1
|
Viéitez C, Martínez-Cebrián G, Solé C, Böttcher R, Potel CM, Savitski MM, Onnebo S, Fabregat M, Shilatifard A, Posas F, de Nadal E. A genetic analysis reveals novel histone residues required for transcriptional reprogramming upon stress. Nucleic Acids Res 2020; 48:3455-3475. [PMID: 32064518 PMCID: PMC7144942 DOI: 10.1093/nar/gkaa081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cells have the ability to sense, respond and adapt to environmental fluctuations. Stress causes a massive reorganization of the transcriptional program. Many examples of histone post-translational modifications (PTMs) have been associated with transcriptional activation or repression under steady-state growth conditions. Comparatively less is known about the role of histone PTMs in the cellular adaptive response to stress. Here, we performed high-throughput genetic screenings that provide a novel global map of the histone residues required for transcriptional reprogramming in response to heat and osmotic stress. Of note, we observed that the histone residues needed depend on the type of gene and/or stress, thereby suggesting a 'personalized', rather than general, subset of histone requirements for each chromatin context. In addition, we identified a number of new residues that unexpectedly serve to regulate transcription. As a proof of concept, we characterized the function of the histone residues H4-S47 and H4-T30 in response to osmotic and heat stress, respectively. Our results uncover novel roles for the kinases Cla4 and Ste20, yeast homologs of the mammalian PAK2 family, and the Ste11 MAPK as regulators of H4-S47 and H4-T30, respectively. This study provides new insights into the role of histone residues in transcriptional regulation under stress conditions.
Collapse
Affiliation(s)
- Cristina Viéitez
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Gerard Martínez-Cebrián
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - René Böttcher
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Clement M Potel
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sara Onnebo
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Marc Fabregat
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Xie J, Cai Y, Li H, Wu J, Zhao X, Luo K, Sharma A, Xie J, Sun X, Liu H. DNMHMM: An approach to identify the differential nucleosome regions in multiple cell types based on a Hidden Markov Model. Biosystems 2019; 185:104033. [DOI: 10.1016/j.biosystems.2019.104033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/07/2019] [Indexed: 01/10/2023]
|
3
|
Liu L, Xie J, Sun X, Luo K, Qin ZS, Liu H. An approach of identifying differential nucleosome regions in multiple samples. BMC Genomics 2017; 18:135. [PMID: 28173752 PMCID: PMC5297132 DOI: 10.1186/s12864-017-3541-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/02/2017] [Indexed: 11/24/2022] Open
Abstract
Background Nucleosome plays a role in transcriptional regulation through occluding the binding of proteins to DNA sites. Nucleosome occupancy varies among different cell types. Identification of such variation will help to understand regulation mechanism. The previous researches focused on the methods for two-sample comparison. However, a multiple-sample comparison (n ≥ 3) is necessary, especially in studying development and cancer. Methods Here, we proposed a Chi-squared test-based approach, named as Dimnp, to identify differential nucleosome regions (DNRs) in multiple samples. Dimnp is designed for sequenced reads data and includes the modules of both calling nucleosome occupancy and identifying DNRs. Results We validated Dimnp on dataset of the mutant strains in which the modifiable histone residues are mutated into alanine in Saccharomyces cerevisiae. Dimnp shows a good capacity (area under the curve > 0.87) compared with the manually identified DNRs. Just by one time, Dimnp is able to identify all the DNRs identified by two-sample method Danpos. Under a deviation of 40 bp, the matched DNRs are above 60% between Dimnp and Danpos. With Dimnp, we found that promoters and telomeres are highly dynamic upon mutating the modifiable histone residues. Conclusions We developed a tool of identifying the DNRs in multiple samples and cell types. The tool can be applied in studying nucleosome variation in gradual change in development and cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3541-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingjie Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jianming Xie
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kun Luo
- Department of Neurosurgery, Xinjiang Evidence-Based Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Zhaohui Steve Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|