit from enhanced numerical abilities to distinguish suitable host nests in the process of egg laying from unsuitable nests that have begun incubation. To test this hypothesis, we trained cowbirds to use touchscreens and discriminate between sets of images differing in number. Cowbirds distinguished images based on number alone (i.e. without using non-numerical cues), and females outperformed males across combinations of objects ranging from one to six (range in host egg numbers), but this difference disappeared across higher numbered combinations. In addition, males spent less time deciding on the correct stimulus than females, but made less accurate decisions overall, suggesting they 'guessed' correct answers more than females. We add to the growing evidence for complex numerical abilities in diverse taxa, and show these abilities can be shaped by ecology in a sex-specific way.
Collapse
Affiliation(s)
- Mélanie F. Guigueno
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Marco Alexander Coto
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - David F. Sherry
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Visibelli E, Vigna G, Nascimben C, Benavides-Varela S. Neurobiology of numerical learning. Neurosci Biobehav Rev 2024; 158:105545. [PMID: 38220032 DOI: 10.1016/j.neubiorev.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Numerical abilities are complex cognitive skills essential for dealing with requirements of the modern world. Although the brain structures and functions underlying numerical cognition in different species have long been appreciated, genetic and molecular techniques have more recently expanded the knowledge about the mechanisms underlying numerical learning. In this review, we discuss the status of the research related to the neurobiological bases of numerical abilities. We consider how genetic factors have been associated with mathematical capacities and how these link to the current knowledge of brain regions underlying these capacities in human and non-human animals. We further discuss the extent to which significant variations in the levels of specific neurotransmitters may be used as potential markers of individual performance and learning difficulties and take into consideration the therapeutic potential of brain stimulation methods to modulate learning and improve interventional outcomes. The implications of this research for formulating a more comprehensive view of the neural basis of mathematical learning are discussed.
Collapse
Affiliation(s)
- Emma Visibelli
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giulia Vigna
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Chiara Nascimben
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
3
|
Mair A, Bisazza A, Dadda M, Santacà M. Shortest path choice in zebrafish (Danio rerio). Behav Processes 2024; 214:104983. [PMID: 38081441 DOI: 10.1016/j.beproc.2023.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Many animals regularly move between different locations within their home range. During these journeys, individuals are expected to use the shortest path, because this strategy minimizes energy expenditure and reduces exposure to adverse conditions, such as predation. The ability to find the shortest distance route has been demonstrated in ants, migrating birds and a few mammals. We investigated whether a freshwater fish, Danio rerio, exhibits this ability. Small groups of zebrafish were allowed to move between the two compartments of their tank using two paths differing in length. They developed a preference for the shorter path gradually over the six days of the experiment. Subjects' accuracy in choosing the shorter path varied from below 60%, with a 20% length disparity, to 80% when one path was twice as long as the other. In a second experiment, zebrafish were initially allowed to practice in groups and then tested individually. We found evidence of individual and sex differences in performance, with males performing more accurately than females. However, due to our experimental design, we cannot conclusively determine whether these differences are indeed cognitive or influenced by confounding factors during the group phase of the experiment.
Collapse
Affiliation(s)
- Alberto Mair
- Department of General Psychology, University of Padova, Padova, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy; Padua Neuroscience Center, University of Padova, Padova, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Maria Santacà
- Department of General Psychology, University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Rugani R, Zhang Y, Scarsi B, Regolin L. Hybro chicks outperform Ross308 in a numerical-ordinal task. Cognitive and behavioral comparisons between 2 broiler strains of newborn domestic chicks (Gallus gallus). Poult Sci 2023; 102:103148. [PMID: 37890387 PMCID: PMC10613917 DOI: 10.1016/j.psj.2023.103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Domestic chickens (Gallus gallus) are among those species subject to intensive selection for production. Among the most widely used broiler strains are the Ross308 and the Hybro. From the perspective of animal production, Ross308 were superior to Hybro in weight gain, final body mass, and feed conversion. Intensive selection is thought to also cause behavioral changes and to negatively affect cognitive abilities. Up to date, though, no evidence has been provided on broiler breeds. The aim of this study was to explore cognitive differences among Hybro and Ross308 chickens by assessing their ordinal-numerical abilities. Chicks learned learnt to find a food reward in the 4th container in a series of 10 identical and sagittally aligned containers. We designed a standard training procedure ensuring that all chicks received the same amount of training. The chicks underwent 2 tests: a sagittal and a fronto-parallel one. In the former test, the series was identical to that experienced during training. In the fronto-parallel test, the series was rotated by 90°, thus left-to-right oriented, to assess the capability of transferring the learnt rule with a novel spatial orientation. In the sagittal test, both chicken hybrids selected the 4th item above chance; interestingly the Hybro outperformed the Ross308 chicks. In the fronto-parallel test, both strains selected the 4th left and the 4th right container above chance; nevertheless, the Hybro chicks were more accurate. Our results support the hypothesis that intense selection for production can influence animal cognition and behavior, with implications on animal husbandry and welfare.
Collapse
Affiliation(s)
- Rosa Rugani
- Department of General Psychology, University of Padova, 35100 Padova, Italy.
| | - Yujia Zhang
- Department of Developmental Psychology and Socialization, University of Padua, 35100 Padova, Italy; Department of Psychology, The Ohio State University, 43210 Columbus, OH, USA
| | - Beatrice Scarsi
- Department of General Psychology, University of Padova, 35100 Padova, Italy
| | - Lucia Regolin
- Department of General Psychology, University of Padova, 35100 Padova, Italy
| |
Collapse
|
5
|
Sury D, Rubinsten O. Implicit Processing of Numerical Order: Evidence from a Continuous Interocular Flash Suppression Study. J Intell 2023; 11:jintelligence11050096. [PMID: 37233345 DOI: 10.3390/jintelligence11050096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Processing the ordered relationships between sequential items is a key element in many cognitive abilities that are important for survival. Specifically, order may play a crucial role in numerical processing. Here, we assessed the existence of a cognitive system designed to implicitly evaluate numerical order, by combining continuous flash suppression with a priming method in a numerical enumeration task. In two experiments and diverse statistical analysis, targets that required numerical enumeration were preceded by an invisibly ordered or non-ordered numerical prime sequence. The results of both experiments showed that enumeration for targets that appeared after an ordered prime was significantly faster, while the ratio of the prime sequences produced no significant effect. The findings suggest that numerical order is processed implicitly and affects a basic cognitive ability: enumeration of quantities.
Collapse
Affiliation(s)
- Dana Sury
- Department of Learning Disabilities, Faculty of Education, Beit Berl College, Kfar Saba 4490500, Israel
| | - Orly Rubinsten
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Department of Learning Disabilities, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
6
|
Messina A, Potrich D, Perrino M, Sheardown E, Miletto Petrazzini ME, Luu P, Nadtochiy A, Truong TV, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Quantity as a Fish Views It: Behavior and Neurobiology. Front Neuroanat 2022; 16:943504. [PMID: 35911657 PMCID: PMC9334151 DOI: 10.3389/fnana.2022.943504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities. By combining behavioral methods with molecular genetics and calcium imaging, the involvement of the retina and the optic tectum has been documented for the estimation of continuous quantities in the larval and adult zebrafish brain, and the contributions of the thalamus and the dorsal-central pallium for discrete magnitude estimation in the adult zebrafish brain. Evidence for basic circuitry can now be complemented and extended to research that make use of transgenic lines to deepen our understanding of quantity cognition at genetic and molecular levels.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Matilde Perrino
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Eva Sheardown
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt’s House, Kings College London, London, United Kingdom
| | | | - Peter Luu
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Anna Nadtochiy
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Thai V. Truong
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Caroline H. Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
7
|
Bisazza A, Santacà M. Zebrafish excel in number discrimination under an operant conditioning paradigm. Anim Cogn 2022; 25:917-933. [PMID: 35179665 PMCID: PMC9334370 DOI: 10.1007/s10071-022-01602-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/23/2022] [Indexed: 12/26/2022]
Abstract
Numerical discrimination is widespread in vertebrates, but this capacity varies enormously between the different species examined. The guppy (Poecilia reticulata), the only teleost examined following procedures that allow a comparison with the other vertebrates, outperforms amphibians, reptiles and many warm-blooded vertebrates, but it is unclear whether this is a feature shared with the other teleosts or represents a peculiarity of this species. We trained zebrafish (Danio rerio) to discriminate between numbers differing by one unit, varying task difficulty from 2 versus 3 to 5 versus 6 items. Non-numerical variables that covary with number, such as density or area, did not affect performance. Most fish reached learning criterion on all tasks up to 4 versus 5 discrimination with no sex difference in accuracy. Although no individual reached learning criterion in the 5 versus 6 task, performance was significant at the group level, suggesting that this may represent the discrimination threshold for zebrafish. Numerosity discrimination abilities of zebrafish compare to those of guppy, being higher than in some warm-blooded vertebrates, such as dogs, horses and domestic fowl, though lower than in parrots, corvids and primates. Learning rate was similar in a control group trained to discriminate between different-sized shapes, but zebrafish were slightly more accurate when discriminating areas than numbers and males were more accurate than females. At the end of the experiment, fish trained on numbers and controls trained on areas generalized to the reciprocal set of stimuli, indicating they had used a relational strategy to solve these tasks.
Collapse
Affiliation(s)
- Angelo Bisazza
- Department of General Psychology, University of Padova, Padua, Italy.,Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Maria Santacà
- Department of Biology, University of Padova, Viale Giuseppe Colombo 3-Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
8
|
|
9
|
Middle identification for rhesus monkeys is influenced by number but not extent. Sci Rep 2020; 10:17402. [PMID: 33060813 PMCID: PMC7562912 DOI: 10.1038/s41598-020-74533-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
Abstract concept learning provides a fundamental building block for many cognitive functions in humans. Here we address whether rhesus monkeys (Macaca mulatta) can learn the abstract concept of “middle” in a series of objects. First, we trained monkeys to select the middle dot in a horizontal series of three dots presented on a touchscreen. Monkeys maintained a preference to choose the middle dot despite changes in the appearance, location, and spacing of the horizontal series of dots. They maintained high performance when the color, shape and the length of the stimuli were new, indicating that their responses did not depend upon the particular appearance of the array items. Next, we asked whether monkeys would generalize the middle concept to a 7 dot series. Although accuracy decreased when the number of dots was increased, monkeys continued to preferentially select the middle dot. Our results demonstrate that rhesus macaques can learn to use a middle concept for a discrete set of items.
Collapse
|
10
|
Gatto E, Testolin A, Bisazza A, Zorzi M, Lucon-Xiccato T. Poor numerical performance of guppies tested in a Skinner box. Sci Rep 2020; 10:16724. [PMID: 33028916 PMCID: PMC7542150 DOI: 10.1038/s41598-020-73851-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/04/2020] [Indexed: 11/25/2022] Open
Abstract
We tested the hypothesis that part of the gap in numerical competence between fish and warm-blooded vertebrates might be related to the more efficient procedures (e.g. automated conditioning chambers) used to investigate the former and could be filled by adopting an adapted version of the Skinner box in fish. We trained guppies in a visual numerosity discrimination task, featuring two difficulty levels (3 vs. 5 and 3 vs. 4) and three conditions of congruency between numerical and non-numerical cues. Unexpectedly, guppies trained with the automated device showed a much worse performance compared to previous investigations employing more “ecological” procedures. Statistical analysis indicated that the guppies overall chose the correct stimulus more often than chance; however, their average accuracy did not exceed 60% correct responses. Learning measured as performance improvement over training was significant only for the stimuli with larger numerical difference. Additionally, the target numerosity was selected more often than chance level only for the set of stimuli in which area and number were fully congruent. Re-analysis of prior studies indicate that the gap between training with the Skinner box and with a naturalistic setting was present only for numerical discriminations, but not for colour and shape discriminations. We suggest that applying automated conditioning chambers to fish might increase cognitive load and therefore interfere with achievement of numerosity discriminations.
Collapse
Affiliation(s)
- Elia Gatto
- Department of General Psychology, University of Padova, Padua, Italy
| | - Alberto Testolin
- Department of General Psychology, University of Padova, Padua, Italy.,Department of Information Engineering, University of Padova, Padua, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padua, Italy.,Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Padua, Italy.,IRCCS San Camillo Hospital, Venice, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
11
|
Gatto E, Lucon-Xiccato T, Bisazza A, Manabe K, Dadda M. The devil is in the detail: Zebrafish learn to discriminate visual stimuli only if salient. Behav Processes 2020; 179:104215. [PMID: 32763462 DOI: 10.1016/j.beproc.2020.104215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Due to their unique characteristics, the zebrafish plays a key role in the comprehension of neurobiology of cognition and its pathologies, such as neurodegenerative diseases. More and more molecular tools for this aim are being developed, but our knowledge about the cognitive abilities of zebrafish remains extremely scarce compared to other teleost fish. We aimed to investigate the complex cognitive abilities of zebrafish using a tracking-based automated conditioning chamber that allowed precise experimental control, avoided potential cueing provided by the observer (Clever Hans phenomenon), and was shown to considerably improve learning in other teleosts. A computer presented two visual stimuli in two sectors of the chamber, and zebrafish had to enter the correct sector to obtain a food reward. Zebrafish quickly learned to use the conditioning device and easily performed up to 80 trials per day. In Experiment 1, zebrafish efficiently discriminated between two differently coloured sides, reaching a 75 % accuracy in only 10 training sessions. Surprisingly, zebrafish failed to choose the correct chamber when the stimuli were two shapes, a small circle and a small triangle, even when, in Experiment 2, training on shape discrimination was prolonged for up to 30 sessions. In Experiment 3, we tested the hypothesis that simultaneously learning to use the conditioning chamber and learning discrimination imposes a too-high cognitive load. However, zebrafish that first successfully learned how the conditioning chamber functioned (in the colour discrimination) subsequently failed in the shape discrimination. Conversely, zebrafish that firstly failed the shape discrimination subsequently learned colour discrimination. In Experiment 4, zebrafish showed some evidence of learning when the stimuli were two large shapes, suggesting that zebrafish did not discriminate between the shapes of the previous experiments because they were not salient enough. Altogether, results suggest constraints in the discrimination learning abilities of zebrafish, which should be taken into account when developing cognitive tasks for this species.
Collapse
Affiliation(s)
- Elia Gatto
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Kazuchika Manabe
- Graduate School of Social and Cultural Studies, Nihon University, Saitama, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Vámos TIF, Tello-Ramos MC, Hurly TA, Healy SD. Numerical ordinality in a wild nectarivore. Proc Biol Sci 2020; 287:20201269. [PMID: 32635875 PMCID: PMC7423482 DOI: 10.1098/rspb.2020.1269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 01/29/2023] Open
Abstract
Ordinality is a numerical property that nectarivores may use to remember the specific order in which to visit a sequence of flowers, a foraging strategy also known as traplining. In this experiment, we tested whether wild, free-living rufous hummingbirds (Selasphorus rufus) could use ordinality to visit a rewarded flower. Birds were presented with a series of linear arrays of 10 artificial flowers; only one flower in each array was rewarded with sucrose solution. During training, birds learned to locate the correct flower independent of absolute spatial location. The birds' accuracy was independent of the rewarded ordinal position (1st, 2nd, 3rd or 4th), which suggests that they used an object-indexing mechanism of numerical processing, rather than a magnitude-based system. When distance cues between flowers were made irrelevant during test trials, birds could still locate the correct flower. The distribution of errors during both training and testing indicates that the birds may have used a so-called working up strategy to locate the correct ordinal position. These results provide the first demonstration of numerical ordinal abilities in a wild vertebrate and suggest that such abilities could be used during foraging in the wild.
Collapse
Affiliation(s)
- Tas I. F. Vámos
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | | | - T. Andrew Hurly
- Department of Biological Sciences, University of Lethbridge, Alberta, Canada
| | - Susan D. Healy
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
13
|
Nieder A. The Adaptive Value of Numerical Competence. Trends Ecol Evol 2020; 35:605-617. [DOI: 10.1016/j.tree.2020.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 01/25/2023]
|
14
|
Miletto Petrazzini ME, Pecunioso A, Dadda M, Agrillo C. Searching for the Critical p of Macphail's Null Hypothesis: The Contribution of Numerical Abilities of Fish. Front Psychol 2020; 11:55. [PMID: 32116895 PMCID: PMC7025564 DOI: 10.3389/fpsyg.2020.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/09/2020] [Indexed: 01/29/2023] Open
Abstract
In 1985, Macphail argued that there are no differences among the intellects of non-human vertebrates and that humans display unique cognitive skills because of language. Mathematical abilities represent one of the most sophisticated cognitive skills. While it is unquestionable that humans exhibit impressive mathematical skills associated with language, a large body of experimental evidence suggests that Macphail hypothesis must be refined in this field. In particular, the evidence that also small-brained organisms, such as fish, are capable of processing numerical information challenges the idea that humans display unique cognitive skills. Like humans, fish may take advantage of using continuous quantities (such as the area occupied by the objects) as proxy of number to select the larger/smaller group. Fish and humans also showed interesting similarities in the strategy adopted to learn a numerical rule. Collective intelligence in numerical estimation has been also observed in humans and guppies. However, numerical acuity in humans is considerably higher than that reported in any fish species investigated, suggesting that quantitative but not qualitative differences do exist between humans and fish. Lastly, while it is clear that contextual factors play an important role in the performance of numerical tasks, inter-species variability can be found also when different fish species were tested in comparable conditions, a fact that does not align with the null hypothesis of vertebrate intelligence. Taken together, we believe that the recent evidence of numerical abilities in fish call for a deeper reflection of Macphail's hypothesis.
Collapse
Affiliation(s)
| | | | - Marco Dadda
- Department of General Psychology, University of Padova, Padua, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padua, Italy.,Padua Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
15
|
Use of numerical and spatial information in ordinal counting by zebrafish. Sci Rep 2019; 9:18323. [PMID: 31797887 PMCID: PMC6893024 DOI: 10.1038/s41598-019-54740-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/13/2019] [Indexed: 02/04/2023] Open
Abstract
The use of non-symbolic numerical information is widespread throughout the animal kingdom, providing adaptive benefits in several ecological contexts. Here we provide the possible evidence of ordinal numerical skills in zebrafish (Danio rerio). Zebrafish were trained to identify the second exit in a series of five identically-spaced exits along a corridor. When at test the total length of the corridor (Exp. 1) or the distance between exits (Exp. 2) was changed, zebrafish appeared not to use the absolute spatial distance. However, zebrafish relied both on ordinal as well as spatial cues when the number of exits was increased (from 5 to 9) and the inter-exit distance was reduced (Exp. 3), suggesting that they also take into account relative spatial information. These results highlight that zebrafish may provide a useful model organism for the study of the genetic bases of non-symbolic numerical and spatial cognition, and of their interaction.
Collapse
|
16
|
|
17
|
Lucon-Xiccato T, Bertolucci C. Guppies show rapid and lasting inhibition of foraging behaviour. Behav Processes 2019; 164:91-99. [PMID: 31002840 DOI: 10.1016/j.beproc.2019.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
To cope with the variable environment, animals are continuously required to learn novel behaviours or, in certain cases, to inhibit automatic and previously learned behaviours. Traditionally, inhibition has been regarded as cognitively demanding and studied mostly in primates, other mammals and birds, using laboratory tasks, such as the cylinder task. Recent studies have also revealed that fish show high levels of inhibition in the cylinder task. However, conclusions on such results are undermined by evidence that the cylinder task may be inappropriate to compare such phylogenetically distant species. Here, we studied whether a fish, the guppy, Poecilia reticulata, could learn to inhibit behaviour using a different paradigm, which exploited spontaneous foraging behaviour and overcame some drawbacks that characterised the cylinder task. We exposed guppies to live brine shrimp nauplii, Artemia salina, enclosed within a transparent tube. Initially, the guppies attempted to attack the prey but over time showed a rapid decrease of the attacks. Control tests seemed to exclude the possibility that this behavioural trend was due to response to novelty or habituation, and suggested that the guppies were learning to inhibit the foraging behaviour. Memory tests indicated that guppies retained the inhibition of foraging behaviour for at least 24 h. Our study seems to indicate that teleost fish display rapid and durable inhibition of spontaneous foraging behaviour; this may be related to previous evidence, from the cylinder task, supporting efficient behavioural inhibition in this taxon.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Abstract
As an increasing number of researchers investigate the cognitive abilities of an ever-wider range of animals, animal cognition is currently among the most exciting fields within animal behavior. Tinbergen would be proud: all four of his approaches are being pursued and we are learning much about how animals collect information and how they use that information to make decisions for their current and future states as well as what animals do not perceive or choose to ignore. Here I provide an overview of this productivity, alighting only briefly on any single example, to showcase the diversity of species, of approaches and the sheer mass of research effort currently under way. We are getting closer to understanding the minds of other animals and the evolution of cognition at an increasingly rapid rate.
Collapse
Affiliation(s)
- Susan D Healy
- School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
19
|
Xiong W, Yi LC, Tang ZH, Fu SJ. Numerical ability and improvement through interindividual cooperation varied between two cyprinid fish species, qingbo and crucian carp. PeerJ 2019; 7:e6619. [PMID: 30881770 PMCID: PMC6417407 DOI: 10.7717/peerj.6619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/14/2019] [Indexed: 11/29/2022] Open
Abstract
We used qingbo (Spinibarbus sinensis) and Chinese crucian carp (Carassius auratus) to test whether numerical discrimination could be improved by the coexistence and possible cooperation of conspecies or heterospecies. We conducted a spontaneous shoal choice test of singletons, conspecific dyads and heterospecific dyads under different numerical comparisons (8 vs. 12, 9 vs. 12 and 10 vs. 12). Singletons of qingbo could discriminate only 8 vs. 12, whereas the dyads of qingbo showed better numerical acuity, as they could discriminate 10 vs. 12. Crucian carp may have poor numerical ability, as both singleton and dyads showed no significant preference for larger stimulus shoals, even at the 'easier' numerical discrimination, that is, 8 vs. 12. Furthermore, heterospecific dyads of crucian carp and qingbo did not show significant preference for larger shoals at any numerical comparison in the present study. It is suggested that both the numerical ability and the possibility for improvement by interindividual interaction and hence cooperation might vary among fish species, and the interaction between heterospecies in the present study showed negative effect on numerical ability possibly due to the different behavioural and cognitive traits which make the information transfer and consensus difficult to reach.
Collapse
Affiliation(s)
- Wei Xiong
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Lian-Chun Yi
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Zhong-Hua Tang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
20
|
Zhang J, Liu B. A Review on the Recent Developments of Sequence-based Protein Feature Extraction Methods. Curr Bioinform 2019. [DOI: 10.2174/1574893614666181212102749] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Proteins play a crucial role in life activities, such as catalyzing metabolic reactions, DNA replication, responding to stimuli, etc. Identification of protein structures and functions are critical for both basic research and applications. Because the traditional experiments for studying the structures and functions of proteins are expensive and time consuming, computational approaches are highly desired. In key for computational methods is how to efficiently extract the features from the protein sequences. During the last decade, many powerful feature extraction algorithms have been proposed, significantly promoting the development of the studies of protein structures and functions.Objective:To help the researchers to catch up the recent developments in this important field, in this study, an updated review is given, focusing on the sequence-based feature extractions of protein sequences.Method:These sequence-based features of proteins were grouped into three categories, including composition-based features, autocorrelation-based features and profile-based features. The detailed information of features in each group was introduced, and their advantages and disadvantages were discussed. Besides, some useful tools for generating these features will also be introduced.Results:Generally, autocorrelation-based features outperform composition-based features, and profile-based features outperform autocorrelation-based features. The reason is that profile-based features consider the evolutionary information, which is useful for identification of protein structures and functions. However, profile-based features are more time consuming, because the multiple sequence alignment process is required.Conclusion:In this study, some recently proposed sequence-based features were introduced and discussed, such as basic k-mers, PseAAC, auto-cross covariance, top-n-gram etc. These features did make great contributions to the developments of protein sequence analysis. Future studies can be focus on exploring the combinations of these features. Besides, techniques from other fields, such as signal processing, natural language process (NLP), image processing etc., would also contribute to this important field, because natural languages (such as English) and protein sequences share some similarities. Therefore, the proteins can be treated as documents, and the features, such as k-mers, top-n-grams, motifs, can be treated as the words in the languages. Techniques from these filed will give some new ideas and strategies for extracting the features from proteins.
Collapse
Affiliation(s)
- Jun Zhang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, HIT Campus Shenzhen University Town, Xili, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, HIT Campus Shenzhen University Town, Xili, Shenzhen, Guangdong 518055, China
| |
Collapse
|
21
|
Bai Y, Tang ZH, Fu SJ. Numerical ability in fish species: preference between shoals of different sizes varies among singletons, conspecific dyads and heterospecific dyads. Anim Cogn 2018; 22:133-143. [PMID: 30542940 DOI: 10.1007/s10071-018-1229-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 11/11/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022]
Abstract
Group living confers ecological benefits, and the associated fitness gain may be positively related to the size of the group. Thus, the ability to discriminate numerical differences may confer important fitness advantages in social fish. There is evidence that this ability can be improved by behavioral interactions among individuals of the same species. Here, we looked for this effect in both conspecific and heterospecific dyads. In Chinese bream and grass carp, we measured the sociability and shoal preferences of singletons, conspecific dyads and heterospecific dyads presented with different numerical comparisons (0 vs 8, 2 vs 8, 4 vs 8, 6 vs 8 and 8 vs 8). Chinese bream generally showed higher sociability than did grass carp, but grass carp in heterospecific dyads showed improved sociability that was similar to that of Chinese bream. Among the comparisons, both grass carp and Chinese bream singletons could only discriminate the comparison of 2 vs 8, suggesting lower quantitative abilities in these fish species compared to other fish species. Grass carp dyads were more successful in discriminating between 6 and 8 than were singletons, although no such improvement was observed in their discrimination between 4 and 8. In contrast, numerical ability did not vary between singletons and conspecific dyads in Chinese bream. More interestingly, Chinese bream and grass carp in heterospecific groups could discriminate between 4 and 8, but neither species showed a preference when presented with 6 and 8. Our results suggested that interaction between conspecific grass carp might improve their joint numerical ability, and a similar process might occur in Chinese bream in heterospecific dyads. However, the mechanism underlying the differences in improvements in numerical ability requires further investigation. The improved cognitive ability of heterospecific dyads might yield important fitness advantages for predator avoidance and efficient foraging in the wild.
Collapse
Affiliation(s)
- Yang Bai
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Zhong-Hua Tang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
22
|
Triki Z, Bshary R. Cleaner fish Labroides dimidiatus discriminate numbers but fail a mental number line test. Anim Cogn 2017; 21:99-107. [PMID: 29134446 DOI: 10.1007/s10071-017-1143-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Several species of primates, including humans, possess a spontaneous spatial mental arrangement (i.e. mental number line MNL) of increasing numbers or continuous quantities from left to right. This cognitive process has recently been documented in domestic chicken in a spatial-numerical task, opening the possibility that MNL is a cognitive capacity that has been conserved across vertebrate taxa. In this scenario, fish might possess the MNL as well. Here we investigated whether cleaner fish Labroides dimidiatus show evidence for MNL in two experiments. In Experiment I, we tested fish's abilities in number discrimination, presenting simultaneously either small (2 vs 5) or large (5 vs 8) continuous quantities where one quantity was systematically rewarded. Experiment II used a protocol of an MNL task similar to the study on chickens. We trained cleaners with a target number (i.e. 5 elements), then we presented them with an identical pair of panels depicting either 2 elements or 8 elements, and we recorded their spontaneous choice for the left or right panel on each presentation. Cleaner fish showed high abilities in discriminating small and large numbers in Experiment I. Importantly, cleaners achieved this discrimination using numerical cues instead of non-numerical cues such as the cumulative surface area, density, and overall space. In contrast, cleaners did not allocate continuous quantities to space in Experiment II. Our findings suggest that cleaner fish possess numbering skills but they do not have an MNL. While similar studies on animals from various clades are needed to trace the evolution of MNL within vertebrates, our results suggest that this cognitive process might not be a capacity conserved across all vertebrate taxa.
Collapse
Affiliation(s)
- Zegni Triki
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
23
|
Lucon-Xiccato T, Gatto E, Bisazza A. Fish perform like mammals and birds in inhibitory motor control tasks. Sci Rep 2017; 7:13144. [PMID: 29030593 PMCID: PMC5640690 DOI: 10.1038/s41598-017-13447-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/22/2017] [Indexed: 01/29/2023] Open
Abstract
Inhibitory control is an executive function that positively predicts performance in several cognitive tasks and has been considered typical of vertebrates with large and complex nervous systems such as primates. However, evidence is growing that some fish species have evolved complex cognitive abilities in spite of their relatively small brain size. We tested whether fish might also show enhanced inhibitory control by subjecting guppies, Poecilia reticulata, to the motor task used to test warm-blooded vertebrates. Guppies were trained to enter a horizontal opaque cylinder to reach a food reward; then, the cylinder was replaced by a transparent one, and subjects needed to inhibit the response to pass thought the transparency to reach the food. Guppies performed correctly in 58% trials, a performance fully comparable to that observed in most birds and mammals. In experiment 2, we tested guppies in a task with a different type of reward, a group of conspecifics. Guppies rapidly learned to detour a transparent barrier to reach the social reward with a performance close to that of experiment 1. Our study suggests that efficient inhibitory control is shown also by fish, and that its variation between-species is only partially explained by variation in brain size.
Collapse
Affiliation(s)
| | - Elia Gatto
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| |
Collapse
|
24
|
Miletto Petrazzini ME, Bisazza A, Agrillo C, Lucon-Xiccato T. Sex differences in discrimination reversal learning in the guppy. Anim Cogn 2017; 20:1081-1091. [PMID: 28791553 DOI: 10.1007/s10071-017-1124-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023]
Abstract
In several mammalian and avian species, females show a higher performance than males in tasks requiring cognitive flexibility such as the discrimination reversal learning. A recent study showed that female guppies are twice as efficient as males in a reversal learning task involving yellow-red discrimination, suggesting a higher cognitive flexibility in female guppies. However, the possibility exists that the superior performance exhibited by females does not reflect a general sex difference in cognitive abilities, but instead, is confined to colour discrimination tasks. To address this issue, we compared male and female guppies in two different discrimination reversal learning tasks and we performed a meta-analysis of these experiments and the previous one involving colour discrimination. In the first experiment of this study, guppies were tested in a task requiring them to learn to select the correct arm of a T-maze in order to rejoin a group of conspecifics. In experiment 2, guppies were observed in a numerical task requiring them to discriminate between 5 and 10 dots in order to obtain a food reward. Although females outperformed males in one condition of the T-maze, we did not find any clear evidence of females' greater reversal learning performance in either experiment. However, the meta-analysis of the three experiments supported the hypothesis of females' greater reversal learning ability. Our data do not completely exclude the idea that female guppies have a generally higher cognitive flexibility than males; however, they suggest that the size of this sex difference might depend on the task.
Collapse
Affiliation(s)
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy
| | - Christian Agrillo
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy
| | - Tyrone Lucon-Xiccato
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy
| |
Collapse
|
25
|
|
26
|
Bulf H, de Hevia MD, Gariboldi V, Macchi Cassia V. Infants learn better from left to right: a directional bias in infants' sequence learning. Sci Rep 2017; 7:2437. [PMID: 28550288 PMCID: PMC5446406 DOI: 10.1038/s41598-017-02466-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/20/2017] [Indexed: 11/09/2022] Open
Abstract
A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.
Collapse
Affiliation(s)
- Hermann Bulf
- Department of Psychology, University of Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126, Milan, Italy. .,NeuroMi, Milan Center for Neuroscience, Milan, Italy.
| | - Maria Dolores de Hevia
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,CNRS UMR 8242, Laboratoire Psychologie de la Perception, Paris, France
| | - Valeria Gariboldi
- Department of Psychology, University of Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126, Milan, Italy
| | - Viola Macchi Cassia
- Department of Psychology, University of Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126, Milan, Italy.,NeuroMi, Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
27
|
Symbol-value association and discrimination in the archerfish. PLoS One 2017; 12:e0174044. [PMID: 28379988 PMCID: PMC5381781 DOI: 10.1371/journal.pone.0174044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/02/2017] [Indexed: 11/24/2022] Open
Abstract
One of the most important aspects of mathematical cognition in humans is the ability to symbolically represent magnitudes and quantities. In the last 20 years it has been shown that not only humans but also other primates, birds and dolphins can use symbolic representation of quantities. However, it remains unclear to what extent this ability is spread across the animal kingdom. Here, by training archerfish to associate variable amounts of rewards with different geometric shapes, we show for the first time that lower vertebrates can also associate a value with a symbol and make a decision that maximizes their food intake based on this information. In addition, the archerfish is able to understand up to four different quantities and organize them mentally in an ordinal manner, similar to observations in higher vertebrates. These findings point in the direction of the existence of an approximate magnitude system in fish.
Collapse
|
28
|
|
29
|
Agrillo C, Bisazza A. Understanding the origin of number sense: a review of fish studies. Philos Trans R Soc Lond B Biol Sci 2017; 373:20160511. [PMID: 29292358 PMCID: PMC5784038 DOI: 10.1098/rstb.2016.0511] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 02/02/2023] Open
Abstract
The ability to use quantitative information is thought to be adaptive in a wide range of ecological contexts. For nearly a century, the numerical abilities of mammals and birds have been extensively studied using a variety of approaches. However, in the last two decades, there has been increasing interest in investigating the numerical abilities of teleosts (i.e. a large group of ray-finned fish), mainly due to the practical advantages of using fish species as models in laboratory research. Here, we review the current state of the art in this field. In the first part, we highlight some potential ecological functions of numerical abilities in fish and summarize the existing literature that demonstrates numerical abilities in different fish species. In many cases, surprising similarities have been reported among the numerical performance of mammals, birds and fish, raising the question as to whether vertebrates' numerical systems have been inherited from a common ancestor. In the second part, we will focus on what we still need to investigate, specifically the research fields in which the use of fish would be particularly beneficial, such as the genetic bases of numerical abilities, the development of these abilities and the evolutionary foundation of vertebrate number sense.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, Padova 35131, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Via Venezia 8, Padova 35131, Italy
| |
Collapse
|
30
|
Lucon-Xiccato T, Bisazza A. Individual differences in cognition among teleost fishes. Behav Processes 2017; 141:184-195. [PMID: 28126389 DOI: 10.1016/j.beproc.2017.01.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
Individual differences in cognitive abilities have been thoroughly investigated in humans and to a lesser extent in other mammals. Despite the growing interest in studying cognition in other taxonomic groups, data on individual differences are scarce for non-mammalian species. Here, we review the literature on individual differences in cognitive abilities in teleost fishes. Relatively few studies have directly addressed this topic and have provided evidence of consistent and heritable individual variation in cognitive abilities in fish. We found much more evidence of individual cognitive differences in other research areas, namely sex differences, personality differences, cerebral lateralisation and comparison between populations. Altogether, these studies suggest that individual differences in cognition are as common in fish as in warm-blooded vertebrates. Based on the example of research on mammals, we suggest directions for future investigation in fish.
Collapse
Affiliation(s)
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| |
Collapse
|
31
|
Lucon-Xiccato T, Bisazza A. Sex differences in spatial abilities and cognitive flexibility in the guppy. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.10.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
de Hevia MD, Addabbo M, Nava E, Croci E, Girelli L, Macchi Cassia V. Infants’ detection of increasing numerical order comes before detection of decreasing number. Cognition 2017; 158:177-188. [DOI: 10.1016/j.cognition.2016.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 01/29/2023]
|
33
|
Lucon-Xiccato T, Dadda M. Individual guppies differ in quantity discrimination performance across antipredator and foraging contexts. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2231-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Gatto E, Lucon-Xiccato T, Savaşçı BB, Dadda M, Bisazza A. Experimental setting affects the performance of guppies in a numerical discrimination task. Anim Cogn 2016; 20:187-198. [PMID: 27658676 DOI: 10.1007/s10071-016-1037-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 02/04/2023]
Abstract
A recent study found that guppies (Poecilia reticulata) can be trained to discriminate 4 versus 5 objects, a numerical discrimination typically achieved only by some mammals and birds. In that study, guppies were required to discriminate between two patches of small objects on the bottom of the tank that they could remove to find a food reward. It is not clear whether this species possesses exceptional numerical accuracy compared with the other ectothermic vertebrates or whether its remarkable performance was due to a specific predisposition to discriminate between differences in the quality of patches while foraging. To disentangle these possibilities, we trained guppies to the same numerical discriminations with a more conventional two-choice discrimination task. Stimuli were sets of dots presented on a computer screen, and the subjects received a food reward upon approaching the set with the larger numerosity. Though the cognitive problem was identical in the two experiments, the change in the experimental setting led to a much poorer performance as most fish failed even the 2 versus 3 discrimination. In four additional experiments, we varied the duration of the decision time, the type of stimuli, the length of training, and whether correction was allowed in order to identify the factors responsible for the difference. None of these parameters succeeded in increasing the performance to the level of the previous study, although the group trained with three-dimensional stimuli learned the easiest numerical task. We suggest that the different results with the two experimental settings might be due to constraints on learning and that guppies might be prepared to accurately estimate patch quality during foraging but not to learn an abstract stimulus-reward association.
Collapse
Affiliation(s)
- Elia Gatto
- Department of General Psychology, University of Padova, Padova, Italy.
| | | | - Beste Başak Savaşçı
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
35
|
Lucon-Xiccato T, Dadda M. Guppies Show Behavioural but Not Cognitive Sex Differences in a Novel Object Recognition Test. PLoS One 2016; 11:e0156589. [PMID: 27305102 PMCID: PMC4909186 DOI: 10.1371/journal.pone.0156589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
The novel object recognition (NOR) test is a widely-used paradigm to study learning and memory in rodents. NOR performance is typically measured as the preference to interact with a novel object over a familiar object based on spontaneous exploratory behaviour. In rats and mice, females usually have greater NOR ability than males. The NOR test is now available for a large number of species, including fish, but sex differences have not been properly tested outside of rodents. We compared male and female guppies (Poecilia reticulata) in a NOR test to study whether sex differences exist also for fish. We focused on sex differences in both performance and behaviour of guppies during the test. In our experiment, adult guppies expressed a preference for the novel object as most rodents and other species do. When we looked at sex differences, we found the two sexes showed a similar preference for the novel object over the familiar object, suggesting that male and female guppies have similar NOR performances. Analysis of behaviour revealed that males were more inclined to swim in the proximity of the two objects than females. Further, males explored the novel object at the beginning of the experiment while females did so afterwards. These two behavioural differences are possibly due to sex differences in exploration. Even though NOR performance is not different between male and female guppies, the behavioural sex differences we found could affect the results of the experiments and should be carefully considered when assessing fish memory with the NOR test.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
- * E-mail:
| | - Marco Dadda
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| |
Collapse
|
36
|
Hemispatial Neglect Shows That "Before" Is "Left". Neural Plast 2016; 2016:2716036. [PMID: 27313902 PMCID: PMC4903131 DOI: 10.1155/2016/2716036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/12/2016] [Accepted: 04/10/2016] [Indexed: 11/18/2022] Open
Abstract
Recent research has led to the hypothesis that events which unfold in time might be spatially represented in a left-to-right fashion, resembling writing direction. Here we studied fourteen right-hemisphere damaged patients, with or without neglect, a disorder of spatial awareness affecting contralesional (here left) space processing and representation. We reasoned that if the processing of time-ordered events is spatial in nature, it should be impaired in the presence of neglect and spared in its absence. Patients categorized events of a story as occurring before or after a central event, which acted as a temporal reference. An asymmetric distance effect emerged in neglect patients, with slower responses to events that took place before the temporal reference. The event occurring immediately before the reference elicited particularly slow responses, closely mirroring the pattern found in neglect patients performing numerical comparison tasks. Moreover, the first item elicited significantly slower responses than the last one, suggesting a preference for a left-to-right scanning/representation of events in time. Patients without neglect showed a regular and symmetric distance effect. These findings further suggest that the representation of events order is spatial in nature and provide compelling evidence that ordinality is similarly represented within temporal and numerical domains.
Collapse
|
37
|
Lucon-Xiccato T, Dadda M, Bisazza A. Sex Differences in Discrimination of Shoal Size in the Guppy (Poecilia reticulata). Ethology 2016. [DOI: 10.1111/eth.12498] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Marco Dadda
- Dipartimento di Psicologia Generale; Università di Padova; Padova Italy
- Centro di Neuroscienze Cognitive; Università di Padova; Padova Italy
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale; Università di Padova; Padova Italy
- Centro di Neuroscienze Cognitive; Università di Padova; Padova Italy
| |
Collapse
|
38
|
Lucon-Xiccato T, Bisazza A. Male and female guppies differ in speed but not in accuracy in visual discrimination learning. Anim Cogn 2016; 19:733-44. [PMID: 26920920 DOI: 10.1007/s10071-016-0969-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 02/03/2023]
Abstract
In many species, males and females have different reproductive roles and/or differ in their ecological niche. Since in these cases the two sexes often face different cognitive challenges, selection may promote some degree of cognitive differentiation, an issue that has received relatively little attention so far. We investigated the existence of sex differences in visual discrimination learning in the guppy, Poecilia reticulata, a fish species in which females show complex mate choice based on male colour pattern. We tested males and females for their ability to learn a discrimination between two different shapes (experiment 1) and between two identical figures with a different orientation (experiment 2). In experiment 3, guppies were required to select an object of the odd colour in a group of five objects. Colours changed daily, and therefore, the solution for this task was facilitated by concept learning. We found males' and females' accuracy practically overlapped in the three experiments, suggesting that the two sexes have similar discrimination learning abilities. Yet, males showed faster decision time than females without any evident speed-accuracy trade-off. This result indicates the existence of consistent between-sex differences in decision speed perhaps due to impulsivity rather than speed in information processing. Our results align with previous literature, indicating that sex differences in cognitive abilities are the exception rather than the rule, while sex differences in cognitive style, i.e. the way in which an individual faces a cognitive task, are much more common.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy.
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy
| |
Collapse
|
39
|
|