1
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
2
|
Valencia LE, Incha MR, Schmidt M, Pearson AN, Thompson MG, Roberts JB, Mehling M, Yin K, Sun N, Oka A, Shih PM, Blank LM, Gladden J, Keasling JD. Engineering Pseudomonas putida KT2440 for chain length tailored free fatty acid and oleochemical production. Commun Biol 2022; 5:1363. [PMID: 36509863 PMCID: PMC9744835 DOI: 10.1038/s42003-022-04336-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Despite advances in understanding the metabolism of Pseudomonas putida KT2440, a promising bacterial host for producing valuable chemicals from plant-derived feedstocks, a strain capable of producing free fatty acid-derived chemicals has not been developed. Guided by functional genomics, we engineered P. putida to produce medium- and long-chain free fatty acids (FFAs) to titers of up to 670 mg/L. Additionally, by taking advantage of the varying substrate preferences of paralogous native fatty acyl-CoA ligases, we employed a strategy to control FFA chain length that resulted in a P. putida strain specialized in producing medium-chain FFAs. Finally, we demonstrate the production of oleochemicals in these strains by synthesizing medium-chain fatty acid methyl esters, compounds useful as biodiesel blending agents, in various media including sorghum hydrolysate at titers greater than 300 mg/L. This work paves the road to produce high-value oleochemicals and biofuels from cheap feedstocks, such as plant biomass, using this host.
Collapse
Affiliation(s)
- Luis E. Valencia
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Matthew R. Incha
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Matthias Schmidt
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.1957.a0000 0001 0728 696XInstitute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Allison N. Pearson
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Mitchell G. Thompson
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Jacob B. Roberts
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Marina Mehling
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Kevin Yin
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ning Sun
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,Advanced Biofuels and Bioproducts Process Demonstration Unit, Emeryville, CA 94608 USA
| | - Asun Oka
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,Advanced Biofuels and Bioproducts Process Demonstration Unit, Emeryville, CA 94608 USA
| | - Patrick M. Shih
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Lars M. Blank
- grid.1957.a0000 0001 0728 696XInstitute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - John Gladden
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Jay D. Keasling
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720 USA ,grid.5170.30000 0001 2181 8870Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark ,Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| |
Collapse
|
3
|
Zhang Z, Mei X, He Z, Xie X, Yang Y, Mei C, Xue D, Hu T, Shu M, Zhong W. Nicotine metabolism pathway in bacteria: mechanism, modification, and application. Appl Microbiol Biotechnol 2022; 106:889-904. [PMID: 35072735 DOI: 10.1007/s00253-022-11763-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/02/2022]
Abstract
Nicotine is a harmful pollutant mainly from the waste of tobacco factories. It is necessary to remove nicotine via high efficient strategies such as bioremediation. So far, an increasing number of nicotine degrading strains have been isolated. However, their degrading efficiency and tolerance to high content nicotine is still not high enough for application in real environment. Thus, the modification of nicotine metabolism pathway is obligated and requires comprehensive molecular insights into whole cell metabolism of nicotine degrading strains. Obviously, the development of multi-omics technology has accelerated the mechanism study on microbial degradation of nicotine and supplied more novel strategy of strains modification. So far, three pathways of nicotine degradation, pyridine pathway, pyrrolidine pathway, and the variant of pyridine and pyrrolidine pathway (VPP pathway), have been clearly identified in bacteria. Muti-omics analysis further revealed specific genome architecture, regulation mechanism, and specific genes or enzymes of three pathways, in different strains. Especially, muti-omics analysis revealed that functional modules coexisted in different genome loci and played additional roles on enhanced degradation efficiency in bacteria. Based on the above discovery, genomic editing strategy becomes more feasible to greatly improve bacterial degrading efficiency of nicotine.
Collapse
Affiliation(s)
- Zeling Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Xiaotong Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Ziliang He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Xiya Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310009, People's Republic of China.
| | - Chengyu Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Dong Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310009, People's Republic of China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
4
|
Ye J, Tian S, Lv L, Ding Y, Xu J, Zhang J, Li L. Production and purification of 2-phenylethanol by Saccharomyces cerevisiae using tobacco waste extract as a substrate. Lett Appl Microbiol 2021; 73:800-806. [PMID: 34596913 DOI: 10.1111/lam.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
2-phenylethanol (2-PE), which is extracted naturally from plant or biotechnology processing, is widely used in the food and cosmetics industries. Due to the high cost of 2-PE production, the valorization of waste carbon to produce 2-PE has gained increasing attention. Here, 2-PE was produced by Saccharomyces cerevisiae using tobacco waste extract (TWE) as the substrate. Considering the toxicity of nicotine and its inhibition of 2-PE, the tolerance of S. cerevisiae was first evaluated. The results suggested that the production of 2-PE by S. cerevisiae in TWEs could be carried out at 2·0 mg ml-1 nicotine concentrations and may be inhibited by 1·0 mg ml-1 2-PE. Thus, the compounds in the TWEs prepared at different temperatures were detected, and the results revealed that the TWEs prepared at 140°C contained 2·18 mg ml-1 of nicotine, had total sugar concentrations of 26·8 mg ml-1 and were suitable for 2-PE production. Due to feedback regulation, the 2-PE production was only 1·11 mg ml-1 , and the remaining glucose concentration remained at 13·78 mg ml-1 , which indicated insufficient glucose utilization. Then, in situ product recovery was further implemented to remove this inhibition; the glucose utilization (the remaining concentration decreased to 3·64 mg ml-1 ) increased, and the 2-PE production increased to 1·65 mg ml-1 . The 2-PE produced in the fermentation broth was first isolated by elution from the resin with 75% ethanol and then by removing the impurities with 2·5% activated charcoal, and pure 2-PE was identified by gas chromatography mass spectrometry. The results of this study suggest that TWE could be an alternative carbon source for 2-PE production. This could provide an outlet tobacco waste as well as reducing the price of natural 2-PE, although more strategies need to be explored to improve the production yield of 2-PE by using TWE.
Collapse
Affiliation(s)
- J Ye
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian City, Fujian Province, China
| | - S Tian
- Inner Mongolia Kunming Cigarette Limited Liability Company, Inner Mongolia, China
| | - L Lv
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, China
| | - Y Ding
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, China
| | - J Xu
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian City, Fujian Province, China
| | - J Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, China
| | - L Li
- Inner Mongolia Kunming Cigarette Limited Liability Company, Inner Mongolia, China
| |
Collapse
|
5
|
Shityakov S, Skorb EV, Förster CY, Dandekar T. Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer's Disease. Front Chem 2021; 9:736509. [PMID: 34751244 PMCID: PMC8571023 DOI: 10.3389/fchem.2021.736509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial.
Collapse
Affiliation(s)
- Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Ekaterina V. Skorb
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Mihăşan M, Boiangiu RŞ, Guzun D, Babii C, Aslebagh R, Channaveerappa D, Dupree E, Darie CC. Time-Dependent Analysis of Paenarthrobacter nicotinovorans pAO1 Nicotine-Related Proteome. ACS OMEGA 2021; 6:14242-14251. [PMID: 34124447 PMCID: PMC8190789 DOI: 10.1021/acsomega.1c01020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Paenarthrobacter nicotinovorans is a soil Gram-positive nicotine-degrading microorganism (NDM) that harbors a 165 kb pAO1 catabolic megaplasmid. The nicotine catabolic genes on pAO1 have been sequenced, but not all the details on the regulation and interplay of this pathway with the general metabolism of the cell are available. To address this issue at the protein level, a time-based shotgun proteomics study was performed. P. nicotinovorans was grown in the presence or absence of nicotine, and the cells were harvested at three different time intervals: 7, 10, and 24 h after inoculation. The cells were lysed, separated on SDS-PAGE, and digested by in-gel digestion using trypsin, and the resulting peptide mixture was analyzed using nanoliquid chromatography tandem mass spectrometry. We found an extensive number of proteins that are both plasmidal- and chromosomal-encoded and that work together in the energetic metabolism via the Krebs cycle and nicotine pathway. These data provide insight into the adaptation of the bacterial cells to the nicotine metabolic intermediates and could serve as a basis for future attempts to genetically engineer the pAO1-encoded catabolic pathway for increased bioremediation efficiency or for the production of valuable chemicals. The mass-spectrometry-based proteomics data have been deposited to the PRIDE partner repository with the data set identifier PXD012577.
Collapse
Affiliation(s)
- Marius Mihăşan
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Răzvan Ştefan Boiangiu
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
| | - Doina Guzun
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
| | - Cornelia Babii
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
| | - Roshanak Aslebagh
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Devika Channaveerappa
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Emmalyn Dupree
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Costel C. Darie
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| |
Collapse
|
7
|
Zhao X, Chen L, Ren Q, Wu Z, Fang S, Jiang Y, Chen Y, Zhong Y, Wang D, Wu J, Zhang G. Potential Applications in Sewage Bioremediation of the Highly Efficient Pyridine-Transforming Paenochrobactrum sp. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Han J, Wang F, Li Z, Liu L, Zhang G, Chen G, Liu J, Zhang H. Isolation and identification of an osmotolerant Bacillus amyloliquefaciens strain T4 for 2, 3-butanediol production with tobacco waste. Prep Biochem Biotechnol 2021; 52:210-217. [PMID: 34010101 DOI: 10.1080/10826068.2021.1925912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microbial biomass and waste materials conversion for biochemicals production has been an alternative for energy conservation and emission reduction. While toxic substances in biomass materials and high osmotic pressure formed in fermentation-based systems block the bioconversion processes of microorganisms. In the present study, strain T4 that isolated from tobacco waste could resist toxic inhibitors such as nicotine and was suitable for generation of 2, 3-butanediol (2, 3-BD) with a high concentration of glucose (up to 20%). 30.06 and 1.54 g/L of 2, 3-BD was generated respectively from 50 g/L of tobacco waste with and without 200 g/L glucose after fermentation for 48 h. Besides, the results of biochemical tests showed that it was gram-positive and able to liquefy gelatin, hydrolyze starch and produce catalases. It could utilize glucose but not lactose as carbohydrates during fermentation. The 16S rRNA sequence and systematic analysis revealed that T4 was identified to be a Bacillus amyloliquefaciens (B. amyloliquefaciens). This work presents a promising model microorganism chassis to use the biomass waste for high value-added biochemicals production.
Collapse
Affiliation(s)
- Ju Han
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Zhihao Li
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Lijuan Liu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ge Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Chen
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liu
- Yunnan Academy of Tobacco Science, Yunnan, China
| | - Haibo Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Additional Role of Nicotinic Acid Hydroxylase for the Transformation of 3-Succinoyl-Pyridine by Pseudomonas sp. Strain JY-Q. Appl Environ Microbiol 2021; 87:AEM.02740-20. [PMID: 33397698 DOI: 10.1128/aem.02740-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023] Open
Abstract
Nicotine and nicotinic acid (NA) are both considered to be representatives of N-heterocyclic aromatic compounds, and their degradation pathways have been revealed in Pseudomonas species. However, the cooccurrence of these two pathways has only been observed in Pseudomonas sp. strain JY-Q. The nicotine pyrrolidine catabolism pathway of strain JY-Q consists of the functional modules Nic1, Spm, and Nic2. The module enzyme, 3-succinoylpyridine monooxygenase (Spm), catalyzes transformation of 3-succinoyl-pyridine (SP) to 6-hydroxy-3-succinoyl-pyridine (HSP). There exist two homologous but not identical Spm enzymes (namely, Spm1 and Spm2) in JY-Q. However, when spm1 and spm2 were both in-frame deleted, the mutant still grew well in basic salt medium (BSM) supplemented with nicotine as the sole carbon/nitrogen nutrition, suggesting that there exists an alternative pathway responsible for SP catabolism in JY-Q. NicAB, an enzyme accounting for NA hydroxylation, contains reorganized domains similar to those of Spm. When the JY-Q_nicAB gene (nicAB in strain JY-Q) was introduced into another Pseudomonas strain, one that is unable to degrade NA, the resultant recombinant strain exhibited the ability to transform SP to HSP, but without the ability to metabolize NA. Here, we conclude that NicAB in strain JY-Q exhibits an additional role in SP transformation. The other genes in the NA cluster, NicXDFE (Nic2 homolog), then also exhibit a role in subsequent HSP metabolism for energy yield. This finding also suggests that the cooccurrence of nicotine and NA degradation genes in strain JY-Q represents an advantage for JY-Q, making it more effective and flexible for the degradation of nicotine.IMPORTANCE 3-Succinoyl-pyridine (SP) and 6-hydroxy-3-succinoyl-pyridine (HSP) are both valuable chemical precursors to produce insecticides and hypotensive agents. SP and HSP could be renewable through the nicotine microbial degradation pathway, in which 3-succinoylpyridine monooxygenases (Spm) account for transforming SP into HSP in Pseudomonas sp. strain JY-Q. However, when two homologous Spm genes (spm1 and spm2) were knocked out, the mutant retained the ability to degrade nicotine. Thus, in addition to Spm, JY-Q should have an alternative pathway for SP conversion. In this research, we showed that JY-Q_NicAB was responsible for this alternative SP conversion. Both of the primary functions for nicotinic acid dehydrogenation and the additional function for SP metabolism were detected in a recombinant strain harboring JY-Q_NicAB. As a result, both nicotinic acid and nicotine degradation pathways in JY-Q contribute to its remarkable nicotine tolerance and nicotine degradation availability. These findings also provide one more metabolic engineering strategy for accumulation for value-added intermediates.
Collapse
|
10
|
Li J, Shen M, Chen Z, Pan F, Yang Y, Shu M, Chen G, Jiao Y, Zhang F, Linhardt RJ, Zhong W. Expression and functional identification of two homologous nicotine dehydrogenases, NicA2 and Nox, from Pseudomonas sp. JY-Q. Protein Expr Purif 2020; 178:105767. [PMID: 32987121 DOI: 10.1016/j.pep.2020.105767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023]
Abstract
Nicotine contamination in tobacco waste effluent (TWE) from tobacco industry is a serious threat to public health and environment. Microbial degradation is an impending approach to remove nicotine and transform it into some other high value chemicals. Pseudomonas sp. JY-Q exhibits high efficiency of degradation, which can degrade 5 g/L of nicotine within 24 h. In strain JY-Q, we found the co-occurrence of two homologous key enzymes NicA2 and Nox, which catalyze nicotine to N-methylmyosmine, and then to pseudooxylnicotine via simultaneous hydrolysis. In this study, recombinant NicA2 and Nox were expressed in E. coli BL21(DE3) and purified. In vitro, the activity of recombinant NicA2 and Nox was accelerated by adding co-factor NAD+, suggesting that they worked as dehydrogenases. The optimal reaction conditions, substrate affinity, catabolism efficiency, pH-stability and thermal-stability were determined. Nox showed lower efficiency, but at a higher stability level than NicA2. Nox exhibited wider pH range and higher temperature as optimal conditions for the enzymatic reaction. In addition, The Nox showed higher thermo-stability and acid-stability than that of NicA2. The study on enzymatic reaction kinetics showed that Nox had a lower Km and higher substrate affinity than NicA2. These results suggest that Nox plays more significant role than NicA2 in nicotine degradation in TWE, which usually is processed at low pH (4-5) and high temperature (above 40 °C). Genetic engineering is required to enhance the affinity and suitability of NicA2 for an increased additive effect on homologous NicA2 and Nox in strain JY-Q.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Mingjie Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China.
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Guoqing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yang Jiao
- Technology Center, Hangzhou Liqun Environmental Protection Paper Co., Ltd., Hangzhou, 310018, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
11
|
Selective synthesis of 2-furoic acid and 5-hydroxymethyl-2-furancarboxylic acid from bio-based furans by recombinant Escherichia coli cells. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Ye J, Zheng S, Zhang Z, Yang F, Ma K, Feng Y, Zheng J, Mao D, Yang X. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. BIORESOURCE TECHNOLOGY 2019; 274:518-524. [PMID: 30553964 DOI: 10.1016/j.biortech.2018.12.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
In this study, bacterial cellulose (BC) was synthesized by Acetobacter xylinum ATCC 23767 using tobacco waste extract (TWE) as a carbon source. Nicotine was found to be an inhibitory factor for BC synthesis, but it can be removed at pH 9.0 by steam distillation. After removing nicotine, the BC production was 2.27 g/L in TWE prepared with solid-liquid (S-L) ratio at 1:10. To further enhance the BC production, two fermentation stages were performed over 16 days by re-adjusting the pH to 6.5 at 7 days, after the first fermentation stage was completed. Using this two-stage fermentation, the BC production could reach 5.2 g/L. Structural and thermal analysis by FE-SEM, FT-IR, XRD and TGA showed the properties of BC obtained from TWE were similar to that from Hestrin-Schramm (HS) medium. Considering the huge disposal tobacco waste in China, the present study provides an alternative methodology to synthesize BC.
Collapse
Affiliation(s)
- Jianbin Ye
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Shanshan Zheng
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, China
| | - Feng Yang
- Henan Cigarette Industrial Tobacco Sheet Co, Ltd, Henan, Xuchang 461000, China
| | - Ke Ma
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Yinjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, China
| | - Jianqiang Zheng
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Duobin Mao
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Xuepeng Yang
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China.
| |
Collapse
|
13
|
Mihăşan M, Babii C, Aslebagh R, Channaveerappa D, Dupree EJ, Darie CC. Exploration of Nicotine Metabolism in Paenarthrobacter nicotinovorans pAO1 by Microbial Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:515-529. [DOI: 10.1007/978-3-030-15950-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Zhang H, Zhao R, Huang C, Li J, Shao Y, Xu J, Shu M, Zhong W. Selective and faster nicotine biodegradation by genetically modified Pseudomonas sp. JY-Q in the presence of glucose. Appl Microbiol Biotechnol 2018; 103:339-348. [DOI: 10.1007/s00253-018-9445-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
|
15
|
Tararina MA, Xue S, Smith LC, Muellers SN, Miranda PO, Janda KD, Allen KN. Crystallography Coupled with Kinetic Analysis Provides Mechanistic Underpinnings of a Nicotine-Degrading Enzyme. Biochemistry 2018; 57:3741-3751. [PMID: 29812904 PMCID: PMC6295333 DOI: 10.1021/acs.biochem.8b00384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nicotine oxidoreductase (NicA2) is a bacterial flavoenzyme, which catalyzes the first step of nicotine catabolism by oxidizing S-nicotine into N-methyl-myosmine. It has been proposed as a biotherapeutic for nicotine addiction because of its nanomolar substrate binding affinity. The first crystal structure of NicA2 has been reported, establishing NicA2 as a member of the monoamine oxidase (MAO) family. However, substrate specificity and structural determinants of substrate binding and/or catalysis have not been explored. Herein, analysis of the pH-rate profile, single-turnover kinetics, and binding data establish that pH does not significantly affect the catalytic rate and product release is not rate-limiting. The X-ray crystal structure of NicA2 with S-nicotine refined to 2.65 Å resolution reveals a hydrophobic binding site with a solvent exclusive cavity. Hydrophobic interactions predominantly orient the substrate, promoting the binding of a deprotonated species and supporting a hydride-transfer mechanism. Notably, NicA2 showed no activity against neurotransmitters oxidized by the two isoforms of human MAO. To further probe the substrate range of NicA2, enzyme activity was evaluated using a series of substrate analogues, indicating that S-nicotine is the optimal substrate and substitutions within the pyridyl ring abolish NicA2 activity. Moreover, mutagenesis and kinetic analysis of active-site residues reveal that removal of a hydrogen bond between the pyridyl ring of S-nicotine and the hydroxyl group of T381 has a 10-fold effect on KM, supporting the role of this bond in positioning the catalytically competent form of the substrate. Together, crystallography combined with kinetic analysis provides a deeper understanding of this enzyme's remarkable specificity.
Collapse
Affiliation(s)
- Margarita A. Tararina
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, Massachusetts 02118, United States
| | - Song Xue
- Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology
| | - Lauren C. Smith
- Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology
| | - Samantha N. Muellers
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Pedro O. Miranda
- Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology
| | - Kim D. Janda
- Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology
- Worm Institute for Medical Research (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, BCC-582, La Jolla, California 92037, United States
| | - Karen N. Allen
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, Massachusetts 02118, United States
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
16
|
Liu X, Wang W, Hu H, Lu X, Zhang L, Xu P, Tang H. 2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid biosynthesis from dibenzofuran using lateral dioxygenation in a Pseudomonas putida strain B6-2 (DSM 28064). BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0209-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
17
|
Huang H, Yu W, Wang R, Li H, Xie H, Wang S. Genomic and transcriptomic analyses of Agrobacterium tumefaciens S33 reveal the molecular mechanism of a novel hybrid nicotine-degrading pathway. Sci Rep 2017; 7:4813. [PMID: 28684751 PMCID: PMC5500553 DOI: 10.1038/s41598-017-05320-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/24/2017] [Indexed: 12/12/2022] Open
Abstract
Agrobacterium tumefaciens S33 is able to degrade nicotine via a novel hybrid of the pyridine and pyrrolidine pathways. It can be utilized to remove nicotine from tobacco wastes and transform nicotine into important functionalized pyridine precursors for some valuable drugs and insecticides. However, the molecular mechanism of the hybrid pathway is still not completely clear. Here we report the genome analysis of strain S33 and its transcriptomes grown in glucose-ammonium medium and nicotine medium. The complete gene cluster involved in nicotine catabolism was found to be located on a genomic island composed of genes functionally similar but not in sequences to those of the pyridine and pyrrolidine pathways, as well as genes encoding plasmid partitioning and replication initiation proteins, conjugal transfer proteins and transposases. This suggests that the evolution of this hybrid pathway is not a simple fusion of the genes involved in the two pathways, but the result of a complicated lateral gene transfer. In addition, other genes potentially involved in the hybrid pathway could include those responsible for substrate sensing and transport, transcription regulation and electron transfer during nicotine degradation. This study provides new insights into the molecular mechanism of the novel hybrid pathway for nicotine degradation.
Collapse
Affiliation(s)
- Haiyan Huang
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China
- Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan, 250062, People's Republic of China
| | - Wenjun Yu
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China
| | - Rongshui Wang
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China
| | - Huili Li
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan, 250100, People's Republic of China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
18
|
Yu W, Wang R, Li H, Liang J, Wang Y, Huang H, Xie H, Wang S. Green route to synthesis of valuable chemical 6-hydroxynicotine from nicotine in tobacco wastes using genetically engineered Agrobacterium tumefaciens S33. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:288. [PMID: 29213327 PMCID: PMC5713474 DOI: 10.1186/s13068-017-0976-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/26/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Tobacco is widely planted as an important nonfood economic crop throughout the world, and large amounts of tobacco wastes are generated during the tobacco manufacturing process. Tobacco and its wastes contain high nicotine content. This issue has become a major concern for health and environments due to its toxicity and complex physiological effects. The microbial transformation of nicotine into valuable functionalized pyridine compounds is a promising way to utilize tobacco and its wastes as a potential biomass resource. Agrobacterium tumefaciens S33 is able to degrade nicotine via a novel hybrid of the pyridine and pyrrolidine pathways, in which several intermediates, such as 6-hydroxynicotine, can be used as renewable precursors to synthesize drugs and insecticides. This provides an opportunity to produce valuable chemical 6-hydroxynicotine from nicotine via biocatalysis using strain S33. RESULTS To accumulate the intermediate 6-hydroxynicotine, we firstly identified the key enzyme decomposing 6-hydroxynicotine, named 6-hydroxynicotine oxidase, and then disrupted its encoding gene in A. tumefaciens S33. With the whole cells of the mutant as a biocatalyst, we tested the possibility to produce 6-hydroxynicotine from the nicotine of tobacco and its wastes and optimized the reaction conditions. At 30 °C and pH 7.0, nicotine could be efficiently transformed into 6-hydroxynicotine by the whole cells cultivated with glucose/ammonium/6-hydroxy-3-succinoylpyridine medium. The molar conversion and the specific catalytic rate reached approximately 98% and 1.01 g 6-hydroxynicotine h-1 g-1 dry cells, respectively. The product could be purified easily by dichloromethane extraction with a recovery of 76.8%, and was further confirmed by UV spectroscopy, mass spectroscopy, and NMR analysis. CONCLUSIONS We successfully developed a novel biocatalytic route to 6-hydroxynicotine from nicotine by blocking the nicotine catabolic pathway via gene disruption, which provides an alternative green strategy to utilize tobacco and its wastes as a biomass resource by converting nicotine into valuable hydroxylated-pyridine compounds.
Collapse
Affiliation(s)
- Wenjun Yu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Rongshui Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Huili Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Jiyu Liang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yuanyuan Wang
- Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan, 250062 People’s Republic of China
| | - Haiyan Huang
- Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan, 250062 People’s Republic of China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan, 250100 People’s Republic of China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|