1
|
Sahu M, Jain U. Activation, interaction and intimation of Nrf2 pathway and their mutational studies causing Nrf2 associated cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167764. [PMID: 40088576 DOI: 10.1016/j.bbadis.2025.167764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Responses against infection trigger several signaling pathways that lead to the production of cytokines, these cytokines release ROS and RNS, damaging DNA and proteins turn into various diseases including cancer. To combat these harmful cytokines, the Nrf2 pathway is activated. The gene NFE2L2 encodes Nrf2, which is divided into seven conserved domains (Neh1-7). The DLG and ETGE motifs, conserved sequences of amino acid in the Neh2 domain of Nrf2, bind to the BTB domain of Keap1. BTB domain promotes Keap1's homodimerization resulting in Cul3 recruitment providing scaffold formation to E2 ubiquitin ligase to form ubiquitin complex. Under normal conditions, this complex regularly degrades Nrf2. However, once the cell is exposed to oxidative stress by ROS interaction with Keap1 resulting in conformational changes that stabilize the Nrf2. Nrf2 further concentrates on the nucleus where it binds with the transcriptional factor to perform the desired genes transcription for synthesizing SOD, GSH, CAT, and various other proteins which reduce the ROS levels preventing certain diseases. To prevent cells from oxidative stress, molecular hydrogen activates the Nrf2 pathway. To activate the Nrf2 pathway, molecular hydrogen oxidizes the iron porphyrin which acts as an electrophile and interacts with Keap1's cysteine residue.
Collapse
Affiliation(s)
- Mridul Sahu
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India.
| |
Collapse
|
2
|
Abaeva IS, Bulakhov AG, Hellen CUT, Pestova TV. The ribosome-associated quality control factor TCF25 imposes K48 specificity on Listerin-mediated ubiquitination of nascent chains by binding and specifically orienting the acceptor ubiquitin. Genes Dev 2025; 39:617-633. [PMID: 40169231 PMCID: PMC12047659 DOI: 10.1101/gad.352389.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025]
Abstract
Polypeptides arising from interrupted translation undergo proteasomal degradation by the ribosome-associated quality control (RQC) pathway. The ASC-1 complex splits stalled ribosomes into 40S subunits and nascent chain-tRNA-associated 60S subunits (60S RNCs). 60S RNCs associate with NEMF that promotes recruitment of the RING-type E3 ubiquitin (Ub) ligase Listerin (Ltn1 in yeast), which ubiquitinates nascent chains. RING-type E3s mediate the transfer of Ub directly from the E2∼Ub conjugate, implying that the specificity of Ub linkage is determined by the given E2. Listerin is most efficient when it is paired with promiscuous Ube2D E2s. We previously found that TCF25 (Rqc1 in yeast) can impose K48 specificity on Listerin paired with Ube2D E2s. To determine the mechanism of TCF25's action, we combined functional biochemical studies and AlphaFold3 modeling and now report that TCF25 specifically interacts with the RING domain of Listerin and the acceptor ubiquitin (UbA) and imposes K48 specificity by orienting UbA such that its K48 is directly positioned to attack the thioester bond of the Ube2D1∼Ub conjugate. We also found that TCF25 itself undergoes K48-specific ubiquitination by Listerin, suggesting a mechanism for the reported upregulation of Rqc1 in the absence of Ltn1 and the observed degradation of TCF25 by the proteasome in vivo.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Alexander G Bulakhov
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
3
|
Kochańczyk T, Fishman M, Lima CD. Chemical Tools for Probing the Ub/Ubl Conjugation Cascades. Chembiochem 2025; 26:e202400659. [PMID: 39313481 PMCID: PMC11727022 DOI: 10.1002/cbic.202400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Conjugation of ubiquitin (Ub) and structurally related ubiquitin-like proteins (Ubls), essential for many cellular processes, employs multi-step reactions orchestrated by specific E1, E2 and E3 enzymes. The E1 enzyme activates the Ub/Ubl C-terminus in an ATP-dependent process that results in the formation of a thioester linkage with the E1 active site cysteine. The thioester-activated Ub/Ubl is transferred to the active site of an E2 enzyme which then interacts with an E3 enzyme to promote conjugation to the target substrate. The E1-E2-E3 enzymatic cascades utilize labile intermediates, extensive conformational changes, and vast combinatorial diversity of short-lived protein-protein complexes to conjugate Ub/Ubl to various substrates in a regulated manner. In this review, we discuss various chemical tools and methods used to study the consecutive steps of Ub/Ubl activation and conjugation, which are often too elusive for direct studies. We focus on methods developed to probe enzymatic activities and capture and characterize stable mimics of the transient intermediates and transition states, thereby providing insights into fundamental mechanisms in the Ub/Ubl conjugation pathways.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Michael Fishman
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Christopher D. Lima
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
- Howard Hughes Medical Institute1275 York AvenueNew York, New York10065USA
| |
Collapse
|
4
|
Shankar S, Liu Y, Tulsian NK, Low BC, Lin Q, Sivaraman J. Insights into the regulation of CHIP E3 ligase-mediated ubiquitination of neuronal protein BNIP-H. PNAS NEXUS 2024; 3:pgae536. [PMID: 39703232 PMCID: PMC11658413 DOI: 10.1093/pnasnexus/pgae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
BCL2/adenovirus E1B 19-kDa protein-interacting protein 2 homolog (BNIP-H or Caytaxin), a pivotal adaptor protein that facilitates cerebellar cortex growth and synaptic transmission, is posttranslationally modified to regulate neuronal function. This study reports the ubiquitination of BNIP-H by Carboxyl terminus of Hsc70-Interacting Protein (CHIP), a U-box containing E3 ligase that is also regulated via autoubiquitination. Specifically, it was observed that CHIP autoubiquitinated itself primarily at Lys23 and Lys31 in vitro. Mutation of these residues shows the autoubiquitination of successive lysines of CHIP. In total, nine lysines on CHIP were identified as the autoubiquitination sites, the collective mutation of which almost completely terminated its autoubiquitination. Additionally, CHIP-mediated ubiquitination of BNIP-H is completely inhibited when BNIP-H bears arginine mutations at four key lysine residues. Next, using hydrogen deuterium exchange mass spectrometry, a model of a plausible mechanism was proposed. The model suggests transient N-terminal interactions between the CHIP and BNIP-H which allows for the swinging of U-box domain of CHIP to ubiquitinate BNIP-H. Following complex dissociation, BNIP-H population is regulated via the ubiquitin-proteasome pathway. Collectively, these results aid in our understanding of CHIP-mediated BNIP-H ubiquitination and provide further insight into the roles of these proteins in neuritogenesis and neurotransmission.
Collapse
Affiliation(s)
- Srihari Shankar
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Yaochen Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Nikhil Kumar Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Boon C Low
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- NUS College, National University of Singapore, Singapore 138593
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
5
|
Jiao AL, Sendinc E, Zee BM, Wallner F, Shi Y. An E2 ubiquitin-conjugating enzyme links diubiquitinated H2B to H3K27M oncohistone function. Proc Natl Acad Sci U S A 2024; 121:e2416614121. [PMID: 39560642 PMCID: PMC11621828 DOI: 10.1073/pnas.2416614121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
The H3K27M oncogenic histone (oncohistone) mutation drives ~80% of incurable childhood brain tumors known as diffuse midline gliomas (DMGs). The major molecular feature of H3K27M mutant DMGs is a global loss of H3K27 trimethylation (H3K27me3), a phenotype conserved in Caenorhabditis elegans (C. elegans). Here, we perform unbiased genome-wide suppressor screens in C. elegans expressing H3K27M and isolate 20 suppressors, all of which at least partially restore H3K27me3. 19/20 suppressor mutations map to the same histone H3.3 gene in which the K27M mutation was originally introduced. Most of these create single amino acid substitutions between residues R26-Y54, which do not disrupt oncohistone expression. Rather, they are predicted to impair interactions with the Polycomb Repressive Complex 2 (PRC2) and are functionally conserved in human cells. Further, we mapped a single extragenic H3K27M suppressor to ubc-20, an E2 ubiquitin-conjugating enzyme, whose loss rescued H3K27me3 to nearly 50% wild-type levels despite continued oncohistone expression and chromatin incorporation. We demonstrate that ubc-20 is the major enzyme responsible for generating diubiquitinated histone H2B. Our study provides in vivo support for existing models of PRC2 inhibition via direct oncohistone contact and suggests that the effects of H3K27M may be modulated by H2B ubiquitination.
Collapse
Affiliation(s)
- Alan L. Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Erdem Sendinc
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Barry M. Zee
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Felice Wallner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| |
Collapse
|
6
|
Abaeva IS, Bulakhov AG, Hellen CUT, Pestova TV. The ribosome-associated quality control factor TCF25 imposes K48 specificity on Listerin-mediated ubiquitination of nascent chains by binding and specifically orienting the acceptor ubiquitin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618946. [PMID: 39464025 PMCID: PMC11507960 DOI: 10.1101/2024.10.17.618946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Polypeptides arising from interrupted translation undergo proteasomal degradation by the ribosome-associated quality control (RQC) pathway. The ASC-1 complex splits stalled ribosomes into 40S subunits and nascent chain-tRNA-associated 60S subunits (60S RNCs). 60S RNCs associate with NEMF that promotes recruitment of the RING-type E3 ubiquitin (Ub) ligase Listerin (Ltn1 in yeast), which ubiquitinates nascent chains. RING-type E3s mediate the transfer of Ub directly from the E2~Ub conjugate, implying that the specificity of Ub linkage is determined by the given E2. Listerin is most efficient when it is paired with promiscuous Ube2D E2s. We previously found that TCF25 (Rqc1 in yeast) can impose K48-specificity on Listerin paired with Ube2D E2s. To determine the mechanism of TCF25's action, we combined functional biochemical studies and AlphaFold3 modeling and now report that TCF25 specifically interacts with the RING domain of Listerin and the acceptor ubiquitin (UbA) and imposes K48-specificity by orienting UbA such that its K48 is directly positioned to attack the thioester bond of the Ube2D1~Ub conjugate. We also found that TCF25 itself undergoes K48-specific ubiquitination by Listerin suggesting a mechanism for the reported upregulation of Rqc1 in the absence of Ltn1 and the observed degradation of TCF25 by the proteasome in vivo.
Collapse
Affiliation(s)
- Irina S. Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Alexander G. Bulakhov
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Tatyana V. Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
7
|
Taylor JD, Barrett N, Martinez Cuesta S, Cassidy K, Pachl F, Dodgson J, Patel R, Eriksson TM, Riley A, Burrell M, Bauer C, Rees DG, Cimbro R, Zhang AX, Minter RR, Hunt J, Legg S. Targeted protein degradation using chimeric human E2 ubiquitin-conjugating enzymes. Commun Biol 2024; 7:1179. [PMID: 39300128 DOI: 10.1038/s42003-024-06803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Proteins can be targeted for degradation by engineering biomolecules that direct them to the eukaryotic ubiquitination machinery. For instance, the fusion of an E3 ubiquitin ligase to a suitable target binding domain creates a 'biological Proteolysis-Targeting Chimera' (bioPROTAC). Here we employ an analogous approach where the target protein is recruited directly to a human E2 ubiquitin-conjugating enzyme via an attached target binding domain. Through rational design and screening we develop E2 bioPROTACs that induce the degradation of the human intracellular proteins SHP2 and KRAS. Using global proteomics, we characterise the target-specific and wider effects of E2 vs. VHL-based fusions. Taking SHP2 as a model target, we also employ a route to bioPROTAC discovery based on protein display libraries, yielding a degrader with comparatively weak affinity capable of suppressing SHP2-mediated signalling.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK.
| | - Nathalie Barrett
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Sergio Martinez Cuesta
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Katelyn Cassidy
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - Fiona Pachl
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - James Dodgson
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Radhika Patel
- Centre for Genomics Research, Dynamic Omics, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Tuula M Eriksson
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Aidan Riley
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Matthew Burrell
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Christin Bauer
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - D Gareth Rees
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Raffaello Cimbro
- Centre for Genomics Research, Dynamic Omics, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Andrew X Zhang
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - Ralph R Minter
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - James Hunt
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK.
| | - Sandrine Legg
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| |
Collapse
|
8
|
Liu JCY, Ackermann L, Hoffmann S, Gál Z, Hendriks IA, Jain C, Morlot L, Tatham MH, McLelland GL, Hay RT, Nielsen ML, Brummelkamp T, Haahr P, Mailand N. Concerted SUMO-targeted ubiquitin ligase activities of TOPORS and RNF4 are essential for stress management and cell proliferation. Nat Struct Mol Biol 2024; 31:1355-1367. [PMID: 38649616 PMCID: PMC11402782 DOI: 10.1038/s41594-024-01294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Protein SUMOylation provides a principal driving force for cellular stress responses, including DNA-protein crosslink (DPC) repair and arsenic-induced PML body degradation. In this study, using genome-scale screens, we identified the human E3 ligase TOPORS as a key effector of SUMO-dependent DPC resolution. We demonstrate that TOPORS promotes DPC repair by functioning as a SUMO-targeted ubiquitin ligase (STUbL), combining ubiquitin ligase activity through its RING domain with poly-SUMO binding via SUMO-interacting motifs, analogous to the STUbL RNF4. Mechanistically, TOPORS is a SUMO1-selective STUbL that complements RNF4 in generating complex ubiquitin landscapes on SUMOylated targets, including DPCs and PML, stimulating efficient p97/VCP unfoldase recruitment and proteasomal degradation. Combined loss of TOPORS and RNF4 is synthetic lethal even in unstressed cells, involving defective clearance of SUMOylated proteins from chromatin accompanied by cell cycle arrest and apoptosis. Our findings establish TOPORS as a STUbL whose parallel action with RNF4 defines a general mechanistic principle in crucial cellular processes governed by direct SUMO-ubiquitin crosstalk.
Collapse
Affiliation(s)
- Julio C Y Liu
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Leena Ackermann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Saskia Hoffmann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Zita Gál
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Charu Jain
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Morlot
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gian-Luca McLelland
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael Lund Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thijn Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Peter Haahr
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Cellular and Molecular Medicine, Center for Gene Expression, University of Copenhagen, Copenhagen, Denmark.
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Zubčić K, Franić D, Pravica M, Hof PR, Šimić G, Boban M. Effects of heterologous human tau protein expression in yeast models of proteotoxic stress response. CNS Neurosci Ther 2024; 30:e14304. [PMID: 37341072 PMCID: PMC11163194 DOI: 10.1111/cns.14304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The primary histological characteristic of Alzheimer's disease is the presence of neurofibrillary tangles, which are large aggregates of tau protein. Aging is the primary risk factor for the development of Alzheimer's disease, however, the underlying causes of tau protein aggregation and toxicity are unclear. AIMS Here we investigated tau aggregation and toxicity under the conditions of compromised protein homeostasis. METHODS We used heterologous expression of human tau protein in the unicellular eukaryote yeast Saccharomyces cerevisiae with evolutionarily conserved protein quality control pathways and examined tau-dependent toxicity and aggregation using growth assays, fluorescence microscopy, and a split luciferase-based reporter NanoBiT. RESULTS Tau protein expressed in yeast under mild proteotoxic stress, or in mutants with impaired pathways for proteotoxic stress response, did not lead to synthetic toxicity or the formation of obvious aggregates. Chronologically old cells also did not develop observable tau aggregates. Our examination of tau oligomerization in living cells using NanoBiT reporter suggests that tau does not form significant levels of oligomers under basal conditions or under mild proteotoxic stress. CONCLUSION Together our data suggest that human tau protein does not represent a major burden to the protein quality control system in yeast cells.
Collapse
Affiliation(s)
- Klara Zubčić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Dina Franić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mihaela Pravica
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's DiseaseFriedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Goran Šimić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mirta Boban
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| |
Collapse
|
10
|
Li J, Purser N, Liwocha J, Scott DC, Byers HA, Steigenberger B, Hill S, Tripathi-Giesgen I, Hinkle T, Hansen FM, Prabu JR, Radhakrishnan SK, Kirkpatrick DS, Reichermeier KM, Schulman BA, Kleiger G. Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting. Mol Cell 2024; 84:1304-1320.e16. [PMID: 38382526 PMCID: PMC10997478 DOI: 10.1016/j.molcel.2024.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins. Meanwhile, CRLs employ assorted ubiquitin-carrying enzymes (UCEs, which are a collection of E2 and ARIH-family E3s) specialized for either initial substrate ubiquitylation (priming) or forging poly-ubiquitin chains. We discovered specific human CRL-UCE pairings governing substrate priming. The results reveal pairing of CUL2-based CRLs and UBE2R-family UCEs in cells, essential for efficient PROTAC-induced neo-substrate degradation. Despite UBE2R2's intrinsic programming to catalyze poly-ubiquitylation, CUL2 employs this UCE for geometrically precise PROTAC-dependent ubiquitylation of a neo-substrate and for rapid priming of substrates recruited to diverse receptors. Cryo-EM structures illuminate how CUL2-based CRLs engage UBE2R2 to activate substrate ubiquitylation. Thus, pairing with a specific UCE overcomes E2 catalytic limitations to drive substrate ubiquitylation and targeted protein degradation.
Collapse
Affiliation(s)
- Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Holly A Byers
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Spencer Hill
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Trent Hinkle
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | | | | | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA; Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
11
|
Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. J Biol Chem 2023; 299:104870. [PMID: 37247759 PMCID: PMC10404613 DOI: 10.1016/j.jbc.2023.104870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Protein SUMOylation is a ubiquitylation-like post-translational modification (PTM) that is synthesized through an enzymatic cascade involving an E1 (SAE1:SAE2), an E2 (UBC9), and various E3 enzymes. In the final step of this process, the small ubiquitin-like modifier (SUMO) is transferred from the UBC9∼SUMO thioester onto a lysine residue of a protein substrate. This reaction can be accelerated by an E3 ligase. As the UBC9∼SUMO thioester is chemically unstable, a stable mimetic is desirable for structural studies of UBC9∼SUMO alone and in complex with a substrate and/or an E3 ligase. Recently, a strategy for generating a mimetic of the yeast E2∼SUMO thioester by mutating alanine 129 of Ubc9 to a lysine has been reported. Here, we reproduce and further investigate this approach using the human SUMOylation system and characterize the resulting mimetic of human UBC9∼SUMO1. We show that substituting lysine for alanine 129, but not for other active-site UBC9 residues, results in a UBC9 variant that is efficiently auto-SUMOylated. The auto-modification is dependent on cysteine 93 of UBC9, suggesting that it proceeds via this residue, through the same pathway as that for SUMOylation of substrates. The process is also partially dependent on aspartate 127 of UBC9 and accelerated by high pH, highlighting the importance of the substrate lysine protonation state for efficient SUMOylation. Finally, we present the crystal structure of the UBC9-SUMO1 molecule, which reveals the mimetic in an open conformation and its polymerization via the noncovalent SUMO-binding site on UBC9. Similar interactions could regulate UBC9∼SUMO in some cellular contexts.
Collapse
Affiliation(s)
| | - Franck Coste
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | | | - Lucija Mance
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | | | | |
Collapse
|
12
|
Fu W, Lei X, Lu Q, Zhang J, Guo J, Zhao J, Tong X, Hu X. UBE2K regulated by IGF2BP3 promotes cell proliferation and stemness in pancreatic ductal adenocarcinoma. Int J Oncol 2023; 62:52. [PMID: 36896783 PMCID: PMC10019758 DOI: 10.3892/ijo.2023.5500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a noteworthy malignant carcinoma with an unsatisfactory prognosis attributed to late diagnosis. Ubiquitin‑conjugating enzyme E2K (UBE2K) has been found to serve important roles in a number of diseases. However, its function and the exact molecular mechanism of UBE2K in PDAC remain to be elucidated. The present study discovered that UBE2K was expressed at high levels and indicated the poor prognosis of patients with PDAC. Following this, the CCK‑8, colony formation, and sphere formation assays showed that UBE2K promoted proliferation and the stemness phenotype of PDAC cells in vitro. Evidence from subcutaneous tumor‑bearing nude mice experiments further confirmed that UBE2K enhanced PDAC cell tumorigenesis in vivo. Additionally, the present study demonstrated that insulin‑like growth factor 2 RNA binding protein 3 (IGF2BP3) functioned as an RNA‑binding protein to increase UBE2K expression by enhancing the RNA stability of UBE2K. The knockdown or overexpression of IGF2BP3 could attenuate the change in cells growth induced by the overexpression or knockdown of UBE2K. In summary, the findings indicated the oncogenic roles of UBE2K in PDAC. In addition, IGF2BP3 and UBE2K constitute a functional axis to regulate the malignant progression of PDAC.
Collapse
Affiliation(s)
- Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiangxiang Lei
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Ji Zhang
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jie Zhao
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiangmin Tong
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaoge Hu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
13
|
Nakao F, Setoguchi K, Semba Y, Yamauchi T, Nogami J, Sasaki K, Imanaga H, Terasaki T, Miyazaki M, Hirabayashi S, Miyawaki K, Kikushige Y, Masuda T, Akashi K, Maeda T. Targeting a mitochondrial E3 ubiquitin ligase complex to overcome AML cell-intrinsic Venetoclax resistance. Leukemia 2023; 37:1028-1038. [PMID: 36973350 DOI: 10.1038/s41375-023-01879-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
To identify molecules/pathways governing Venetoclax (VEN) sensitivity, we performed genome-wide CRISPR/Cas9 screens using a mouse AML line insensitive to VEN-induced mitochondrial apoptosis. Levels of sgRNAs targeting March5, Ube2j2 or Ube2k significantly decreased upon VEN treatment, suggesting synthetic lethal interaction. Depletion of either Ube2j2 or Ube2k sensitized AML cells to VEN only in the presence of March5, suggesting coordinate function of the E2s Ube2j2 and Ube2k with the E3 ligase March5. We next performed CRISPR screens using March5 knockout cells and identified Noxa as a key March5 substrate. Mechanistically, Bax released from Bcl2 upon VEN treatment was entrapped by Mcl1 and Bcl-XL and failed to induce apoptosis in March5 intact AML cells. By contrast, in March5 knockout cells, liberated Bax did not bind to Mcl1, as Noxa likely occupied Mcl1 BH3-binding grooves and efficiently induced mitochondrial apoptosis. We reveal molecular mechanisms underlying AML cell-intrinsic VEN resistance and suggest a novel means to sensitize AML cells to VEN.
Collapse
Affiliation(s)
- Fumihiko Nakao
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kiyoko Setoguchi
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kensuke Sasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroshi Imanaga
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tatsuya Terasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Manaka Miyazaki
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shigeki Hirabayashi
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
14
|
Middleton AJ, Day CL. From seeds to trees: how E2 enzymes grow ubiquitin chains. Biochem Soc Trans 2023; 51:353-362. [PMID: 36645006 PMCID: PMC9987950 DOI: 10.1042/bst20220880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Modification of proteins by ubiquitin is a highly regulated process that plays a critical role in eukaryotes, from the construction of signalling platforms to the control of cell division. Aberrations in ubiquitin transfer are associated with many diseases, including cancer and neurodegenerative disorders. The ubiquitin machinery generates a rich code on substrate proteins, spanning from single ubiquitin modifications to polyubiquitin chains with diverse linkage types. Central to this process are the E2 enzymes, which often determine the exact nature of the ubiquitin code. The focus of this mini-review is on the molecular details of how E2 enzymes can initiate and grow ubiquitin chains. In particular, recent developments and biochemical breakthroughs that help explain how the degradative E2 enzymes, Ube2s, Ube2k, and Ube2r, generate complex ubiquitin chains with exquisite specificity will be discussed.
Collapse
Affiliation(s)
- Adam J. Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L. Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
15
|
E2 ubiquitin-conjugating enzymes (UBCs): drivers of ubiquitin signalling in plants. Essays Biochem 2022; 66:99-110. [PMID: 35766526 DOI: 10.1042/ebc20210093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Most research in the field of ubiquitination has focused on E3 ubiquitin ligases because they are the specificity determinants of the ubiquitination process. Nevertheless, E2s are responsible for the catalysis during ubiquitin transfer, and are therefore, at the heart of the ubiquitination process. Arabidopsis has 37 ubiquitin E2s with additional ones mediating the attachment of ubiquitin-like proteins (e.g. SUMO, Nedd8 and ATG8). Importantly, E2s largely determine the type of ubiquitin chain built, and therefore, the type of signal that decides over the fate of the modified protein, such as degradation by the proteasome (Lys48-linked ubiquitin chains) or relocalization (Lys63-linked ubiquitin chains). Moreover, new regulatory layers impinging on E2s activity, including post-translational modifications or cofactors, are emerging that highlight the importance of E2s.
Collapse
|
16
|
Nakasone MA, Majorek KA, Gabrielsen M, Sibbet GJ, Smith BO, Huang DT. Structure of UBE2K-Ub/E3/polyUb reveals mechanisms of K48-linked Ub chain extension. Nat Chem Biol 2022; 18:422-431. [PMID: 35027744 PMCID: PMC8964413 DOI: 10.1038/s41589-021-00952-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Ubiquitin (Ub) chain types govern distinct biological processes. K48-linked polyUb chains target substrates for proteasomal degradation, but the mechanism of Ub chain synthesis remains elusive due to the transient nature of Ub handover. Here, we present the structure of a chemically trapped complex of the E2 UBE2K covalently linked to donor Ub and acceptor K48-linked di-Ub, primed for K48-linked Ub chain synthesis by a RING E3. The structure reveals the basis for acceptor Ub recognition by UBE2K active site residues and the C-terminal Ub-associated (UBA) domain, to impart K48-linked Ub specificity and catalysis. Furthermore, the structure unveils multiple Ub-binding surfaces on the UBA domain that allow distinct binding modes for K48- and K63-linked Ub chains. This multivalent Ub-binding feature serves to recruit UBE2K to ubiquitinated substrates to overcome weak acceptor Ub affinity and thereby promote chain elongation. These findings elucidate the mechanism of processive K48-linked polyUb chain formation by UBE2K.
Collapse
Affiliation(s)
| | | | - Mads Gabrielsen
- Cancer Research UK Beatson Institute, Glasgow, UK
- MVLS Structural Biology and Biophysical Characterisation Facility, University of Glasgow, Glasgow, UK
| | | | - Brian O Smith
- Institute of Molecular Cell and System Biology, University of Glasgow, Glasgow, UK
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
17
|
Lacoursiere RE, Hadi D, Shaw GS. Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Biomolecules 2022; 12:biom12030467. [PMID: 35327659 PMCID: PMC8946176 DOI: 10.3390/biom12030467] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is controlled by a series of E1, E2, and E3 enzymes that can ligate ubiquitin to cellular proteins and dictate the turnover of a substrate and the outcome of signalling events such as DNA damage repair and cell cycle. This process is complex due to the combinatorial power of ~35 E2 and ~1000 E3 enzymes involved and the multiple lysine residues on ubiquitin that can be used to assemble polyubiquitin chains. Recently, mass spectrometric methods have identified that most enzymes in the ubiquitination cascade can be further modified through acetylation or phosphorylation under particular cellular conditions and altered modifications have been noted in different cancers and neurodegenerative diseases. This review provides a cohesive summary of ubiquitination, acetylation, and phosphorylation sites in ubiquitin, the human E1 enzyme UBA1, all E2 enzymes, and some representative E3 enzymes. The potential impacts these post-translational modifications might have on each protein function are highlighted, as well as the observations from human disease.
Collapse
|
18
|
Paluda A, Middleton AJ, Rossig C, Mace PD, Day CL. Ubiquitin and a charged loop regulate the ubiquitin E3 ligase activity of Ark2C. Nat Commun 2022; 13:1181. [PMID: 35246518 PMCID: PMC8897509 DOI: 10.1038/s41467-022-28782-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
A large family of E3 ligases that contain both substrate recruitment and RING domains confer specificity within the ubiquitylation cascade. Regulation of RING E3s depends on modulating their ability to stabilise the RING bound E2~ubiquitin conjugate in the activated (or closed) conformation. Here we report the structure of the Ark2C RING bound to both a regulatory ubiquitin molecule and an activated E2~ubiquitin conjugate. The structure shows that the RING domain and non-covalently bound ubiquitin molecule together make contacts that stabilise the activated conformation of the conjugate, revealing why ubiquitin is a key regulator of Ark2C activity. We also identify a charged loop N-terminal to the RING domain that enhances activity by interacting with both the regulatory ubiquitin and ubiquitin conjugated to the E2. In addition, the structure suggests how Lys48-linked ubiquitin chains might be assembled by Ark2C and UbcH5b. Together this study identifies features common to RING E3s, as well elements that are unique to Ark2C and related E3s, which enhance assembly of ubiquitin chains. Attachment of ubiquitin to proteins is tightly regulated and controls many signalling pathways. Here, the authors show that addition of ubiquitin by the RING E3 ligases Arkadia and Ark2C is enhanced by ubiquitin and a charged loop that precedes the RING domain.
Collapse
Affiliation(s)
- Andrej Paluda
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand.,TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Adam J Middleton
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Claudia Rossig
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Catherine L Day
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
19
|
Tak YJ, Kang S. The E2 ubiquitin-conjugating enzyme HIP2 is a crucial regulator of quality control against mutant SOD1 proteotoxicity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166316. [PMID: 34856358 DOI: 10.1016/j.bbadis.2021.166316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) leading to the formation of intracellular protein aggregates cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by a selective degeneration of motor neurons. The ALS-linked mutant SOD1 emerged as a possible target for ubiquitin-proteasome system (UPS)-mediated degradation. We aimed to elucidate the role of huntingtin interaction protein 2 (HIP2), an E2 ubiquitin-conjugating enzyme, in the proteotoxicity of mutant SOD1 aggregates. We found that HIP2 interacts with mutant SOD1, but not wild-type SOD1, and is upregulated in response to mutant SOD1 expression. Upregulation of HIP2 protein was observed in the spinal cord of 16-week-old SOD1-G93A transgenic mice. HIP2 further modified mutant SOD1 proteins via K48-linked polyubiquitination and degraded mutant SOD1 proteins through the UPS. Upregulation of HIP2 protected cells from mutant SOD1-induced toxicity. Taken together, our findings demonstrate that HIP2 is a crucial regulator of quality control against the proteotoxicity of mutant SOD1. Our results suggest that modulating HIP2 may represent a novel therapeutic strategy for the treatment of ALS.
Collapse
Affiliation(s)
- Yeong Jin Tak
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
20
|
Abstract
Selective degradation of protein aggregates by macroautophagy/autophagy is an essential homeostatic process of safeguarding cells from the effects of proteotoxicity. Among the ubiquitin-like proteins, NEDD8 conjugation to misfolded proteins is prominent in stress-induced protein aggregates, albeit the function of neddylation in autophagy is unclear. Here, we report that polyneddylation functions as a post-translational modification for autophagic degradation of proteotoxic-stress induced protein aggregates. We also show that HYPK functions as an autophagy receptor in the polyneddylation-dependent aggrephagy. The scaffolding function of HYPK is facilitated by its C-terminal ubiquitin-associated domain and N-terminal tyrosine-type LC3-interacting region which bind to NEDD8 and LC3 respectively. Both NEDD8 and HYPK are positive modulators of basal and proteotoxicity-induced autophagy, leading to protection of cells from protein aggregates, such as aggregates of mutant HTT exon 1. Thus, we propose an indispensable and additive role of neddylation and HYPK in clearance of protein aggregates by autophagy, resulting in cytoprotective effect during proteotoxic stress.Abbreviations: ATG5, autophagy related 5; ATG12, autophagy related 12; ATG14, autophagy related 14; BECN1, beclin 1; CBL, casitas B-lineage lymphoma; CBLB, Cbl proto-oncogene B; GABARAP, GABA type A receptor-associated protein; GABARAPL1, GABA type A receptor associated protein like 1; GABARAPL2, GABA type A receptor associated protein like 2; GFP, green fluorescent protein; HTT, huntingtin; HTT97Q exon 1, huntingtin 97-glutamine exon 1; HUWE1, HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; HYPK, huntingtin interacting protein K; IgG, immunoglobulin G; IMR-32, Institute for Medical Research-32; KD, knockdown; Kd, dissociation constant; LAMP1, lysosomal associated membrane protein 1; LIR, LC3 interacting region; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MAP1LC3A/LC3A, microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MARK1, microtubule affinity regulating kinase 1; MARK2, microtubule affinity regulating kinase 2; MARK3, microtubule affinity regulating kinase 3; MARK4, microtubule affinity regulating kinase 4; MCF7, Michigan Cancer Foundation-7; MTOR, mechanistic target of rapamycin kinase; NAE1, NEDD8 activating enzyme E1 subunit 1; NBR1, NBR1 autophagy cargo receptor; NEDD8, NEDD8 ubiquitin like modifier; Ni-NTA, nickel-nitrilotriacetic acid; NUB1, negative regulator of ubiquitin like proteins 1; PIK3C3, phosphatidylinositol 3-kinase catalytic subunit type 3; PolyQ, poly-glutamine; PSMD8, proteasome 26S subunit, non-ATPase 8; RAD23A, RAD23 homolog A, nucleotide excision repair protein; RAD23B, RAD23 homolog B, nucleotide excision repair protein; RFP, red fluorescent protein; RPS27A, ribosomal protein S27a; RSC1A1, regulator of solute carriers 1; SNCA, synuclein alpha; SIK1, salt inducible kinase 1; siRNA, small interfering ribonucleic acid; SOD1, superoxide dismutase 1; SPR, surface plasmon resonance; SQSTM1, sequestosome 1; SUMO1, small ubiquitin like modifier 1; TAX1BP1, Tax1 binding protein 1; TDRD3, tudor domain containing 3; TNRC6C, trinucleotide repeat containing adaptor 6C; TOLLIP, toll interacting protein; TUBA, tubulin alpha; TUBB, tubulin beta class I; UBA, ubiquitin-associated; UBA1, ubiquitin like modifier activating enzyme 1; UBA5, ubiquitin like modifier activating enzyme 5; UBAC1, UBA domain containing 1; UBAC2, UBA domain containing 2; UBAP1, ubiquitin associated protein 1; UBAP2, ubiquitin associated protein 2; UBASH3B, ubiquitin associated and SH3 domain containing B; UBD/FAT10, ubiquitin D; UBE2K, ubiquitin conjugating enzyme E2 K; UBLs, ubiquitin-like proteins; UBL7, ubiquitin like 7; UBQLN1, ubiquilin 1; UBQLN2, ubiquilin 2; UBQLN3, ubiquilin 3; UBQLN4, ubiquilin 4; UBXN1, UBX domain protein 1; ULK1, unc-51 like autophagy activating kinase 1; URM1, ubiquitin related modifier 1; USP5, ubiquitin specific peptidase 5; USP13, ubiquitin specific peptidase 13; VPS13D, vacuolar protein sorting 13 homolog D.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group Centre for Dna Fingerprinting and Diagnostics Uppal Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group Centre for Dna Fingerprinting and Diagnostics Uppal Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
21
|
Middleton AJ, Teyra J, Zhu J, Sidhu SS, Day CL. Identification of Ubiquitin Variants That Inhibit the E2 Ubiquitin Conjugating Enzyme, Ube2k. ACS Chem Biol 2021; 16:1745-1756. [PMID: 34397214 DOI: 10.1021/acschembio.1c00445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transfer of ubiquitin to substrate proteins regulates most processes in eukaryotic cells. E2 enzymes are a central component of the ubiquitin machinery, and generally determine the type of ubiquitin signal generated and thus the ultimate fate of substrate proteins. The E2, Ube2k, specifically builds degradative ubiquitin chains on diverse substrates. Here we have identified protein-based reagents, called ubiquitin variants (UbVs), that bind tightly and specifically to Ube2k. Crystal structures reveal that the UbVs bind to the E2 enzyme at a hydrophobic cleft that is distinct from the active site and previously identified ubiquitin binding sites. We demonstrate that the UbVs are potent inhibitors of Ube2k and block both ubiquitin charging of the E2 enzyme and E3-catalyzed ubiquitin transfer. The binding site of the UbVs suggests they directly clash with the ubiquitin activating enzyme, while potentially disrupting interactions with E3 ligases via allosteric effects. Our data reveal the first protein-based inhibitors of Ube2k and unveil a hydrophobic groove that could be an effective target for inhibiting Ube2k and other E2 enzymes.
Collapse
Affiliation(s)
- Adam J. Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Joan Teyra
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Jingyi Zhu
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Sachdev S. Sidhu
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Catherine L. Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
22
|
Wolf LM, Lambert AM, Haenlin J, Boutros M. EVI/WLS function is regulated by ubiquitination and linked to ER-associated degradation by ERLIN2. J Cell Sci 2021; 134:271857. [PMID: 34406391 PMCID: PMC8435288 DOI: 10.1242/jcs.257790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
WNT signalling is important for development in all metazoans and is associated with various human diseases. The ubiquitin–proteasome system (UPS) and regulatory endoplasmic reticulum-associated degradation (ERAD) have been implicated in the production of WNT proteins. Here, we investigated how the WNT secretory factor EVI (also known as WLS) is ubiquitylated, recognised by ERAD components and subsequently removed from the secretory pathway. We performed a focused immunoblot-based RNAi screen for factors that influence EVI/WLS protein stability. We identified the VCP-binding proteins FAF2 and UBXN4 as novel interaction partners of EVI/WLS and showed that ERLIN2 links EVI/WLS to the ubiquitylation machinery. Interestingly, we also found that EVI/WLS is ubiquitylated and degraded in cells irrespective of their level of WNT production. This K11, K48 and K63-linked ubiquitylation is mediated by the E2 ubiquitin-conjugating enzymes UBE2J2, UBE2K and UBE2N, but is independent of the E3 ubiquitin ligases HRD1 (also known as SYVN1) and GP78 (also known as AMFR). Taken together, our study identifies factors that link the UPS to the WNT secretory pathway and provides mechanistic details of the fate of an endogenous substrate of regulatory ERAD in mammalian cells. This article has an associated First Person interview with the first author of the paper. Summary: The WNT secretory factor EVI/WLS is ubiquitylated and linked to ER-associated degradation by multiple proteins, providing insight into the link between WNT signalling and the ubiquitin–proteasome system.
Collapse
Affiliation(s)
- Lucie M Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | - Annika M Lambert
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | - Julie Haenlin
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| |
Collapse
|
23
|
Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Nat Commun 2021; 12:2370. [PMID: 33888705 PMCID: PMC8062481 DOI: 10.1038/s41467-021-22598-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
E1 enzymes function as gatekeepers of ubiquitin (Ub) signaling by catalyzing activation and transfer of Ub to tens of cognate E2 conjugating enzymes in a process called E1-E2 transthioesterification. The molecular mechanisms of transthioesterification and the overall architecture of the E1-E2-Ub complex during catalysis are unknown. Here, we determine the structure of a covalently trapped E1-E2-ubiquitin thioester mimetic. Two distinct architectures of the complex are observed, one in which the Ub thioester (Ub(t)) contacts E1 in an open conformation and another in which Ub(t) instead contacts E2 in a drastically different, closed conformation. Altogether our structural and biochemical data suggest that these two conformational states represent snapshots of the E1-E2-Ub complex pre- and post-thioester transfer, and are consistent with a model in which catalysis is enhanced by a Ub(t)-mediated affinity switch that drives the reaction forward by promoting productive complex formation or product release depending on the conformational state.
Collapse
|
24
|
Pluska L, Jarosch E, Zauber H, Kniss A, Waltho A, Bagola K, von Delbrück M, Löhr F, Schulman BA, Selbach M, Dötsch V, Sommer T. The UBA domain of conjugating enzyme Ubc1/Ube2K facilitates assembly of K48/K63-branched ubiquitin chains. EMBO J 2021; 40:e106094. [PMID: 33576509 PMCID: PMC7957398 DOI: 10.15252/embj.2020106094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
The assembly of a specific polymeric ubiquitin chain on a target protein is a key event in the regulation of numerous cellular processes. Yet, the mechanisms that govern the selective synthesis of particular polyubiquitin signals remain enigmatic. The homologous ubiquitin-conjugating (E2) enzymes Ubc1 (budding yeast) and Ube2K (mammals) exclusively generate polyubiquitin linked through lysine 48 (K48). Uniquely among E2 enzymes, Ubc1 and Ube2K harbor a ubiquitin-binding UBA domain with unknown function. We found that this UBA domain preferentially interacts with ubiquitin chains linked through lysine 63 (K63). Based on structural modeling, in vitro ubiquitination experiments, and NMR studies, we propose that the UBA domain aligns Ubc1 with K63-linked polyubiquitin and facilitates the selective assembly of K48/K63-branched ubiquitin conjugates. Genetic and proteomics experiments link the activity of the UBA domain, and hence the formation of this unusual ubiquitin chain topology, to the maintenance of cellular proteostasis.
Collapse
Affiliation(s)
- Lukas Pluska
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Ernst Jarosch
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Henrik Zauber
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Anita Waltho
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Katrin Bagola
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | | | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Matthias Selbach
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Charité – Universitätsmedizin BerlinBerlinGermany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Thomas Sommer
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Institute for BiologyHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
25
|
Wang Q, Dong Z, Su J, Huang J, Xiao P, Tian L, Chen Y, Ma L, Chen X. Ixazomib inhibits myeloma cell proliferation by targeting UBE2K. Biochem Biophys Res Commun 2021; 549:1-7. [PMID: 33647537 DOI: 10.1016/j.bbrc.2021.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Ixazomib is a selective, effective, and reversible inhibitor of 20S proteasome and is approved for the treatment of multiple myeloma. Ubiquitin-conjugating enzyme E2 (UBE2K) is involved in the synthesis of K48-linked ubiquitin chains and is the target of certain drugs used for the treatment of tumors. The purpose of this study was to investigate the relationship between ixazomib and UBE2K in myeloma cells. METHODS We used CCK-8 and Annexin V-FITC/propidium iodide kit to detect the effects of ixazomib on survival and apoptosis of RPMI-8226 and U-266 myeloma cell lines. Quantitative polymerase chain reaction and western blot were used to detect the change in gene and protein expression levels of myeloma cells treated with ixazomib. Furthermore, the regulatory effects of ixazomib on UBE2K and its downstream targets were investigated following the overexpression of UBE2K. RESULTS In myeloma cells, ixazomib decreased cell survival and increased apoptosis in a dose-dependent manner. Ixazomib significantly increased the expression of HIST1H2BD, MNAT1, NEK3, and TARS2, while decreasing the expression of HSPA1B and UBE2K. In addition, ixazomib inhibited the proliferation of myeloma cells, blocked cell cycle, induced cell apoptosis, and increased the production of reactive oxygen species by inhibiting UBE2K expression. Lastly, ixazomib regulates mitosis- and apoptosis-related genes by lowering UBE2K expression. CONCLUSION In summary, ixazomib leads to impaired proliferation of myeloma cells by targeting UBE2K.
Collapse
Affiliation(s)
- Qingqing Wang
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Zhigao Dong
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Junnan Su
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Jinmei Huang
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Pingping Xiao
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Lihong Tian
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Yongquan Chen
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Lili Ma
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Xuyan Chen
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| |
Collapse
|
26
|
Khago D, Fucci IJ, Byrd RA. The Role of Conformational Dynamics in the Recognition and Regulation of Ubiquitination. Molecules 2020; 25:E5933. [PMID: 33333809 PMCID: PMC7765195 DOI: 10.3390/molecules25245933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
The ubiquitination pathway is central to many cell signaling and regulatory events. One of the intriguing aspects of the pathway is the combinatorial sophistication of substrate recognition and ubiquitin chain building determinations. The abundant structural and biological data portray several characteristic protein folds among E2 and E3 proteins, and the understanding of the combinatorial complexity that enables interaction with much of the human proteome is a major goal to developing targeted and selective manipulation of the pathway. With the commonality of some folds, there are likely other aspects that can provide differentiation and recognition. These aspects involve allosteric effects and conformational dynamics that can direct recognition and chain building processes. In this review, we will describe the current state of the knowledge for conformational dynamics across a wide timescale, address the limitations of present approaches, and illustrate the potential to make new advances in connecting dynamics with ubiquitination regulation.
Collapse
Affiliation(s)
| | | | - Robert Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, P.O. Box B, Building 538, Frederick, MD 21702-1201, USA; (D.K.); (I.J.F.)
| |
Collapse
|
27
|
A novel polyubiquitin chain linkage formed by viral Ubiquitin is resistant to host deubiquitinating enzymes. Biochem J 2020; 477:2193-2219. [PMID: 32478812 DOI: 10.1042/bcj20200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
The Baculoviridae family of viruses encode a viral Ubiquitin (vUb) gene. Though the vUb is homologous to the host eukaryotic Ubiquitin (Ub), its preservation in the viral genome indicates unique functions that are not compensated by the host Ub. We report the structural, biophysical, and biochemical properties of the vUb from Autographa californica multiple nucleo-polyhedrosis virus (AcMNPV). The packing of central helix α1 to the beta-sheet β1-β5 is different between vUb and Ub. Consequently, its stability is lower compared with Ub. However, the surface properties, ubiquitination activity, and the interaction with Ubiquitin-binding domains are similar between vUb and Ub. Interestingly, vUb forms atypical polyubiquitin chain linked by lysine at the 54th position (K54), and the deubiquitinating enzymes are ineffective against the K54-linked polyubiquitin chains. We propose that the modification of host/viral proteins with the K54-linked chains is an effective way selected by the virus to protect the vUb signal from host DeUbiquitinases.
Collapse
|
28
|
Kanack A, Vittal V, Haver H, Keppel T, Gundry RL, Klevit RE, Scaglione KM. UbcH5 Interacts with Substrates to Participate in Lysine Selection with the E3 Ubiquitin Ligase CHIP. Biochemistry 2020; 59:2078-2088. [PMID: 32401531 DOI: 10.1021/acs.biochem.0c00084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The E3 ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) plays a critical role in regulating the ubiquitin-dependent degradation of misfolded proteins. CHIP mediates the ubiquitination of the α-amino-terminus of substrates with the E2 Ube2w and facilitates the ubiquitination of lysine residues with the E2 UbcH5. While it is known that Ube2w directly interacts with the disordered regions at the N-terminus of its substrates, it is unclear how CHIP and UbcH5 mediate substrate lysine selection. Here, we have decoupled the contributions of the E2, UbcH5, and the E3, CHIP, in ubiquitin transfer. We show that UbcH5 selects substrate lysine residues independent of CHIP, and that CHIP participates in lysine selection by fine-tuning the subset of substrate lysines that are ubiquitinated. We also identify lysine 128 near the C-terminus of UbcH5 as a critical residue for the efficient ubiquitin transfer by UbcH5 in both the presence and absence of CHIP. Together, these data demonstrate an important role of the UbcH5/substrate interactions in mediating the efficient ubiquitin transfer by the CHIP/UbcH5 complex.
Collapse
Affiliation(s)
- Adam Kanack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Vinayak Vittal
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Holly Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, United States
| | - Theodore Keppel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kenneth Matthew Scaglione
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, United States.,Department of Neurology, Duke University, Durham, North Carolina 27710, United States.,Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
29
|
Neumann K, Farnung J, Baldauf S, Bode JW. Prevention of aspartimide formation during peptide synthesis using cyanosulfurylides as carboxylic acid-protecting groups. Nat Commun 2020; 11:982. [PMID: 32080186 PMCID: PMC7033154 DOI: 10.1038/s41467-020-14755-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although peptide chemistry has made great progress, the frequent occurrence of aspartimide formation during peptide synthesis remains a formidable challenge. Aspartimide formation leads to low yields in addition to costly purification or even inaccessible peptide sequences. Here, we report an alternative approach to address this longstanding challenge of peptide synthesis by utilizing cyanosulfurylides to mask carboxylic acids by a stable C-C bond. These functional groups-formally zwitterionic species-are exceptionally stable to all common manipulations and impart improved solubility during synthesis. Deprotection is readily and rapidly achieved under aqueous conditions with electrophilic halogenating agents via a highly selective C-C bond cleavage reaction. This protecting group is employed for the synthesis of a range of peptides and proteins including teduglutide, ubiquitin, and the low-density lipoprotein class A. This protecting group strategy has the potential to overcome one of the most difficult aspects of modern peptide chemistry.
Collapse
Affiliation(s)
- Kevin Neumann
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jakob Farnung
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Simon Baldauf
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
30
|
Cook BW, Lacoursiere RE, Shaw GS. Recruitment of Ubiquitin within an E2 Chain Elongation Complex. Biophys J 2020; 118:1679-1689. [PMID: 32101714 DOI: 10.1016/j.bpj.2020.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022] Open
Abstract
The ubiquitin (Ub) proteolysis pathway uses an E1, E2, and E3 enzyme cascade to label substrate proteins with ubiquitin and target them for degradation. The mechanisms of ubiquitin chain formation remain unclear and include a sequential addition model, in which polyubiquitin chains are built unit by unit on the substrate, or a preassembly model, in which polyubiquitin chains are preformed on the E2 or E3 enzyme and then transferred in one step to the substrate. The E2 conjugating enzyme UBE2K has a 150-residue catalytic core domain and a C-terminal ubiquitin-associated (UBA) domain. Polyubiquitin chains anchored to the catalytic cysteine and free in solution are formed by UBE2K supporting a preassembly model. To study how UBE2K might assemble polyubiquitin chains, we synthesized UBE2K-Ub and UBE2K-Ub2 covalent complexes and analyzed E2 interactions with the covalently attached Ub and Ub2 moieties using NMR spectroscopy. The UBE2K-Ub complex exists in multiple conformations, including the catalytically competent closed state independent of the UBA domain. In contrast, the UBE2K-Ub2 complex takes on a more extended conformation directed by interactions between the classic I44 hydrophobic face of the distal Ub and the conserved MGF hydrophobic patch of the UBA domain. Our results indicate there are distinct differences between the UBE2K-Ub and UBE2K-Ub2 complexes and show how the UBA domain can alter the position of a polyubiquitin chain attached to the UBE2K active site. These observations provide structural insights into the unique Ub chain-building capacity for UBE2K.
Collapse
Affiliation(s)
- Benjamin W Cook
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rachel E Lacoursiere
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
31
|
Chaugule VK, Arkinson C, Rennie ML, Kämäräinen O, Toth R, Walden H. Allosteric mechanism for site-specific ubiquitination of FANCD2. Nat Chem Biol 2019; 16:291-301. [PMID: 31873223 PMCID: PMC7035956 DOI: 10.1038/s41589-019-0426-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/05/2019] [Indexed: 01/31/2023]
Abstract
DNA damage repair is implemented by proteins that are coordinated by specialised molecular signals. One such signal in the Fanconi Anemia (FA) DNA-interstrand crosslink repair pathway is the site-specific monoubiquitination of FANCD2 and FANCI. The signal is mediated by a multi-protein FA core complex (FA-CC) however, the mechanics for precise ubiquitination remain elusive. We show that FANCL, the RING-bearing module in FA-CC, allosterically activates its cognate E2 Ube2T to drive site-specific FANCD2 ubiquitination. Unlike typical RING E3 ligases, FANCL catalyses ubiquitination by rewiring Ube2T’s intra-residue network to influence the active site. Consequently, a basic triad unique to Ube2T engages a structured acidic patch near the target lysine on FANCD2. This three-dimensional complementarity, between the E2 active site and substrate surface, induced by FANCL is central to site-specific monoubiquitination in the FA pathway. Furthermore, the allosteric network of Ube2T can be engineered to enhance FANCL catalysed FANCD2-FANCI di-monoubiquitination without compromising site-specificity.
Collapse
Affiliation(s)
- Viduth K Chaugule
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. .,MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK.
| | - Connor Arkinson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Martin L Rennie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Outi Kämäräinen
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. .,MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
32
|
Williams KM, Qie S, Atkison JH, Salazar-Arango S, Alan Diehl J, Olsen SK. Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Nat Commun 2019; 10:3296. [PMID: 31341161 PMCID: PMC6656757 DOI: 10.1038/s41467-019-11061-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin (Ub) signaling requires the sequential interactions and activities of three enzymes, E1, E2, and E3. Cdc34 is an E2 that plays a key role in regulating cell cycle progression and requires unique structural elements to function. The molecular basis by which Cdc34 engages its E1 and the structural mechanisms by which its unique C-terminal extension functions in Cdc34 activity are unknown. Here, we present crystal structures of Cdc34 alone and in complex with E1, and a Cdc34~Ub thioester mimetic that represents the product of Uba1-Cdc34 Ub transthiolation. These structures reveal conformational changes in Uba1 and Cdc34 and a unique binding mode that are required for transthiolation. The Cdc34~Ub structure reveals contacts between the Cdc34 C-terminal extension and Ub that stabilize Cdc34~Ub in a closed conformation and are critical for Ub discharge. Altogether, our structural, biochemical, and cell-based studies provide insights into the molecular mechanisms by which Cdc34 function in cells.
Collapse
Affiliation(s)
- Katelyn M Williams
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shuo Qie
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James H Atkison
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sabrina Salazar-Arango
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - J Alan Diehl
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shaun K Olsen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
33
|
Liess AKL, Kucerova A, Schweimer K, Yu L, Roumeliotis TI, Diebold M, Dybkov O, Sotriffer C, Urlaub H, Choudhary JS, Mansfeld J, Lorenz S. Autoinhibition Mechanism of the Ubiquitin-Conjugating Enzyme UBE2S by Autoubiquitination. Structure 2019; 27:1195-1210.e7. [PMID: 31230944 DOI: 10.1016/j.str.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Ubiquitin-conjugating enzymes (E2s) govern key aspects of ubiquitin signaling. Emerging evidence suggests that the activities of E2s are modulated by posttranslational modifications; the structural underpinnings, however, are largely unclear. Here, we unravel the structural basis and mechanistic consequences of a conserved autoubiquitination event near the catalytic center of E2s, using the human anaphase-promoting complex/cyclosome-associated UBE2S as a model system. Crystal structures we determined of the catalytic ubiquitin carrier protein domain combined with MD simulations reveal that the active-site region is malleable, which permits an adjacent ubiquitin acceptor site, Lys+5, to be ubiquitinated intramolecularly. We demonstrate by NMR that the Lys+5-linked ubiquitin inhibits UBE2S by obstructing its reloading with ubiquitin. By immunoprecipitation, quantitative mass spectrometry, and siRNA-and-rescue experiments we show that Lys+5 ubiquitination of UBE2S decreases during mitotic exit but does not influence proteasomal turnover of this E2. These findings suggest that UBE2S activity underlies inherent regulation during the cell cycle.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Lu Yu
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | | | - Mathias Diebold
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Henning Urlaub
- Group for Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany; Proteomics Service Facility, Georg-August-Universität, Göttingen, 37077 Göttingen, Germany
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
34
|
de Oliveira JF, do Prado PFV, da Costa SS, Sforça ML, Canateli C, Ranzani AT, Maschietto M, de Oliveira PSL, Otto PA, Klevit RE, Krepischi ACV, Rosenberg C, Franchini KG. Mechanistic insights revealed by a UBE2A mutation linked to intellectual disability. Nat Chem Biol 2018; 15:62-70. [PMID: 30531907 DOI: 10.1038/s41589-018-0177-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
Abstract
Ubiquitin-conjugating enzymes (E2) enable protein ubiquitination by conjugating ubiquitin to their catalytic cysteine for subsequent transfer to a target lysine side chain. Deprotonation of the incoming lysine enables its nucleophilicity, but determinants of lysine activation remain poorly understood. We report a novel pathogenic mutation in the E2 UBE2A, identified in two brothers with mild intellectual disability. The pathogenic Q93E mutation yields UBE2A with impaired aminolysis activity but no loss of the ability to be conjugated with ubiquitin. Importantly, the low intrinsic reactivity of UBE2A Q93E was not overcome by a cognate ubiquitin E3 ligase, RAD18, with the UBE2A target PCNA. However, UBE2A Q93E was reactive at high pH or with a low-pKa amine as the nucleophile, thus providing the first evidence of reversion of a defective UBE2A mutation. We propose that Q93E substitution perturbs the UBE2A catalytic microenvironment essential for lysine deprotonation during ubiquitin transfer, thus generating an enzyme that is disabled but not dead.
Collapse
Affiliation(s)
| | | | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mauricio Luis Sforça
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Camila Canateli
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Americo Tavares Ranzani
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Paulo A Otto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Kleber Gomes Franchini
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil. .,Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, Brazil.
| |
Collapse
|
35
|
Lee JG, Youn HS, Kang JY, Park SY, Kidera A, Yoo YJ, Eom SH. Crystal structure of the Ube2K/E2-25K and K48-linked di-ubiquitin complex provides structural insight into the mechanism of K48-specific ubiquitin chain synthesis. Biochem Biophys Res Commun 2018; 506:102-107. [DOI: 10.1016/j.bbrc.2018.10.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
|
36
|
Kuroha K, Zinoviev A, Hellen CUT, Pestova TV. Release of Ubiquitinated and Non-ubiquitinated Nascent Chains from Stalled Mammalian Ribosomal Complexes by ANKZF1 and Ptrh1. Mol Cell 2018; 72:286-302.e8. [PMID: 30244831 DOI: 10.1016/j.molcel.2018.08.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023]
Abstract
The ribosome-associated quality control (RQC) pathway degrades nascent chains (NCs) arising from interrupted translation. First, recycling factors split stalled ribosomes, yielding NC-tRNA/60S ribosome-nascent chain complexes (60S RNCs). 60S RNCs associate with NEMF, which recruits the E3 ubiquitin ligase Listerin that ubiquitinates NCs. The mechanism of subsequent ribosomal release of Ub-NCs remains obscure. We found that, in non-ubiquitinated 60S RNCs and 80S RNCs formed on non-stop mRNAs, tRNA is not firmly fixed in the P site, which allows peptidyl-tRNA hydrolase Ptrh1 to cleave NC-tRNA, suggesting the existence of a pathway involving release of non-ubiquitinated NCs. Association with NEMF and Listerin and ubiquitination of NCs results in accommodation of NC-tRNA, rendering 60S RNCs resistant to Ptrh1 but susceptible to ANKZF1, which induces specific cleavage in the tRNA acceptor arm, releasing proteasome-degradable Ub-NCs linked to four 3'-terminal tRNA nucleotides. We also found that TCF25, a poorly characterized RQC component, ensures preferential formation of the K48-ubiquitin linkage.
Collapse
Affiliation(s)
- Kazushige Kuroha
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
37
|
Groves MR, Schroer CFE, Middleton AJ, Lunev S, Danda N, Ali AM, Marrink SJ, Williams C. Structural insights into K48-linked ubiquitin chain formation by the Pex4p-Pex22p complex. Biochem Biophys Res Commun 2018; 496:562-567. [PMID: 29288668 DOI: 10.1016/j.bbrc.2017.12.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
Pex4p is a peroxisomal E2 involved in ubiquitinating the conserved cysteine residue of the cycling receptor protein Pex5p. Previously, we demonstrated that Pex4p from the yeast Saccharomyces cerevisiae binds directly to the peroxisomal membrane protein Pex22p and that this interaction is vital for receptor ubiquitination. In addition, Pex22p binding allows Pex4p to specifically produce lysine 48 linked ubiquitin chains in vitro through an unknown mechanism. This activity is likely to play a role in targeting peroxisomal proteins for proteasomal degradation. Here we present the crystal structures of Pex4p alone and in complex with Pex22p from the yeast Hansenula polymorpha. Comparison of the two structures demonstrates significant differences to the active site of Pex4p upon Pex22p binding while molecular dynamics simulations suggest that Pex22p binding facilitates active site remodelling of Pex4p through an allosteric mechanism. Taken together, our data provide insights into how Pex22p binding allows Pex4p to build K48-linked Ub chains.
Collapse
Affiliation(s)
- Matthew R Groves
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713AV, The Netherlands
| | - Carsten F E Schroer
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, The Netherlands
| | - Adam J Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Sergey Lunev
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713AV, The Netherlands
| | - Natasha Danda
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, The Netherlands
| | - Ameena M Ali
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713AV, The Netherlands
| | - Siewert J Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, The Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, The Netherlands.
| |
Collapse
|
38
|
Han Y, Sun J, Yang J, Tan Z, Luo J, Lu D. Reconstitution of the plant ubiquitination cascade in bacteria using a synthetic biology approach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:766-776. [PMID: 28509348 DOI: 10.1111/tpj.13603] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 05/23/2023]
Abstract
Ubiquitination modulates nearly all aspects of plant life. Here, we reconstituted the Arabidopsis thaliana ubiquitination cascade in Escherichia coli using a synthetic biology approach. In this system, plant proteins are expressed and then immediately participate in ubiquitination reactions within E. coli cells. Additionally, the purification of individual ubiquitination components prior to setting up the ubiquitination reactions is omitted. To establish the reconstituted system, we co-expressed Arabidopsis ubiquitin (Ub) and ubiquitination substrates with E1, E2 and E3 enzymes in E. coli using the Duet expression vectors. The functionality of the system was evaluated by examining the auto-ubiquitination of a RING (really interesting new gene)-type E3 ligase AIP2 and the ubiquitination of its substrate ABI3. Our results demonstrated the fidelity and specificity of this system. In addition, we applied this system to assess a subset of Arabidopsis E2s in Ub chain formation using E2 conjugation assays. Affinity-tagged Ub allowed efficient purification of Ub conjugates in milligram quantities. Consistent with previous reports, distinct roles of various E2s in Ub chain assembly were also observed in this bacterial system. Therefore, this reconstituted system has multiple advantages, and it can be used to screen for targets of E3 ligases or to study plant ubiquitination in detail.
Collapse
Affiliation(s)
- Yufang Han
- State Key Laboratory of Plant Genomics, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhang Sun
- State Key Laboratory of Plant Genomics, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yang
- State Key Laboratory of Plant Genomics, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyun Tan
- State Key Laboratory of Plant Genomics, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
| | - Jijing Luo
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Dongping Lu
- State Key Laboratory of Plant Genomics, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
| |
Collapse
|
39
|
Abstract
Attachment of ubiquitin to proteins relies on a sophisticated enzyme cascade that is tightly regulated. The machinery of ubiquitylation responds to a range of signals, which remarkably includes ubiquitin itself. Thus, ubiquitin is not only the central player in the ubiquitylation cascade but also a key regulator. The ubiquitin E3 ligases provide specificity to the cascade and often bind the substrate, while the ubiquitin-conjugating enzymes (E2s) have a pivotal role in determining chain linkage and length. Interaction of ubiquitin with the E2 is important for activity, but the weak nature of these contacts has made them hard to identify and study. By reviewing available crystal structures, we identify putative ubiquitin binding sites on E2s, which may enhance E2 processivity and the assembly of chains of a defined linkage. The implications of these new sites are discussed in the context of known E2-ubiquitin interactions.
Collapse
|
40
|
Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem J 2017; 473:3401-3419. [PMID: 27729585 PMCID: PMC5095918 DOI: 10.1042/bcj20160028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Ubiquitin signalling is a fundamental eukaryotic regulatory system, controlling diverse cellular functions. A cascade of E1, E2, and E3 enzymes is required for assembly of distinct signals, whereas an array of deubiquitinases and ubiquitin-binding modules edit, remove, and translate the signals. In the centre of this cascade sits the E2-conjugating enzyme, relaying activated ubiquitin from the E1 activating enzyme to the substrate, usually via an E3 ubiquitin ligase. Many disease states are associated with dysfunction of ubiquitin signalling, with the E3s being a particular focus. However, recent evidence demonstrates that mutations or impairment of the E2s can lead to severe disease states, including chromosome instability syndromes, cancer predisposition, and immunological disorders. Given their relevance to diseases, E2s may represent an important class of therapeutic targets. In the present study, we review the current understanding of the mechanism of this important family of enzymes, and the role of selected E2s in disease.
Collapse
|
41
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
42
|
Wright JD, Mace PD, Day CL. Noncovalent Ubiquitin Interactions Regulate the Catalytic Activity of Ubiquitin Writers. Trends Biochem Sci 2016; 41:924-937. [PMID: 27614784 DOI: 10.1016/j.tibs.2016.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022]
Abstract
Covalent modification of substrate proteins with ubiquitin is the end result of an intricate network of protein-protein interactions. The inherent ability of the E1, E2, and E3 proteins of the ubiquitylation cascade (the ubiquitin writers) to interact with ubiquitin facilitates this process. Importantly, contact between ubiquitin and the E2/E3 writers is required for catalysis and the assembly of chains of a given linkage. However, ubiquitin is also an activator of ubiquitin-writing enzymes, with many recent studies highlighting the ability of ubiquitin to regulate activity and substrate modification. Here, we review the interactions between ubiquitin-writing enzymes and regulatory ubiquitin molecules that promote activity, and highlight the potential of these interactions to promote processive ubiquitin transfer.
Collapse
Affiliation(s)
- Joshua D Wright
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; The Francis Crick Institute, London NW1 1AT, UK
| | - Peter D Mace
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
43
|
Hill S, Harrison JS, Lewis SM, Kuhlman B, Kleiger G. Mechanism of Lysine 48 Selectivity during Polyubiquitin Chain Formation by the Ube2R1/2 Ubiquitin-Conjugating Enzyme. Mol Cell Biol 2016; 36:1720-32. [PMID: 27044868 PMCID: PMC4959314 DOI: 10.1128/mcb.00097-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Lysine selectivity is of critical importance during polyubiquitin chain formation because the identity of the lysine controls the biological outcome. Ubiquitins are covalently linked in polyubiquitin chains through one of seven lysine residues on its surface and the C terminus of adjacent protomers. Lys 48-linked polyubiquitin chains signal for protein degradation; however, the structural basis for Lys 48 selectivity remains largely unknown. The ubiquitin-conjugating enzyme Ube2R1/2 has exquisite specificity for Lys 48, and computational docking of Ube2R1/2 and ubiquitin predicts that Lys 48 is guided to the active site through a key electrostatic interaction between Arg 54 on ubiquitin and Asp 143 on Ube2R1/2. The validity of this interaction was confirmed through biochemical experiments. Since structural examples involving Arg 54 in protein-ubiquitin complexes are exceedingly rare, these results provide additional insight into how ubiquitin-protein complexes can be stabilized. We discuss how these findings relate to how other ubiquitin-conjugating enzymes direct the lysine specificity of polyubiquitin chains.
Collapse
Affiliation(s)
- Spencer Hill
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada, USA
| | - Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven M Lewis
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
44
|
Abstract
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.
Collapse
|