1
|
Kataria M, Seki S. Responsive Chirality: Tailoring Supramolecular Assemblies with External Stimuli as Future Platforms for Electronic/Spintronic Materials. Chemistry 2025; 31:e202403460. [PMID: 39462198 DOI: 10.1002/chem.202403460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Supramolecular chirality is the major branch of supramolecular chemistry, which not only plays important roles in biological processes but also in synthetically designed aggregated systems. To understand the complex processing of biological systems, the only way is to design supramolecular chiral ensembles that mimic natural biomolecules such as Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), amino acids, etc. In addition, chiral systems and self-assemblies as molecular motifs with breaking spatial inversion symmetry have been regarded as key substances in electronics and spintronics as well as in fundamental chemistry and physics. Here, in this review, our major concern is understanding modulation in spatial arrangements and packing modes under the impact of any external stimuli, which results in tailoring the handedness of resulted supramolecular chiral superstructures. We, in this review, highlighted the role of external stimuli such as solvent, chemical additives, photo exposure, etc. in altering the supramolecular chirality for their future utility as "active switches" in optoelectronic and spintronic devices and applications.
Collapse
Affiliation(s)
- Meenal Kataria
- Department of Molecular Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
2
|
Sk MA, Kyarikwal R, Sadhu KK. Remarkable Stability of Glutathione-Based Supramolecular Gel in the Presence of Oxidative Stress from Hydrogen Peroxide. ACS APPLIED BIO MATERIALS 2024; 7:6950-6957. [PMID: 39350009 DOI: 10.1021/acsabm.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Low molecular weight 7-methoxy-3-(p-nitrophenyl)iminocoumarin (MNI) with donor and acceptor groups has been synthesized. The molecule shows typical π-stacking geometry in the crystal structure. In this study, MNI, an achiral small organic molecule, forms a nanostructured supramolecular gel along with a short peptide sequence glutathione (GSH). The self-assembly of the achiral organic coumarin component and chiral biomolecule produces a chiral gel with helical fiber structures. Interestingly, the helicities of chiral gels are controlled by the solvent ratio, where MNI in DMSO and GSH in water has been used. Variation of the solvent ratio from 6:4 to 1:9 for DMSO:H2O results in six gels (4, 5, 6, 7, 8 and 9), where the gel numbers signify the water content ratio. FE-SEM analysis shows gel fibers with right-handed helical structures, which have been further confirmed by circular dichroism (CD) with notable helicity in 4 to 6. This is the first report of controlled chiral helical nanostructured supramolecular gel formation by a solvent mixture with an organic small molecule and biomolecule. Interestingly, storage modulus (G') initially decreases from 4 to 6 and further increases up to 9. An opposite strain (%) trend was observed among these six gels. These unusual solvent-dependent gel properties have been further applied to monitor the stability of the gels in the presence of hydrogen peroxide (H2O2), which converts GSH to oxidized glutathione (GSSG) in general. The oxidative stress from H2O2 disrupts 4 to 6 gels, and precipitation occurs. It is noteworthy to mention that GSSG alone cannot form a gel with the MNI molecule and forms a precipitate. Remarkably, on the other hand, 7 to 9 remain as strong gels even after H2O2 treatment. Among all six gels, 9 shows extraordinary stability of gels even after H2O2 treatment.
Collapse
Affiliation(s)
- Md Azimuddin Sk
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Reena Kyarikwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
3
|
Ramesh A, Das TN, Maji TK, Ghosh G. Unravelling denaturation, temperature and cosolvent-driven chiroptical switching in peptide self-assembly with switchable piezoelectric responses. Chem Sci 2024:d4sc05016a. [PMID: 39309077 PMCID: PMC11409859 DOI: 10.1039/d4sc05016a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Herein, we explore the intricate pathway complexity, focusing on the dynamic interplay between kinetic and thermodynamic states, during the supramolecular self-assembly of peptides. We uncover a multiresponsive chiroptical switching phenomenon influenced by temperature, denaturation and content of cosolvent in peptide self-assembly through pathway complexity (kinetic vs. thermodynamic state). Particularly noteworthy is the observation of chiroptical switching during the denaturation process, marking an unprecedented phenomenon in the literature. Furthermore, the variation in cosolvent contents produces notable chiroptical switching effects, emphasizing their infrequent incidence. Such chiroptical switching yields switchable piezoresponsive peptide-based nanomaterials, demonstrating the potential for dynamic control over material properties. In essence, our work pioneers the ability to control piezoresponsive behavior by transforming nanostructures from kinetic to thermodynamic states through pathway complexity. This approach provides new insights and opportunities for tailoring material properties in self-assembled systems.
Collapse
Affiliation(s)
- Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| | - Tarak Nath Das
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
4
|
Synthetic peptides that form nanostructured micelles have potent antibiotic and antibiofilm activity against polymicrobial infections. Proc Natl Acad Sci U S A 2023; 120:e2219679120. [PMID: 36649429 PMCID: PMC9942841 DOI: 10.1073/pnas.2219679120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The emergence of multidrug-resistant bacterial pathogens is a growing threat to global public health. Here, we report the development and characterization of a panel of nine-amino acid residue synthetic peptides that display potent antibacterial activity and the ability to disrupt preestablished microbial biofilms. The lead peptide (Peptide K6) showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus in culture and in monocultures and mixed biofilms in vitro. Biophysical analysis revealed that Peptide K6 self-assembled into nanostructured micelles that correlated with its strong antibiofilm activity. When surface displayed on the outer membrane protein LamB, two copies of the Peptide K6 were highly bactericidal to Escherichia coli. Peptide K6 rapidly increased the permeability of bacterial cells, and resistance to this toxic peptide occurred less quickly than that to the potent antibiotic gentamicin. Furthermore, we found that Peptide K6 was safe and effective in clearing mixed P. aeruginosa-S. aureus biofilms in a mouse model of persistent infection. Taken together, the properties of Peptide K6 suggest that it is a promising antibiotic candidate and that design of additional short peptides that form micelles represents a worthwhile approach for the development of antimicrobial agents.
Collapse
|
5
|
Sun N, Wang J, Dou X, Wang Y, Yang Y, Xiao D, Zhao P, Li J, Wang S, Gu P, Ji J. A chiral microenvironment promotes retinal progenitor cell proliferation by activating the Akt and ERK pathways. Biomater Sci 2022; 10:5938-5946. [PMID: 36043429 DOI: 10.1039/d2bm00886f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal progenitor cell (RPC) transplantation has been proposed as a potential strategy for the treatment of retinal degeneration, which is a leading cause of vision loss. However, a major obstacle is the poor proliferation of RPCs. Accumulating evidence suggests that the chiral features of the extracellular microenvironment are closely related to cell proliferation. Inspired by this, L/D-phenylalanine-derived molecules (LP and DP) are employed to construct a biomimetic chiral microenvironment for enhancing RPC proliferation. LP and DP self-assemble into left-handed and right-handed helical fibrous networks, respectively. It is found that DP nanofibrous films show an excellent ability in promoting RPC proliferation via the activation of the Akt and extracellular signal-regulated kinase (ERK) pathways. In addition, both LP and DP nanofibrous films have the advantage of attenuating inflammation, and LP films can maintain the stem potential of RPCs. Thus, the promotion of RPC proliferation using a bioinspired chiral fibrous microenvironment is a promising strategy for RPC-based therapies for retinal degeneration.
Collapse
Affiliation(s)
- Na Sun
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jiajing Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Yiqi Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuan Yang
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Dong Xiao
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuting Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jing Ji
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
6
|
Dowari P, Roy S, Das S, Chowdhuri S, Kushwaha R, Das BK, Ukil A, Das D. Mannose‐decorated composite peptide hydrogel with thixotropic and syneresis properties and its application in treatment of Leishmaniasis. Chem Asian J 2022; 17:e202200550. [DOI: 10.1002/asia.202200550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Payel Dowari
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry Department of Chemistry, IIT Guwahati, Kamrup 781039 Guwahati INDIA
| | - Shalini Roy
- University of Calcutta Biochemistry 35, Ballygunge Circular Road 700019 Kolkata INDIA
| | - Saurav Das
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry IIT GUWAHATI 781039 KAMRUP INDIA
| | - Sumit Chowdhuri
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry Department of Chemistry, IIT Guwahati, Kamrup 781039 Guwahati INDIA
| | - Ritvika Kushwaha
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry Department of Chemistry, IIT Guwahati, Kamrup 781039 Guwahati INDIA
| | - Basab Kanti Das
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry Department of Chemistry, IIT Guwahati, Kamrup 781039 Guwahati INDIA
| | - Anindita Ukil
- University of Calcutta Biochemistry 35, Ballygunge Circular Road 700019 Kolkata INDIA
| | - Debapratim Das
- Indian Institute of Technology Guwahati Department of Chemistry IIT Guwahati 781039 Guwahati INDIA
| |
Collapse
|
7
|
Bollu A, Giri P, Dalabehera NR, Asmi AR, Sharma NK. Unnatural Amino Acid: 4-Aminopyrazolonyl Amino Acid Comprising Tri-Peptides Forms Organogel With Co-Solvent (EtOAc:Hexane). Front Chem 2022; 10:821971. [PMID: 35601543 PMCID: PMC9117720 DOI: 10.3389/fchem.2022.821971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
Ampyrone is an amino-functionalized heterocyclic pyrazolone derivative that possesses therapeutic values such as analgesic, anti-inflammatory, and antipyretics. The chemical structure of ampyrone exhibits excellent hydrogen bonding sites and is considered as the potential scaffold of supramolecular self-assembly. Recently, this molecule has been derived into unnatural amino acids such as aminopyrazolone amino acid and its peptides. This report describes that one of its amino acids, O-alkylated ampyrone, containing hybrid (α/β) peptides forms organogel after sonication at 50–55°C with 0.7–0.9% (w/v) in ethyl acetate: hexane (1:3). The formation/morphology of such organogels is studied by nuclear magnetic resonance Fourier-transform infrared (FT-IR), circular dichroism (CD), scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (Powder-XRD), and thermogravimetric analysis (TGA). Energy-minimized conformation of APA-peptides reveals the possibility of intermolecular hydrogen bonding. Hence, APA-peptides are promising peptidomimetics for the organogel-peptides.
Collapse
Affiliation(s)
- Amarnath Bollu
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Prajnanandan Giri
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nihar Ranjan Dalabehera
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Asmita Rani Asmi
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
8
|
Bellotto O, Pierri G, Rozhin P, Polentarutti M, Kralj S, D'Andrea P, Tedesco C, Marchesan S. Dipeptide self-assembly into water-channels and gel biomaterial. Org Biomol Chem 2022; 20:6211-6218. [PMID: 35575102 DOI: 10.1039/d2ob00622g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dipeptides are convenient building blocks for supramolecular gel biomaterials that can be produced on a large scale at low cost and do not persist in the environment. In the case of unprotected sequences, hydrophobicity is a key requirement to enable gelation, with Phe-Phe standing out for its self-assembling ability. Conversely, more hydrophilic sequences such as homochiral dipeptides Phe-Val and Val-Phe neither fibrillate nor gel aqueous buffers and their crystal structures reveal amphipathic layers. In this work, we test emerging rules for the design of self-assembling dipeptides using heterochiral Phe-Val and Val-Phe. Each dipeptide is characterized by 1H- and 13C-NMR, LC-MS, circular dichroism, infrared and Raman spectroscopies, rheology, electron microscopy, and single-crystal X-ray diffraction. In particular, D-Phe-L-Val is the first heterochiral dipeptide to self-assemble into supramolecular water-channels whose cavity is defined by four peptide molecules arranged head-to-tail. This minimalistic sequence is devoid of amyloid character as probed by thioflavin T fluorescence and it displays excellent biocompatibility in vitro. The dataset provided, through comparison with the literature, significantly advances the definition of molecular design rules for minimalistic unprotected dipeptides that self-assemble into water-channels and biocompatible gels, to assist with the future development of supramolecular biomaterials with fine control over nanomorphological features for a variety of applications.
Collapse
Affiliation(s)
- Ottavia Bellotto
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Giovanni Pierri
- University of Salerno, Dept. of Chemistry & Biologi "A. Zambelli", Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Petr Rozhin
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | | | - Slavko Kralj
- Jožef Stefan Institute, Materials Synthesis Dept., Jamova 39, 1000 Ljubljana, Slovenia.,University of Ljubljana, Pharmaceutical Technology Dept., Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Paola D'Andrea
- University of Trieste, Life Sciences Dept., Via L. Giorgieri 5, 34127 Trieste, Italy
| | - Consiglia Tedesco
- University of Salerno, Dept. of Chemistry & Biologi "A. Zambelli", Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Silvia Marchesan
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
9
|
Scarel E, Bellotto O, Rozhin P, Kralj S, Tortora M, Vargiu AV, De Zorzi R, Rossi B, Marchesan S. Single-atom substitution enables supramolecular diversity from dipeptide building blocks. SOFT MATTER 2022; 18:2129-2136. [PMID: 35179536 DOI: 10.1039/d1sm01824h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dipeptides are popular building blocks for supramolecular gels that do not persist in the environment and may find various applications. In this work, we show that a simple substitution on the aromatic side-chain of phenylalanine with either fluorine or iodine enables supramolecular diversity upon self-assembly at neutral pH, leading to hydrogels or crystals. Each building block is characterized by 1H- and 13C-NMR spectroscopy, LC-MS, circular dichroism, and molecular models. The supramolecular behaviour is monitored with a variety of techniques, including circular dichroism, oscillatory rheology, transmission electron microscopy, attenuated total reflectance Fourier-transformed infrared spectroscopy, visible Raman spectroscopy, synchrotron-radiation single-crystal X-ray diffraction and UV Resonance Raman spectroscopy, allowing key differences to be pinpointed amongst the halogenated analogues.
Collapse
Affiliation(s)
- Erica Scarel
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Ottavia Bellotto
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Petr Rozhin
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Slavko Kralj
- Jožef Stefan Institute, Materials Synthesis Dept., Jamova 39, 1000 Ljubljana, Slovenia
- University of Ljubljana, Pharmaceutical Technology Dept., Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Mariagrazia Tortora
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy.
| | - Attilio V Vargiu
- University of Cagliari, Physics Dept., 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy.
| | - Silvia Marchesan
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
10
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
11
|
Li M, Liu M, Sha Y. Induced and Inversed Circularly Polarized Luminescence of Achiral Thioflavin T Assembled on Peptide Fibril. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106130. [PMID: 34881501 DOI: 10.1002/smll.202106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Chiroptical inversion of amyloid fibrils is a novel phenomenon and is of fundamental importance; however, the underlying structural basis remains poorly understood. Here, the co-assembly of Thioflavin T (ThT) with T1 amyloid fibril and the induced supramolecular chirality is investigated by induced circular dichroism (ICD) and circularly polarized luminescence (CPL), followed by direct morphological helicity observation of the fibril by an atomic force microscope (AFM). ThT exhibits negative ICD and CPL when assembled on the left-handed T1 fibril. Interestingly, when ThT dynamically interacts with the T1 fibril, the left-handed fibril partially converts into right-handed, accompanied with the inversion of CD and CPL signals. These results indicate that the morphological helicity of template fibril cannot be arbitrarily distinguished by the sign of chiroptical spectra of the dye/peptide assemblies.
Collapse
Affiliation(s)
- Meijun Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Minghua Liu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yinlin Sha
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
12
|
Iba S, Iwata K, Sotani T, Ishida T, Sano N, Sogawa H, Sanda F. Photo-Triggered Chiroptical Switching of Platinum Complexes Bearing Azobenzene Moieties. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shinichi Iba
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kohei Iwata
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Taichi Sotani
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Takahiro Ishida
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Natsuhiro Sano
- R&D Division, Nippon Chemical Industrial Co., Ltd., 9-11-1 Kameido, Koto-ku, Tokyo 136-8515, Japan
| | - Hiromitsu Sogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Fumio Sanda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
13
|
Ortuño RM. Carbocycle-Based Organogelators: Influence of Chirality and Structural Features on Their Supramolecular Arrangements and Properties. Gels 2021; 7:gels7020054. [PMID: 34062755 PMCID: PMC8162357 DOI: 10.3390/gels7020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
The rational design and engineer of organogel-based smart materials and stimuli-responsive materials with tuned properties requires the control of the non-covalent forces driving the hierarchical self-assembly. Chirality, as well as cis/trans relative configuration, also plays a crucial role promoting the morphology and characteristics of the aggregates. Cycloalkane derivatives can provide chiral chemical platforms allowing the incorporation of functional groups and hydrophobic structural units able for a convenient molecular stacking leading to gels. Restriction of the conformational freedom imposed by the ring strain is also a contributing issue that can be modulated by the inclusion of flexible segments. In addition, donor/acceptor moieties can also be incorporated favoring the interactions with light or with charged species. This review offers a perspective on the abilities and properties of carbocycle-based organogelators starting from simple cycloalkane derivatives, which were the key to establish the basis for an effective self-assembling, to sophisticated polycyclic compounds with manifold properties and applications.
Collapse
Affiliation(s)
- Rosa M Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
14
|
Opačak S, Babić D, Perić B, Marinić Ž, Smrečki V, Pem B, Vinković Vrček I, Kirin SI. A ferrocene-based pseudopeptide chiroptical switch. Dalton Trans 2021; 50:4504-4511. [DOI: 10.1039/d1dt00508a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ferrocene pseudopeptide chiroptical switch sensitive to solvent exchange and acid addition with a response in the visible region of CD spectra.
Collapse
Affiliation(s)
- Saša Opačak
- Ruđer Bošković Institute
- HR-10000 Zagreb
- Croatia
| | - Darko Babić
- Ruđer Bošković Institute
- HR-10000 Zagreb
- Croatia
| | | | | | | | - Barbara Pem
- Institute for Medical Research and Occupational Health
- HR-10000 Zagreb
- Croatia
| | | | | |
Collapse
|
15
|
Saito N, Itoyama S, Kondo Y. Multi-responsive organo- and hydrogelation based on the supramolecular assembly of fluorocarbon- and hydrocarbon-containing hybrid surfactants. J Colloid Interface Sci 2020; 588:418-426. [PMID: 33429338 DOI: 10.1016/j.jcis.2020.12.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/10/2023]
Abstract
HYPOTHESIS Novel photoresponsive hybrid surfactants, in which a combination of perfluoroalkyl and alkyl chains and cationic head groups are connected via azobenzene moieties, are excellent candidates for assembling low-molecular-weight organogels (LMOGs) with reversibly switchable viscoelasticities triggered by external stimuli. EXPERIMENTS The structure-composition-property relationships of gels assembled with the hybrid surfactants were investigated by UV-vis and NMR spectroscopy, SEM, XRD, and rheology. FINDINGS Hybrid surfactants containing perfluorohexyl chains with more than six carbons gelled in a variety of organic solvents at concentrations of less than a few percent. In particular, compositions with the perfluorooctyl and somewhat shorter hydrocarbon chains (C1-C4) gelled in both organic solvents and water. The gellable solvent species can be well grouped according to their solubility parameters, suggesting that gelation properties can be predicted from the chemical structure of the surfactant. Mechanical and structural investigations revealed that gel viscoelasticity can be reversibly altered by applying photo, shear, and heat stimuli, which is achieved through the formation and deformation of lamella-like molecular aggregates. The multi-responsive gelation and facile molecular design of the present hybrid surfactants will expand the fields in which fluorinated LMOGs can be applied.
Collapse
Affiliation(s)
- Norio Saito
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Sekito Itoyama
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yukishige Kondo
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| |
Collapse
|
16
|
Gim S, Fittolani G, Nishiyama Y, Seeberger PH, Ogawa Y, Delbianco M. Supramolecular Assembly and Chirality of Synthetic Carbohydrate Materials. Angew Chem Int Ed Engl 2020; 59:22577-22583. [PMID: 32881205 PMCID: PMC7756587 DOI: 10.1002/anie.202008153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Indexed: 11/12/2022]
Abstract
Hierarchical carbohydrate architectures serve multiple roles in nature. Hardly any correlations between the carbohydrate chemical structures and the material properties are available due to the lack of standards and suitable analytic techniques. Therefore, designer carbohydrate materials remain highly unexplored, as compared to peptides and nucleic acids. A synthetic D-glucose disaccharide, DD, was chosen as a model to explore carbohydrate materials. Microcrystal electron diffraction (MicroED), optimized for oligosaccharides, revealed that DD assembled into highly crystalline left-handed helical fibers. The supramolecular architecture was correlated to the local crystal organization, allowing for the design of the enantiomeric right-handed fibers, based on the L-glucose disaccharide, LL, or flat lamellae, based on the racemic mixture. Tunable morphologies and mechanical properties suggest the potential of carbohydrate materials for nanotechnology applications.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | | | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Yu Ogawa
- Univ. Grenoble AlpesCNRSCERMAV38000GrenobleFrance
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
17
|
Das S, Roy S. 6-acylamino nicotinic acid-based hydrogelators applicable in phase selective gelation, reproducible mat formation and toxic dye removal. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Gim S, Fittolani G, Nishiyama Y, Seeberger PH, Ogawa Y, Delbianco M. Supramolecular Assembly and Chirality of Synthetic Carbohydrate Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems Max-Planck-Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Giulio Fittolani
- Department of Biomolecular Systems Max-Planck-Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | | | - Peter H. Seeberger
- Department of Biomolecular Systems Max-Planck-Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Yu Ogawa
- Univ. Grenoble Alpes CNRS CERMAV 38000 Grenoble France
| | - Martina Delbianco
- Department of Biomolecular Systems Max-Planck-Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
19
|
Mrinalini M, Prasanthkumar S. Recent Advances on Stimuli‐Responsive Smart Materials and their Applications. Chempluschem 2019; 84:1103-1121. [DOI: 10.1002/cplu.201900365] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/25/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Madoori Mrinalini
- Polymers & Functional Materials DivisionCSIR-Indian Institute of Chemical Technology (IICT) Tarnaka Hyderabad- 500007, Telangana India
- Academy of Scientific and Innovation Research (AcSIR) Kamla Nehru Nagar, Ghaziabad Uttar Pradesh 201002 India
| | - Seelam Prasanthkumar
- Polymers & Functional Materials DivisionCSIR-Indian Institute of Chemical Technology (IICT) Tarnaka Hyderabad- 500007, Telangana India
- Academy of Scientific and Innovation Research (AcSIR) Kamla Nehru Nagar, Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
20
|
Yue B, Zhu L. Dynamic Modulation of Supramolecular Chirality Driven by Factors from Internal to External Levels. Chem Asian J 2019; 14:2172-2180. [PMID: 31056851 DOI: 10.1002/asia.201900460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/01/2019] [Indexed: 01/09/2023]
Abstract
Supramolecular chirality, generated by the asymmetric assembly of chiral or achiral molecules, has attracted intense study owing to its potential to offer insights into natural biological structures and its crucial roles in advanced materials. The optical activity and stacking pathway of building molecules both greatly determine the chirality of the whole supramolecular structure. The flexibility of supramolecular structures makes their chirality easy to modulate through abundant means. Adjustment of the molecular structure or packing mode, or external stimuli that act like a finger gently pushing toy bricks, can greatly change the chirality of supramolecular assemblies. The dynamic regulation of chiral nanostructures on the intramolecular, intermolecular, and external levels could be regarded as the modulatory essence in numerous strategies, however, this perspective is ignored in most reviews in the literature. Herein, therefore, we focus on the ingenious dynamic modulation of chiral nanostructures by these factors. Through dynamic modulation with changes in chiroptical spectroscopy and electron microscopy, the mechanism of formation of supramolecular chirality is also elaborated.
Collapse
Affiliation(s)
- Bingbing Yue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
21
|
Bhattacharyya S, Chowdhury A, Saha R, Mukherjee PS. Multifunctional Self-Assembled Macrocycles with Enhanced Emission and Reversible Photochromic Behavior. Inorg Chem 2019; 58:3968-3981. [DOI: 10.1021/acs.inorgchem.9b00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Murali DM, Shanmugam G. The aromaticity of the phenyl ring imparts thermal stability to a supramolecular hydrogel obtained from low molecular mass compound. NEW J CHEM 2019. [DOI: 10.1039/c9nj01781j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using Fmoc-phenylalanine and Fmoc-cyclohexylalanine, we show that the aromaticity of the phenyl ring imparts significant thermal stability to a supramolecular hydrogel system and its significance depends on the method of inducing hydrogelation.
Collapse
Affiliation(s)
- Dhanya Mahalakshmi Murali
- Organic & Bioorganic Chemistry Laboratory
- Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI)
- Chennai-600 020
- India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory
- Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI)
- Chennai-600 020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
23
|
Iftime MM, Marin L. Chiral betulin-imino-chitosan hydrogels by dynamic covalent sonochemistry. ULTRASONICS SONOCHEMISTRY 2018; 45:238-247. [PMID: 29705318 DOI: 10.1016/j.ultsonch.2018.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
A series of chiral hydrogels was prepared from a homogeneous mixture of chitosan and betulinic aldehyde in different molar ratios, under the effect of ultrasound. The hydrogelation mechanism has been investigated by FTIR and CD spectroscopy, wide angle X-ray diffraction and polarized light microscopy. The morphology of hydrogels was examined by SEM. The swelling ability has been tested in three media of different pH. It was concluded that hydrogelation occurred by different pathways, closely related to the peculiarities of the chitosan-betulin systems. Circular dichroism measurements revealed chiroptical properties of the hydrogels, correlated to their content and crosslinking pathway.
Collapse
Affiliation(s)
- Manuela Maria Iftime
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Luminita Marin
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
24
|
Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications. J Control Release 2018; 271:1-20. [DOI: 10.1016/j.jconrel.2017.12.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 12/23/2022]
|
25
|
Sharma B, Singh A, Sarma TK, Sardana N, Pal A. Chirality control of multi-stimuli responsive and self-healing supramolecular metallo-hydrogels. NEW J CHEM 2018. [DOI: 10.1039/c8nj00218e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The spontaneous formation of supramolecular metallo-hydrogels showing multi stimuli-responsiveness and intrinsic self-healing properties upon the interaction of chiral-histidine with Zn2+ ions.
Collapse
Affiliation(s)
| | | | - Tridib K. Sarma
- Discipline of Chemistry
- Indian Institute of Technology
- Indore-453552
- India
| | - Neha Sardana
- Institute of Nano Science and Technology
- Mohali
- India
| | - Asish Pal
- Institute of Nano Science and Technology
- Mohali
- India
| |
Collapse
|
26
|
Katla J, Ojha A, Nair AJM, Rangan K, Kanvah S. Photophysical studies of pyrenyl cyanostyrenes: effect of trifluoromethyl substitution on gelation. NEW J CHEM 2018. [DOI: 10.1039/c8nj04146f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient organogel formation with CF3 substituted styrylpyrenes.
Collapse
Affiliation(s)
- Jagadish Katla
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| | - Abhijeet Ojha
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| | - Akshay J. M. Nair
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science
- Hyderabad
- India
| | - Sriram Kanvah
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| |
Collapse
|
27
|
Nema A, Pareek R, Rai T, Panda D. The Role of Glutathione and Ethanol in Dictating the Emission Dynamics of Natural Resources-Derived Highly Luminescent Carbon Nanodots. ChemistrySelect 2017. [DOI: 10.1002/slct.201702455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Akansh Nema
- Rajiv Gandhi Institute of Petroleum Technology; Institute of National Importance; Jais- 229304, Uttar Pradesh INDIA
| | - Rakshit Pareek
- Rajiv Gandhi Institute of Petroleum Technology; Institute of National Importance; Jais- 229304, Uttar Pradesh INDIA
| | - Tripti Rai
- Rajiv Gandhi Institute of Petroleum Technology; Institute of National Importance; Jais- 229304, Uttar Pradesh INDIA
| | - Debashis Panda
- Rajiv Gandhi Institute of Petroleum Technology; Institute of National Importance; Jais- 229304, Uttar Pradesh INDIA
| |
Collapse
|
28
|
Pi-Boleda B, Sans M, Campos M, Nolis P, Illa O, Estévez JC, Branchadell V, Ortuño RM. Studies on Cycloalkane-Based Bisamide Organogelators: A New Example of Stochastic Chiral Symmetry-Breaking Induced by Sonication. Chemistry 2017; 23:3357-3365. [PMID: 28005300 DOI: 10.1002/chem.201604818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Indexed: 11/08/2022]
Abstract
Enantiomerically pure C16 -alkyl amides derived from cis and trans cycloalkane-1,2-dicarboxylic acids, respectively, have been synthesized and their behavior as organogelators has been investigated. These compounds include cis/trans diastereomeric cyclobutane and cyclohexane derivatives with the aim to explore the influence of the ring size as well as the relative configuration in their hierarchical self-assembly to form gels. High resolution 1 H NMR spectroscopy studies allowed the determination of the dynamics of the gelation process in [D8 ]toluene and the sol-gel transition temperature. The morphology and size of the aggregates have been investigated and results have shown that, in the case of cyclobutane derivatives, the cis/trans stereochemistry is not relevant for the gelation behavior and the properties of the soft-materials obtained, but it is remarkable for cyclohexane diamides, which are better organogelators. The four compounds produce chiral aggregates despite that two of them are meso achiral molecules. We show herein that this fact is an example of stochastic symmetry breaking induced by sonication. The self-assembly of these molecules has been modelled providing information and support about the structure and the chirality of the aggregates.
Collapse
Affiliation(s)
- Bernat Pi-Boleda
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Marta Sans
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - María Campos
- CIQUS (Centro Singular de Investigación en Química Biológica y Materiales Moleculares) y Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Pau Nolis
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Ona Illa
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Carlos Estévez
- CIQUS (Centro Singular de Investigación en Química Biológica y Materiales Moleculares) y Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Rosa M Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
29
|
Aldilla VR, Nizalapur S, Martin A, Marjo CE, Rich A, Yee E, Suwannakot P, Black DS, Thordarson P, Kumar N. Design, synthesis, and characterisation of glyoxylamide-based short peptides as self-assembled gels. NEW J CHEM 2017. [DOI: 10.1039/c7nj02248d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First example of glyoxylamide-based short peptides which can encapsulate organic solvents and water at relatively low concentrations.
Collapse
Affiliation(s)
| | | | - Adam Martin
- School of Chemistry
- UNSW Australia
- Sydney
- Australia
| | - Chris E. Marjo
- Mark Wainwright Analytical Centre
- UNSW Australia
- Sydney NSW 2052
- Australia
| | - Anne Rich
- Mark Wainwright Analytical Centre
- UNSW Australia
- Sydney NSW 2052
- Australia
| | - Eugene Yee
- School of Chemistry
- UNSW Australia
- Sydney
- Australia
| | | | | | | | - Naresh Kumar
- School of Chemistry
- UNSW Australia
- Sydney
- Australia
| |
Collapse
|
30
|
Arnedo-Sánchez L, Nonappa N, Bhowmik S, Hietala S, Puttreddy R, Lahtinen M, De Cola L, Rissanen K. Rapid self-healing and anion selectivity in metallosupramolecular gels assisted by fluorine–fluorine interactions. Dalton Trans 2017; 46:7309-7316. [DOI: 10.1039/c7dt00983f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal complexes from perfluoroalkylamide terpyridine self-assemble into anion selective gels, which manifest self-healing and thermal rearrangement in aqueous dimethyl sulfoxide.
Collapse
Affiliation(s)
| | - Nonappa Nonappa
- Molecular Materials Group
- Department of Applied Physics
- Aalto University School of Science
- Espoo
- Finland
| | - Sandip Bhowmik
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| | - Sami Hietala
- Department of Chemistry
- University of Helsinki
- Helsinki
- Finland
| | - Rakesh Puttreddy
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| | - Manu Lahtinen
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| | - Luisa De Cola
- ISIS
- Université de Strasbourg and CNRS UMR 7006
- Strasbourg 67000
- France
| | - Kari Rissanen
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| |
Collapse
|
31
|
Kokan Z, Perić B, Vazdar M, Marinić Ž, Vikić-Topić D, Meštrović E, Kirin SI. Metal-induced supramolecular chirality inversion of small self-assembled molecules in solution. Chem Commun (Camb) 2017; 53:1945-1948. [DOI: 10.1039/c6cc09203a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of supramolecular chirality inversion of small self-assembled ligands in solution by complexation to metal ions is presented.
Collapse
|
32
|
Zhang P, Ma J, Kang X, Liu H, Chen C, Zhang Z, Zhang J, Han B. Switching chirality in the assemblies of bio-based amphiphiles solely by varying their alkyl chain length. Chem Commun (Camb) 2017; 53:2162-2165. [DOI: 10.1039/c6cc10122d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chirality inversion in the nanotubes of bio-based amphiphiles could be realized solely by increasing the alkyl chain length.
Collapse
Affiliation(s)
- Pei Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
33
|
Paikar A, Haldar D. Dynamic self-assembled polymer: HCl responsive inversion of supramolecular polymer handedness. RSC Adv 2017. [DOI: 10.1039/c7ra08035b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Discotic trisamide formed a self-assembled polymer and exhibits inversion of supramolecular polymer handedness in the presence of HCl.
Collapse
Affiliation(s)
- Arpita Paikar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
34
|
Kan K, Fujiki M, Akashi M, Ajiro H. Near-Ultraviolet Circular Dichroism of Achiral Phenolic Termini Induced by Nonchromophoric Poly(l,l-lactide) and Poly(d,d-lactide). ACS Macro Lett 2016; 5:1014-1018. [PMID: 35614637 DOI: 10.1021/acsmacrolett.6b00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, we present the first induced chirality of vanillin and its phenolic analogs attached to the chain ends of poly(l,l-lactide) and poly(d,d-lactide). Vanillin analogs were used as chromophoric and luminophoric, but achiral, ring-opening initiators of corresponding chiral cyclic lactides. Induced chirality was evident from clear circular dichroism bands at 270-320 nm due to π-π* and n-π* transitions at the vanillin moiety. However, no circularly polarized luminescence band was detected. Density functional theory (DFT) and time-dependent DFT calculations suggested the existence of multiple through-space intramolecular CH/O interactions between the ortho-methoxy moiety of vanillin and nearest-neighbor lactic acid units. The terminus sensitively indicated whether the main-chain chirality was l or d.
Collapse
Affiliation(s)
| | | | - Mitsuru Akashi
- Graduate
School of Frontier Biosciences, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan
| | - Hiroharu Ajiro
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
35
|
Conte MP, Singh N, Sasselli IR, Escuder B, Ulijn RV. Metastable hydrogels from aromatic dipeptides. Chem Commun (Camb) 2016; 52:13889-13892. [DOI: 10.1039/c6cc05821c] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dipeptides FF and FF-NH2 form metastable hydrogels upon sonication. The hydrogels show instantaneous syneresis upon mechanical contact.
Collapse
Affiliation(s)
- M. P. Conte
- WestCHEM/Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | - N. Singh
- Departament de Química Inorgànica i Orgànica
- Universitat Jaume I
- 12071 Castelló
- Spain
| | - I. R. Sasselli
- WestCHEM/Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | - B. Escuder
- Departament de Química Inorgànica i Orgànica
- Universitat Jaume I
- 12071 Castelló
- Spain
| | - R. V. Ulijn
- WestCHEM/Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
- Advanced Science Research Center (ASRC) and Hunter College
| |
Collapse
|