1
|
Körner MB, Velluva A, Bundalian L, Krohn K, Schön K, Schumann I, Kromp J, Thum AS, Garten A, Hentschel J, Abou Jamra R, Mrestani A, Scholz N, Langenhan T, Le Duc D. Drosophila WDFY3/ Bchs overexpression impairs neural function. J Neurogenet 2025; 39:23-38. [PMID: 40000652 DOI: 10.1080/01677063.2025.2465536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Pathogenic variants in WDFY3, a gene encoding for an autophagy adaptor termed ALFY, are linked to neurodevelopmental delay and altered brain size in human probands. While the role of WDFY3 loss-of-function is extensively studied in neurons, little is known about the effects of WDFY3 upregulation in different cell types of the central nervous system (CNS). We show that overexpression of the Drosophila melanogaster WDFY3 ortholog, Bchs, in either glia or neurons impaired autophagy and locomotion. Bchs glial overexpression also increased VNC size and glial nuclei number significantly, whereas neuronal Bchs overexpression affected wing and thorax morphology. We identified 79 genes that were differentially expressed and overlapped in flies that overexpress Bchs in glial and neuronal cells, respectively. Additionally, upon neuronal Bchs overexpression differentially expressed genes clustered in gene ontology categories associated with autophagy and mitochondrial function. Our data indicate that glial as well as neuronal Bchs upregulation can have detrimental outcomes on neural function.
Collapse
Affiliation(s)
- Marek B Körner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Knut Krohn
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Kathleen Schön
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Schumann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jessica Kromp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Achmed Mrestani
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
- Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
2
|
Shi S, Ma D, Guo X, Chen Y, Yu J, Hu X, Wang X, Li T, Wang K, Zhi Y, Yang G, Lin L, Hao Q, Yang Y, Yang K, Wang J. Discovery of a Novel ASM Direct Inhibitor with a 1,5-Diphenyl-pyrazole Scaffold and Its Antidepressant Mechanism of Action. J Med Chem 2024; 67:10350-10373. [PMID: 38888140 DOI: 10.1021/acs.jmedchem.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple studies have confirmed that acid sphingomyelinase (ASM) activity is associated with depression. The discovery of direct inhibitors against ASM is of great significance for exploring antidepressants and their mechanisms of action. Herein, a series of novel phenylpyrazole analogues were rationally designed and synthesized. Among them, compound 46 exhibited potent inhibitory activity (IC50 = 0.87 μM) and good drug-like properties. In vivo studies demonstrated that compound 46 was involved in multiple antidepressant mechanisms of action, which were associated with a decline of ceramide, including increasing the Bcl-2/Bax ratio and BDNF expression, down-regulating caspase-3 and caspase-9, ameliorating oxidative stress, reducing the levels of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6, and elevating 5-HT levels in the brains of mice, respectively. These meaningful results reveal for the first time that direct inhibitors exhibit remarkable antidepressant effects in the CUMS-induced mouse model through multiple mechanisms of antidepressant action.
Collapse
Affiliation(s)
- Shaochun Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dingchen Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ximing Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yunbao Zhi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guoqing Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lizhi Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqiao Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Kalinichenko LS, Kohl Z, Mühle C, Hassan Z, Hahn A, Schmitt EM, Macht K, Stoyanov L, Moghaddami S, Bilbao R, Eulenburg V, Winkler J, Kornhuber J, Müller CP. Sex-specific pleiotropic changes in emotional behavior and alcohol consumption in human α-synuclein A53T transgenic mice during early adulthood. J Neurochem 2024; 168:269-287. [PMID: 38284431 DOI: 10.1111/jnc.16051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Point mutations in the α-synuclein coding gene may lead to the development of Parkinson's disease (PD). PD is often accompanied by other psychiatric conditions, such as anxiety, depression, and drug use disorders, which typically emerge in adulthood. Some of these point mutations, such as SNCA and A30T, have been linked to behavioral effects that are not commonly associated with PD, especially regarding alcohol consumption patterns. In this study, we investigated whether the familial PD point mutation A53T is associated with changes in alcohol consumption behavior and emotional states at ages not yet characterized by α-synuclein accumulation. The affective and alcohol-drinking phenotypes remained unaltered in female PDGF-hA53T-synuclein-transgenic (A53T) mice during both early and late adulthood. Brain region-specific activation of ceramide-producing enzymes, acid sphingomyelinase (ASM), and neutral sphingomyelinase (NSM), known for their neuroprotective properties, was observed during early adulthood but not in late adulthood. In males, the A53T mutation was linked to a reduction in alcohol consumption in both early and late adulthood. However, male A53T mice displayed increased anxiety- and depression-like behaviors during both early and late adulthood. Enhanced ASM activity in the dorsal mesencephalon and ventral hippocampus may potentially contribute to these adverse behavioral effects of the mutation in males during late adulthood. In summary, the A53T gene mutation was associated with diverse changes in emotional states and alcohol consumption behavior long before the onset of PD, and these effects varied by sex. These alterations in behavior may be linked to changes in brain ceramide metabolism.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Zacharias Kohl
- Division of Molecular Neurology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Erlangen, Germany
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Agnes Hahn
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Eva-Maria Schmitt
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Macht
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lyubomir Stoyanov
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Schayan Moghaddami
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roberto Bilbao
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Volker Eulenburg
- Department for Anesthesiology and Intensive Care, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jürgen Winkler
- Division of Molecular Neurology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Mir IH, Thirunavukkarasu C. The relevance of acid sphingomyelinase as a potential target for therapeutic intervention in hepatic disorders: current scenario and anticipated trends. Arch Toxicol 2023; 97:2069-2087. [PMID: 37248308 PMCID: PMC10226719 DOI: 10.1007/s00204-023-03529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Acid sphingomyelinase (ASMase) serves as one of the most remarkable enzymes in sphingolipid biology. ASMase facilitates the hydrolysis of sphingomyelin, yielding ceramide and phosphorylcholine via the phospholipase C signal transduction pathway. Owing to its prominent intervention in apoptosis, ASMase, and its product ceramide is now at the bleeding edge of lipid research due to the coalesced efforts of several research institutions over the past 40 years. ASMase-catalyzed ceramide synthesis profoundly alters the physiological properties of membrane structure in response to a broad range of stimulations, orchestrating signaling cascades for endoplasmic reticulum stress, autophagy, and lysosomal membrane permeabilization, which influences the development of hepatic disorders, such as steatohepatitis, hepatic fibrosis, drug-induced liver injury, and hepatocellular carcinoma. As a result, the potential to modulate the ASMase action with appropriate pharmaceutical antagonists has sparked a lot of curiosity. This article emphasizes the fundamental mechanisms of the systems that govern ASMase aberrations in various hepatic pathologies. Furthermore, we present an insight into the potential therapeutic agents used to mitigate ASMase irregularities and the paramountcy of such inhibitors in drug repurposing.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| | | |
Collapse
|
5
|
Morimoto J, Wenzel M, Derous D, Henry Y, Colinet H. The transcriptomic signature of responses to larval crowding in Drosophila melanogaster. INSECT SCIENCE 2023; 30:539-554. [PMID: 36115064 PMCID: PMC10947363 DOI: 10.1111/1744-7917.13113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways underpinning these ecological processes are poorly characterized. We reared Drosophila melanogaster at three egg densities (5, 60, and 300 eggs/mL) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass, and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs), including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, taurine, Toll/Imd signaling, and P450 xenobiotics metabolism pathways. Overall, our findings show that larval crowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
- Institute of MathematicsKing's CollegeUniversity of AberdeenAberdeenUnited Kingdom
| | - Marius Wenzel
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Davina Derous
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Youn Henry
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Herve Colinet
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
| |
Collapse
|
6
|
Administration of an Acidic Sphingomyelinase (ASMase) Inhibitor, Imipramine, Reduces Hypoglycemia-Induced Hippocampal Neuronal Death. Cells 2022; 11:cells11040667. [PMID: 35203316 PMCID: PMC8869983 DOI: 10.3390/cells11040667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Severe hypoglycemia (below 35 mg/dL) appears most often in diabetes patients who continuously inject insulin. To rapidly cease the hypoglycemic state in this study, glucose reperfusion was conducted, which can induce a secondary neuronal death cascade following hypoglycemia. Acid sphingomyelinase (ASMase) hydrolyzes sphingomyelin into ceramide and phosphorylcholine. ASMase activity can be influenced by cations, pH, redox, lipids, and other proteins in the cells, and there are many changes in these factors in hypoglycemia. Thus, we expect that ASMase is activated excessively after hypoglycemia. Ceramide is known to cause free radical production, excessive inflammation, calcium dysregulation, and lysosomal injury, resulting in apoptosis and the necrosis of neurons. Imipramine is mainly used in the treatment of depression and certain anxiety disorders, and it is particularly known as an ASMase inhibitor. We hypothesized that imipramine could decrease hippocampal neuronal death by reducing ceramide via the inhibition of ASMase after hypoglycemia. In the present study, we confirmed that the administration of imipramine significantly reduced hypoglycemia-induced neuronal death and improved cognitive function. Therefore, we suggest that imipramine may be a promising therapeutic tool for preventing hypoglycemia-induced neuronal death.
Collapse
|
7
|
Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal 2020; 79:109890. [PMID: 33359087 DOI: 10.1016/j.cellsig.2020.109890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ting Yu Amelia Yam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA; American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
8
|
Vásquez-Procopio J, Osorio B, Cortés-Martínez L, Hernández-Hernández F, Medina-Contreras O, Ríos-Castro E, Comjean A, Li F, Hu Y, Mohr S, Perrimon N, Missirlis F. Intestinal response to dietary manganese depletion inDrosophila. Metallomics 2020; 12:218-240. [DOI: 10.1039/c9mt00218a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic adaptations to manganese deficiency.
Collapse
|
9
|
Sim J, Osborne KA, Argudo García I, Matysik AS, Kraut R. The BEACH Domain Is Critical for Blue Cheese Function in a Spatial and Epistatic Autophagy Hierarchy. Front Cell Dev Biol 2019; 7:129. [PMID: 31428609 PMCID: PMC6688705 DOI: 10.3389/fcell.2019.00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/02/2019] [Indexed: 01/26/2023] Open
Abstract
Drosophila blue cheese (bchs) encodes a BEACH domain adaptor protein that, like its human homolog ALFY, promotes clearance of aggregated proteins through its interaction with Atg5 and p62. bchs mutations lead to age-dependent accumulation of ubiquitinated inclusions and progressive neurodegeneration in the fly brain, but neither the influence of autophagy on bchs-related degeneration, nor bchs’ placement in the autophagic hierarchy have been shown. We present epistatic evidence in a well-defined larval motor neuron paradigm that in bchs mutants, synaptic accumulation of ubiquitinated aggregates and neuronal death can be rescued by pharmacologically amplifying autophagic initiation. Further, pharmacological rescue requires at least one intact BEACH-containing isoform of the two identified in this study. Genetically augmenting a late step in autophagy, however, rescues even a strong mutation which retains only a third, non-BEACH containing isoform. Using living primary larval brain neurons, we elucidate the primary defect in bchs to be an excess of early autophagic compartments and a deficit in mature compartments. Conversely, rescuing the mutants by full-length Bchs over-expression induces mature compartment proliferation and rescues neuronal death. Surprisingly, only the longest Bchs isoform colocalizes well with autophagosomes, and shuttles between different vesicular locations depending on the type of autophagic impetus applied. Our results are consistent with Bchs promoting autophagic maturation, and the BEACH domain being required for this function.
Collapse
Affiliation(s)
- Joan Sim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kathleen A Osborne
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Irene Argudo García
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Artur S Matysik
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rachel Kraut
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
10
|
Walls SM, Cammarato A, Chatfield DA, Ocorr K, Harris GL, Bodmer R. Ceramide-Protein Interactions Modulate Ceramide-Associated Lipotoxic Cardiomyopathy. Cell Rep 2019. [PMID: 29514098 DOI: 10.1016/j.celrep.2018.02.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lipotoxic cardiomyopathy (LCM) is characterized by abnormal myocardial accumulation of lipids, including ceramide; however, the contribution of ceramide to the etiology of LCM is unclear. Here, we investigated the association of ceramide metabolism and ceramide-interacting proteins (CIPs) in LCM in the Drosophila heart model. We find that ceramide feeding or ceramide-elevating genetic manipulations are strongly associated with cardiac dilation and defects in contractility. High ceramide-associated LCM is prevented by inhibiting ceramide synthesis, establishing a robust model of direct ceramide-associated LCM, corroborating previous indirect evidence in mammals. We identified several CIPs from mouse heart and Drosophila extracts, including caspase activator Annexin-X, myosin chaperone Unc-45, and lipogenic enzyme FASN1, and remarkably, their cardiac-specific manipulation can prevent LCM. Collectively, these data suggest that high ceramide-associated lipotoxicity is mediated, in part, through altering caspase activation, sarcomeric maintenance, and lipogenesis, thus providing evidence for conserved mechanisms in LCM pathogenesis in mammals.
Collapse
Affiliation(s)
- Stanley M Walls
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA, USA
| | - Anthony Cammarato
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Dale A Chatfield
- Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Greg L Harris
- Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA, USA.
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Plotegher N, Bubacco L, Greggio E, Civiero L. Ceramides in Parkinson's Disease: From Recent Evidence to New Hypotheses. Front Neurosci 2019; 13:330. [PMID: 31001082 PMCID: PMC6454043 DOI: 10.3389/fnins.2019.00330] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/21/2019] [Indexed: 12/27/2022] Open
Abstract
Ceramides (Cer) constitute a class of lipids present in the cell membranes where they act as structural components, but they can also work as signaling molecules. Increasing genetic and biochemical evidence supports a link between deregulation of ceramide metabolism in the brain and neurodegeneration. Here, we provide an overview of the genes and cellular pathways that link Cer with Parkinson’s disease and discuss how ceramide pathobiology is gaining increasing interest in the understanding of the pathological mechanisms that contribute to the disease and in the clinical and therapeutic side.
Collapse
Affiliation(s)
- Nicoletta Plotegher
- Laboratory of Cellular Physiology and Molecular Biophysics, Department of Biology, University of Padua, Padua, Italy
| | - Luigi Bubacco
- Laboratory of Cellular Physiology and Molecular Biophysics, Department of Biology, University of Padua, Padua, Italy
| | - Elisa Greggio
- Laboratory of Cellular Physiology and Molecular Biophysics, Department of Biology, University of Padua, Padua, Italy
| | - Laura Civiero
- Laboratory of Cellular Physiology and Molecular Biophysics, Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
12
|
Simões T, Novais SC, Natal-da-Luz T, Devreese B, de Boer T, Roelofs D, Sousa JP, van Straalen NM, Lemos MFL. An integrative omics approach to unravel toxicity mechanisms of environmental chemicals: effects of a formulated herbicide. Sci Rep 2018; 8:11376. [PMID: 30054531 PMCID: PMC6063884 DOI: 10.1038/s41598-018-29662-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
The use of integrative molecular approaches can aid in a comprehensive understanding of the effects of toxicants at different levels of biological organization, also supporting risk assessment. The present study aims to unravel the toxicity mechanisms of a widely used herbicide to the arthropod Folsomia candida exposed in a natural soil, by linking effects on reproduction, proteomics and genome-wide gene expression. The EC50 effects on reproduction over 4 weeks was 4.63 mg glyphosate/kg of soil. The formulation included a polyethoxylated tallowamine as an adjuvant, which at 50% effect on reproduction had an estimated concentration of 0.87-1.49 mg/kg of soil. No effects were observed on survival and reproduction when using the isolated active substance, pointing the toxicity of the formulated product to the co-formulant instead of the active ingredient, glyphosate. RNA sequencing and shotgun proteomics were applied to assess differential transcript and protein expressions between exposed and control organisms in time, respectively. Specific functional categories at protein and transcriptome levels were concordant with each other, despite overall limited correlations between datasets. The exposure to this formulation affected normal cellular respiration and lipid metabolism, inducing oxidative stress and leading to impairment in biological life cycle mechanisms such as molting and reproduction.
Collapse
Affiliation(s)
- Tiago Simões
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- Institute of Ecological Sciences, Vrije University, Amsterdam, Netherlands.
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
- Institute of Ecological Sciences, Vrije University, Amsterdam, Netherlands
| | - Tiago Natal-da-Luz
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Bart Devreese
- Laboratory for Microbiology (LM-Ugent), Ghent University, Ghent, Belgium
| | - Tjalf de Boer
- Institute of Ecological Sciences, Vrije University, Amsterdam, Netherlands
| | - Dick Roelofs
- Institute of Ecological Sciences, Vrije University, Amsterdam, Netherlands
| | - José P Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
13
|
Beyond autophagy: a novel role for autism-linked Wdfy3 in brain mitophagy. Sci Rep 2018; 8:11348. [PMID: 30054502 PMCID: PMC6063930 DOI: 10.1038/s41598-018-29421-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023] Open
Abstract
WD repeat and FYVE domain-containing 3 (WDFY3; also known as Autophagy-Linked FYVE or Alfy) is an identified intellectual disability, developmental delay and autism risk gene. This gene encodes for a scaffolding protein that is expressed in both the developing and adult central nervous system and required for autophagy and aggrephagy with yet unexplored roles in mitophagy. Given that mitochondrial trafficking, dynamics and remodeling have key roles in synaptic plasticity, we tested the role of Wdfy3 on brain bioenergetics by using Wdfy3+/lacZ mice, the only known Wdfy3 mutant animal model with overt neurodevelopmental anomalies that survive to adulthood. We found that Wdfy3 is required for sustaining brain bioenergetics and morphology via mitophagy. Decreased mitochondrial quality control by conventional mitophagy was partly compensated for by the increased formation of mitochondria-derived vesicles (MDV) targeted to lysosomal degradation (micromitophagy). These observations, extended through proteomic analysis of mitochondria-enriched cortical fractions, showed significant enrichment for pathways associated with mitophagy, mitochondrial transport and axon guidance via semaphorin, Robo, L1cam and Eph-ephrin signaling. Collectively, our findings support a critical role for Wdfy3 in mitochondrial homeostasis with implications for neuron differentiation, neurodevelopment and age-dependent neurodegeneration.
Collapse
|
14
|
Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018; 19:E1989. [PMID: 29986523 PMCID: PMC6073496 DOI: 10.3390/ijms19071989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Université Paris Diderot, UMR8251 CNRS, 75013 Paris, France.
| | - Jose Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 96100 Valencia, Spain.
| | - Juan Antonio Navarro
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
15
|
Activation of neutral sphingomyelinase 2 by starvation induces cell-protective autophagy via an increase in Golgi-localized ceramide. Cell Death Dis 2018; 9:670. [PMID: 29867196 PMCID: PMC5986760 DOI: 10.1038/s41419-018-0709-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is essential for optimal cell function and survival, and the entire process accompanies membrane dynamics. Ceramides are produced by different enzymes at different cellular membrane sites and mediate differential signaling. However, it remains unclear which ceramide-producing pathways/enzymes participate in autophagy regulation under physiological conditions such as nutrient starvation, and what the underlying mechanisms are. In this study, we demonstrate that among ceramide-producing enzymes, neutral sphingomyelinase 2 (nSMase2) plays a key role in autophagy during nutrient starvation. nSMase2 was rapidly and stably activated upon starvation, and the enzymatic reaction in the Golgi apparatus facilitated autophagy through the activation of p38 MAPK and inhibition of mTOR. Moreover, nSMase2 played a protective role against cellular damage depending on autophagy. These findings suggest that nSMase2 is a novel regulator of autophagy and provide evidence that Golgi-localized ceramides participate in cytoprotective autophagy against starvation.
Collapse
|
16
|
The role of sphingolipid metabolism disruption on lipopolysaccharide-induced lung injury in mice. Pulm Pharmacol Ther 2018; 50:100-110. [DOI: 10.1016/j.pupt.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/08/2018] [Accepted: 04/21/2018] [Indexed: 02/01/2023]
|
17
|
Edenharter O, Schneuwly S, Navarro JA. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich's Ataxia. Front Mol Neurosci 2018; 11:38. [PMID: 29563863 PMCID: PMC5845754 DOI: 10.3389/fnmol.2018.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and Drosophila frataxin. Our screen has identified silencing of Drosophila mitofusin (Marf) as a suppressor of FRDA phenotypes in glia. Drosophila Marf is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first Drosophila transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process in vivo. Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in Drosophila. Remarkably, we demonstrate that downregulation of Marf suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by Marf knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.
Collapse
Affiliation(s)
- Oliver Edenharter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Hebbar S, Khandelwal A, Jayashree R, Hindle SJ, Chiang YN, Yew JY, Sweeney ST, Schwudke D. Lipid metabolic perturbation is an early-onset phenotype in adult spinster mutants: a Drosophila model for lysosomal storage disorders. Mol Biol Cell 2017; 28:3728-3740. [PMID: 29046397 PMCID: PMC5739291 DOI: 10.1091/mbc.e16-09-0674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
Intracellular accumulation of lipids and swollen dysfunctional lysosomes are linked to several neurodegenerative diseases, including lysosomal storage disorders (LSD). Detailed characterization of lipid metabolic changes in relation to the onset and progression of neurodegeneration is currently missing. We systematically analyzed lipid perturbations in spinster (spin) mutants, a Drosophila model of LSD-like neurodegeneration. Our results highlight an imbalance in brain ceramide and sphingosine in the early stages of neurodegeneration, preceding the accumulation of endomembranous structures, manifestation of altered behavior, and buildup of lipofuscin. Manipulating levels of ceramidase and altering these lipids in spin mutants allowed us to conclude that ceramide homeostasis is the driving force in disease progression and is integral to spin function in the adult nervous system. We identified 29 novel physical interaction partners of Spin and focused on the lipid carrier protein, Lipophorin (Lpp). A subset of Lpp and Spin colocalize in the brain and within organs specialized for lipid metabolism (fat bodies and oenocytes). Reduced Lpp protein was observed in spin mutant tissues. Finally, increased levels of lipid metabolites produced by oenocytes in spin mutants allude to a functional interaction between Spin and Lpp, underscoring the systemic nature of lipid perturbation in LSD.
Collapse
Affiliation(s)
- Sarita Hebbar
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Avinash Khandelwal
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - R Jayashree
- Centre for Cellular and Molecular Platforms (C-CAMP), Proteomics Facility, Bangalore 560065, India
| | | | | | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Ma-noa, Honolulu, HI 96822
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK
| | - Dominik Schwudke
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| |
Collapse
|
19
|
Lai MKP, Chew WS, Torta F, Rao A, Harris GL, Chun J, Herr DR. Biological Effects of Naturally Occurring Sphingolipids, Uncommon Variants, and Their Analogs. Neuromolecular Med 2016; 18:396-414. [DOI: 10.1007/s12017-016-8424-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
|