1
|
Gautam H, Mehta S, Nayar N, Kumar N, Husain SA, Bharadwaj M. Prevalence of human papilloma virus and Chlamydia trachomatis in endometrial and cervical carcinoma: a comparative study in North Indian women. Syst Biol Reprod Med 2023; 69:399-409. [PMID: 37668557 DOI: 10.1080/19396368.2023.2247517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
Cervical cancer (Cacx) is the second and endometrial cancer (Ec) is the third most common gynecological cancer worldwide. The present study aims to understand the complex and unexplored conditions occurring in cervix and endometrium of the female genital tract caused due to the infection of the human papilloma viruses (HPVs) and Chlamydia trachomatis (CT). A total of 300 tissue biopsy samples of cervix and endometrium were included in the present study and tested for the presence of HPV and CT deoxyribonucleic acid (DNA) by using polymerase chain reaction (PCR) technique. The odds ratios and 95% confidence interval were considered for the calculation of the association of HPV and CT infection with the risk of cervical or Ec. Among endometrial patients, samples were 5% positive for HPV and 5% positive for CT infection. Among endometrial control group, no sample was found positive for either HPV or CT infection. Among cervical patients, 72% samples were positive for only HPV infection and 1% samples were positive for only CT infection. Among control group, 7% of samples were positive for only HPV infection and 3% were positive for only CT infection. The co-infection of CT with HPV in 9% of Cacx cases and in 2% of cervical control samples was also observed. This is the first study in Indian women to detect the prevalence of HPV and CT infections in endometrium cases and control. An updated estimate regarding the HPV and CT prevalence in cervix cases and control samples was also provided.
Collapse
Affiliation(s)
- Heena Gautam
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sumita Mehta
- Department of Obstetrics & Gynecology, Babu Jagjivan Ram Memorial Hospital, New Delhi, India
| | - Nidhi Nayar
- Gynecologic Oncology, BLK-Max Super Speciality Hospital, New Delhi, India
| | - Neha Kumar
- Gynecologic Oncology, BLK-Max Super Speciality Hospital, New Delhi, India
| | | | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|
2
|
Tsakogiannis D, Nikolaidis M, Zagouri F, Zografos E, Kottaridi C, Kyriakopoulou Z, Tzioga L, Markoulatos P, Amoutzias GD, Bletsa G. Mutation Profile of HPV16 L1 and L2 Genes in Different Geographic Areas. Viruses 2022; 15:141. [PMID: 36680181 PMCID: PMC9867070 DOI: 10.3390/v15010141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
The causal relationship between HPV and cervical cancer in association with the high prevalence of high risk HPV genotypes led to the design of HPV vaccines based on the major capsid L1 protein. In recent years, capsid protein L2 has also become a focal point in the field of vaccine research. The present review focuses on the variability of HPV16 L1 and L2 genes, emphasizing the distribution of specific amino acid changes in the epitopes of capsid proteins. Moreover, a substantial bioinformatics analysis was conducted to describe the worldwide distribution of amino acid substitutions throughout HPV16 L1, L2 proteins. Five amino acid changes (T176N, N181T; EF loop), (T266A; FG loop), (T353P, T389S; HI loop) are frequently observed in the L1 hypervariable surface loops, while two amino acid substitutions (D43E, S122P) are adjacent to L2 specific epitopes. These changes have a high prevalence in certain geographic regions. The present review suggests that the extensive analysis of the amino acid substitutions in the HPV16 L1 immunodominant loops may provide insights concerning the ability of the virus in evading host immune response in certain populations. The genetic variability of the HPV16 L1 and L2 epitopes should be extensively analyzed in a given population.
Collapse
Affiliation(s)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, 11528 Athens, Greece
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, 11528 Athens, Greece
| | - Christine Kottaridi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Zaharoula Kyriakopoulou
- Department of Environment, School of Technology, University of Thessaly, Gaiopolis, 41500 Larissa, Greece
| | - Lamprini Tzioga
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece
| | | | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Garyfalia Bletsa
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece
| |
Collapse
|
3
|
Mane A, Limaye S, Patil L, Kulkarni-Kale U. Genetic variability in minor capsid protein (L2 gene) of human papillomavirus type 16 among Indian women. Med Microbiol Immunol 2022; 211:153-160. [PMID: 35552511 PMCID: PMC9101989 DOI: 10.1007/s00430-022-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
Human papillomavirus type 16 (HPV-16) is the predominant genotype worldwide associated with invasive cervical cancer and hence remains as the focus for diagnostic development and vaccine research. L2, the minor capsid protein forms the packaging unit for the HPV genome along with the L1 protein and is primarily associated with transport of genomic DNA to the nucleus. Unlike L1, L2 is known to elicit cross-neutralizing antibodies and thus becomes a suitable candidate for pan-HPV prophylactic vaccine development. In the present study, a total of 148 cervical HPV-16 isolates from Indian women were analyzed by PCR-directed sequencing, phylogenetic analysis and in silico immunoinformatics tools to determine the L2 variations that may impact the immune response and oncogenesis. Ninety-one SNPs translating to 35 non-synonymous amino acid substitutions were observed, of these 16 substitutions are reported in the Indian isolates for the first time. T245A, L266F, S378V and S384A substitutions were significantly associated with high-grade cervical neoplastic status. Multiple substitutions were observed in samples from high-grade cervical neoplastic status as compared to those from normal cervical status (p = 0.027), specifically from the D3 sub-lineage. It was observed that substitution T85A was part of both, B and T cell epitopes recognized by MHC-I molecules; T245A was common to B and T cell epitopes recognized by MHC-II molecules and S122P/A was common to the region recognized by both MHC-I and MHC-II molecules. These findings reporting L2 protein substitutions have implications on cervical oncogenesis and design of next-generation L2-based HPV vaccines.
Collapse
Affiliation(s)
- Arati Mane
- ICMR - National AIDS Research Institute, '73' G Block, MIDC, Bhosari, Pune, 411026, India.
| | - Sanket Limaye
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, India
| | - Linata Patil
- ICMR - National AIDS Research Institute, '73' G Block, MIDC, Bhosari, Pune, 411026, India
| | | |
Collapse
|
4
|
Mandal P, Bhattacharjee B, Sen S, Bhattacharya A, Saha SS, Chowdhury RR, Mondal NR, Chakrabarty B, Chatterjee T, Roy S, Sengupta S. Predominance of genomically defined A lineage of HPV16 over D lineage in Indian patients from eastern India with squamous cell carcinoma of the cervix in association with distinct oncogenic phenotypes. Transl Oncol 2021; 15:101256. [PMID: 34717279 PMCID: PMC8564679 DOI: 10.1016/j.tranon.2021.101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
The HPV16 lineage A viruses are predominantly associated with cervical squamous cell carcinoma (SCC) in the eastern region of India. Among lineage A viruses, the E5(Y44L, I65V), E6(L83V) and LCR: C7577T variants are associated with SCC. The risk alleles are distributed among 10 clades comprising of 64 HPV16 genomes. Low integration, high episomal copy numbers and high E7 mRNA expression in SCC contrasts lineage A viruses from lineage D.
Human papillomavirus type-16 (HPV16) is classified into lineages, A, B, C and D and 10 sub-lineages portraying variable infectivity, persistence, and cytological outcomes, however, with geographical variations. Our objective was to delineate the distinctive features of lineages among cervical squamous cell carcinoma (SCC) in the eastern region of India. A total of 145 SCC cases and 24 non-malignant specimens, harboring episomal HPV16, were included. The presence of higher proportion of lineage A over D was observed among SCC cases (86.89% A1, 8.97% D1 and 4.14% D2), while only A1 sub-lineage viruses were found among control specimens. Among the A1 viruses, an association of variants in the E5 (Y44L, I65V), E6 (L83V) genes and LCR: C7577T with SCC, with combined Odd's ratio (95% CI) of 20.5(4.61–91.25) was observed. Network analyses revealed the presence of 10 clades of lineage A viruses comprising of 64 HPV16 genomes harboring the risk alleles. High episomal HPV16 DNA copy numbers (adjusted p-value= 0.0271) and E7 mRNA expression (p-value=0.000017) predominated in SCC with lineage A, over D. Our study highlights the distinctive modalities of oncogenicity among different HPV16 lineages.
Collapse
Affiliation(s)
- Paramita Mandal
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India; Biomedical Genetics Laboratory, Department of Zoology, The University of Burdwan, Purba Burdwan, West Bengal 713104, India
| | - Bornali Bhattacharjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India; Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India.
| | - Shrinka Sen
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India; Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, British Columbia V6H 3N1, Canada
| | - Amrapali Bhattacharya
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India; DBT-NIDAN Kendra on Rare Genetic Diseases, N. R. S. Medical College and Hospital, 138, A. J. C. Bose Road, Kolkata 700014, India
| | - Sweta Sharma Saha
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India; Translational and Clinical Research Institute, Faculty of Medical Sciences, Centre for Cancer, Newcastle University, NE2 4HH, UK
| | | | | | | | | | | | - Sharmila Sengupta
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India.
| |
Collapse
|
5
|
Namvar A, Bolhassani A, Javadi G, Noormohammadi Z. Combination of human papillomaviruses L1 and L2 multiepitope constructs protects mice against tumor cells. Fundam Clin Pharmacol 2021; 35:1055-1068. [PMID: 33930201 DOI: 10.1111/fcp.12690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/22/2023]
Abstract
Different types of cancer including cervical (>90%), anal (~88%), vaginal (~40%), and penile (~40%) cancers are associated with human papillomaviruse (HPV) infections. Three prophylactic vaccines (Cervarix, Gardasil, and Gardasil-9) were approved to provide immuno-protection against certain types of HPVs. Currently, next-generation HPV vaccines such as L1/L2-based vaccines are being developed to provide broad-type HPV protection. In this study, we introduced a comprehensive framework for design of L1/L2 polyepitope-based HPV vaccine candidate. This framework started with protein sequence retrieval and followed by conservancy analysis between high-risk HPVs, MHC-I and MHC-II epitope mapping, and B-cell and T-cell epitope mapping. Subsequently, we performed Tap transport and proteasomal cleavage, population coverage, antigenicity, allergenicity and cross-reactivity. After that, peptide-MHCI/II flexible docking and comprehensive conservancy analysis against all HPV types were carried out. The next steps were prediction of interferon-gamma and interleukin-10 inducing epitopes, epitope selection and construct design, tertiary structure prediction, refinement and validation, discontinuous B-cell epitope prediction, vaccine-TLR4 molecular docking, and codon optimization. Our data showed that two designed vaccine constructs harboring 8 L1 peptides or 7 L2 peptides, individually were highly conserved between all well-known HPV types. In addition, the combination of in silico/in vivo approaches indicated the potential ability of L1 and L2 polyepitope constructs for development of next generation prophylactic/therapeutic HPV vaccine.
Collapse
Affiliation(s)
- Ali Namvar
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Sabatini ME, Chiocca S. Human papillomavirus as a driver of head and neck cancers. Br J Cancer 2020; 122:306-314. [PMID: 31708575 PMCID: PMC7000688 DOI: 10.1038/s41416-019-0602-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
The human papillomavirus (HPV) family includes more than 170 different types of virus that infect stratified epithelium. High-risk HPV is well established as the primary cause of cervical cancer, but in recent years, a clear role for this virus in other malignancies is also emerging. Indeed, HPV plays a pathogenic role in a subset of head and neck cancers-mostly cancers of the oropharynx-with distinct epidemiological, clinical and molecular characteristics compared with head and neck cancers not caused by HPV. This review summarises our current understanding of HPV in these cancers, specifically detailing HPV infection in head and neck cancers within different racial/ethnic subpopulations, and the differences in various aspects of these diseases between women and men. Finally, we provide an outlook for this disease, in terms of clinical management, and consider the issues of 'diagnostic biomarkers' and targeted therapies.
Collapse
Affiliation(s)
- Maria Elisa Sabatini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IFOM-IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IFOM-IEO Campus, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
7
|
Kumar A, Pandey R, Yadav IS, Bharadwaj M. Structural and Epitope Analysis (T- and B-Cell Epitopes) of Hepatitis C Virus (HCV) Glycoproteins: An in silico Approach. J Clin Exp Hepatol 2018; 8:352-361. [PMID: 30568344 PMCID: PMC6286880 DOI: 10.1016/j.jceh.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/23/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic infection with Hepatitis C Virus (HCV) poses a major risk for liver disease like cirrhosis, liver failure and hepatocellular carcinoma. In terms of percentage, the prevalence of HCV in India was found to be low to moderate (1-1.5%), but in terms of sheer numbers, India has a significant number of global HCV patients. Presently, HCV can be treated with direct acting-antibody drugs but there is no prophylactic or therapeutic vaccine available against it. In HCV infection, T- and B-cell immunity is important for clearing the virus. In the present study immunoinformatics was used to identify potent vaccine target for HCV vaccine development. METHODS Sequence of HCV was retrieved from NCBI and their structural analysis was done by using Protpram, PSIPRED, iTASSER and PDBsum servers. T-cell and B-cell epitopes were predicted by Immune Epitope Database and ACBPRED servers. RESULTS On epitope prediction, 25 and 55 potent MHC-I epitopes and 7 and 13 potent B-cell epitopes were predicted for E1 and E2 protein respectively. Their antigenicity score was also calculated. The most potent MHC-I epitopes were MMMNWSPAV and MAWDMMMNW for HLA-A*02:01 and HLA-B*53:01 and most potent B-cell epitope was TGHRMAWDMMMNWSPA for E1 protein. For E2, four MHC-I epitopes having the lowest binding energy and most potent B-cell epitope was DRPYCWHYAPRPCDTI. CONCLUSION In the present study, most potent epitopes for HCV was determined on the basis of their antigenicity along with 3D modeling and docking. Identified B- and T-cell epitopes can be used for the development of potent vaccine against most prevalent HCV type in India to limit its infection.
Collapse
Affiliation(s)
- Anoop Kumar
- Division of Molecular Genetics and Biochemistry, National Institute of Cancer prevention and research (NICPR) formerly Institute of Cytology and Preventive Oncology, Noida, India
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida, India
| | - Roma Pandey
- Department of Biotechnology, Mangalmay Institute of Management and Technology, Greater Noida, India
| | - Inderjit S. Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, National Institute of Cancer prevention and research (NICPR) formerly Institute of Cytology and Preventive Oncology, Noida, India
| |
Collapse
|
8
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
El-Aliani A, Alaoui MAE, Chaoui I, Ennaji MM, Attaleb M, Mzibri ME. Naturally occurring capsid protein variants L1 of human papillomavirus genotype 16 in Morocco. Bioinformation 2017; 13:241-248. [PMID: 28959092 PMCID: PMC5609288 DOI: 10.6026/97320630013241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/23/2022] Open
Abstract
HPV L1 protein is a corner stone in HPV structure, it's involved in the formation of the viral capsid; widely used as a systematic material and considered as the main component in vaccines development and production. The present study aims to characterize genetic variation of L1 gene of HPV 16 specimens and to evaluate in silico the impact of major variants on the epitope change affecting its conformational structure. A fragment of L1 gene from 35 HPV 16 confirmed specimens were amplified by PCR and sequenced. Overall, five amino acids residues changes were reported: T390P in 16 specimens, M425I and M431I in 2 cases, insertion of Serine at 460 and aspartic acid deletion at position 477 in all analyzed cases. The 3D generated model showed that T389P amino acid substitution is located in the H-I loop; the two substitutions M424I and M430I are both located in the H2 helice. The Serine insertion and aspartic acid deletion are located in the H4 helice and B-C loop, respectively. Superimposition of sequences' structures showed that they share a very similar conformation highlighting that the reported amino acids variations don't affect the structure of the L1 protein. However T389P, located in the H-I loop identified as an immunogenetic region of L1 capsid, was reported in 51.4% of cases could interact with vaccines induced monoclonal antibodies suggesting a potential impact on the efficacy of available anti-HPV vaccines.
Collapse
Affiliation(s)
- Aissam El-Aliani
- Unit of Biology and Medical Research, National Centre Natuional de l´Energie, des Sciences et des techniques Nucléaires. Morocco
- Laboratory of Virology Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity (LVMQB/ETB), Faculté des Sciences et Techniques Mohammedia, Morocco
| | | | - Imane Chaoui
- Unit of Biology and Medical Research, National Centre Natuional de l´Energie, des Sciences et des techniques Nucléaires. Morocco
| | - My Mustapha Ennaji
- Laboratory of Virology Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity (LVMQB/ETB), Faculté des Sciences et Techniques Mohammedia, Morocco
| | - Mohammed Attaleb
- Unit of Biology and Medical Research, National Centre Natuional de l´Energie, des Sciences et des techniques Nucléaires. Morocco
| | - Mohammed El Mzibri
- Unit of Biology and Medical Research, National Centre Natuional de l´Energie, des Sciences et des techniques Nucléaires. Morocco
| |
Collapse
|
10
|
Park JS, Shin S, Kim EC, Kim JE, Kim YB, Oh S, Roh EY, Yoon JH. Association of human papillomavirus type 16 and its genetic variants with cervical lesion in Korea. APMIS 2016; 124:950-957. [PMID: 27546189 DOI: 10.1111/apm.12592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/10/2016] [Indexed: 12/21/2022]
Abstract
Persistent human papillomavirus type 16 (HPV16) is the major risk factor for cervical cancer. HPV16 intratypic variants differ in their geographical distribution and oncogenic potential. This study aimed to analyze the distribution of HPV16 variants and their association with cervical lesion histopathology in Korean women. In total, 133 HPV16-positive cervical samples from women admitted to Seoul National University Boramae Hospital were analyzed by sequencing E6, E7, and L1 genes and the long control region (LCR), and the variant distribution according to cervical lesion grade was determined. Isolates were grouped into a phylogenetic lineage, and A1-3, A4, C, and D sublineages were detected in 54.1, 37.8, 0.7, and 7.4% of samples, respectively. The most commonly observed LCR variations were 7521G>A (91.5%), 7730A>C (59.6%), and 7842G>A (59.6%). Furthermore, A4 or D sublineage-positive women had a higher risk for cervical cancer than women who were positive for A1-3. Among HPV phylogenetic clusters, A1-3 was the predominant sublineage, and within A1-3, the 350G polymorphism was highly frequent. These results differed from those of previous studies in Korea and other Asian countries. The findings suggest that cervical neoplasia incidence in HPV16-infected patients could be affected by the distribution of HPV16 variants in the population.
Collapse
Affiliation(s)
- Jeong Su Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. .,Department of Laboratory Medicine, Seoul National University Boramae Hospital, Seoul, Korea.
| | - Eui-Chong Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sohee Oh
- Department of Biostatistics, Seoul National University Boramae Hospital, Seoul, Korea
| | - Eun Youn Roh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Boramae Hospital, Seoul, Korea
| | - Jong Hyun Yoon
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Boramae Hospital, Seoul, Korea
| |
Collapse
|