1
|
Mogielnicka-Brzozowska M, Cichowska AW. Molecular Biomarkers of Canine Reproductive Functions. Curr Issues Mol Biol 2024; 46:6139-6168. [PMID: 38921038 PMCID: PMC11202846 DOI: 10.3390/cimb46060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of the current study is to review potential molecular biomarker substances selected so far as useful for assessing the quality of dog semen. Proteins, lipids, carbohydrates, and ions can serve as molecular biomarkers of reproductive functions (BRFs) for evaluating male reproductive health and identifying potential risk factors for infertility or reproductive disorders. Evaluation of BRF levels in semen samples or reproductive tissues may provide insights into the underlying causes of infertility, such as impaired sperm function, abnormal sperm-egg interaction, or dysfunction of the male reproductive tract. Molecular biomarker proteins may be divided into two groups: proteins that are well-studied, such as A-kinase anchoring proteins (AKAPs), albumins (ALBs), alkaline phosphatase (ALPL), clusterin (CLU), canine prostate-specific esterase (CPSE), cysteine-rich secretory protein 2 (CRISP2), lactotransferrin (LTF), metalloproteinases (MMPs), and osteopontin (OPN) and proteins that are not well-studied. Non-protein markers include lipid-based substances (fatty acids, phosphatidylcholine), carbohydrates (glycosaminoglycans), and ions (zinc, calcium). Assessing the levels of BRFs in semen samples may provide valuable information for breeding management and reproductive assessments in dogs. This review systematizes current knowledge that could serve as a starting point for developing practical tests with the use of biomarkers of canine reproductive functions and their predictive value for assisted reproductive technique outcomes and semen preservation.
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | | |
Collapse
|
2
|
Cichowska AW, Wisniewski J, Bromke MA, Olejnik B, Mogielnicka-Brzozowska M. Proteome Profiling of Canine Epididymal Fluid: In Search of Protein Markers of Epididymal Sperm Motility. Int J Mol Sci 2023; 24:14790. [PMID: 37834239 PMCID: PMC10573609 DOI: 10.3390/ijms241914790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sperm maturation in the epididymis is based on interactions with proteins from epididymal fluid (EF). The aim of the study was to profile canine EF proteome and investigate correlations between EF protein content and epididymal spermatozoa (ES) motion parameters. Twenty-three male dogs were divided into two groups: good sperm motility (GSM) and poor sperm motility (PSM). The total motility and progressive motility differed significantly (p = 0.031; p < 0.001, respectively) between the GSM group and the PSM group. The semen samples were centrifuged to separate the EF apart from the ES. The canine EF proteins were analyzed using nano-liquid chromatography, which was coupled with quadrupole time-of-flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools for the first time. A total of 915 proteins were identified (GSM-506; PSM-409, respectively). UniProt identification resulted in six unique proteins (UPs) in the GSM group of dogs and four UPs in the PSM group. A semi-quantitative analysis showed a higher abundance (p < 0.05) of four differentially expressed proteins in the GSM group (ALB, CRISP2, LCNL1, PTGDS). Motility-dependent variations were detected in the EF proteome and were related to important metabolic pathways, which might suggest that several proteins could be potential ES motility biomarkers.
Collapse
Affiliation(s)
- Aleksandra W. Cichowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Beata Olejnik
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
3
|
Li H, Chaitankar V, Cui L, Chen W, Chin K, Zhu J, Liu W, Rodgers GP. Characterization of olfactomedin 4+ cells in prostate and urethral-tube epithelium during murine postnatal development and in adult mice. Sci Rep 2023; 13:10290. [PMID: 37357228 DOI: 10.1038/s41598-023-37320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
Olfactomedin4 (Olfm4) is expressed in normal mouse prostate. However, Olfm4+ cells in the murine prostate have not been well characterized. In this study, we generated an Olfm4eGFP reporter mouse line with C57BL/6 mice and investigated the distribution of Olfm4/eGFP-expressing cells during postnatal development from P1, P7, P14, P20, P42, P56 to adult male mouse prostate and urethral tube. We observed Olfm4/eGFP expression in urogenital and prostatic epithelial cells during early postnatal development, which persisted into adulthood in urethral-tube and anterior-prostate (AP) epithelium. We found Olfm4+ cells are E-cadherin+/CD44+/Foxa1+ and some of subpopulation are Ck8+/Ck5+/Sca-1-/Ck4-/Syn- in the adult mouse AP epithelium. Functional studies of single-cell preparations of Olfm4/eGFP-expressing cells isolated from adult Olfm4eGFP mouse prostate demonstrated that Olfm4+ cells can grow and form colonies, spheres, or organoids in culture. Bioinformatic analysis of Olfm4+ cells using single-cell RNA sequencing meta data in adult mouse urethra (GSE145865) identified upregulation of genes related to cell and tissue migration and development, as well as upregulation of xenobiotic metabolism signaling pathways. In conclusion, Olfm4eGFP mouse is a novel model to further study Olfm4's biological functions and Olfm4+ cells may contribute importantly to cellular processes supporting development and homeostasis of the epithelium in murine prostate and urethral tube.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lena Cui
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weiping Chen
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Al Gharaibeh FN, Kempton KM, Alder MN. Olfactomedin-4-Positive Neutrophils in Neonates: Link to Systemic Inflammation and Bronchopulmonary Dysplasia. Neonatology 2022; 120:40-48. [PMID: 36549285 PMCID: PMC10010669 DOI: 10.1159/000527902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Little is known about the interplay between neutrophil heterogeneity in neonates in health and disease states. Olfactomedin-4 (OLFM4) marks a subset of neutrophils that have been described in adults and pediatric patients but not neonates, and this subset is thought to play a role in modulating the host inflammatory response. METHODS This is a prospective cohort of neonates who were born between June 2020 and December 2021 at the University of Cincinnati Medical Center NICU. Olfactomedin-4-positive (OLFM4+) neutrophils were identified in the peripheral blood using flow cytometry. RESULTS OLFM4+ neutrophil percentage was not correlated with gestational age or developmental age. Neonates with sepsis had a higher percentage than those without the condition, 66.9% (IQR 24.3-76.9%) versus 21.5% (IQR 10.6-34.7%), respectively, p = 0.0003. At birth, a high percentage of OLFM4+ neutrophils was associated with severe chorioamnionitis at 49.1% (IQR 28.2-61.5%) compared to those without it at 13.7% (IQR 7.7-26.3%), p < 0.0001. Among neonates without sepsis, the percentages of OLFM4+ neutrophils were lower in the BPD/early death group compared to those without BPD, 11.8% (IQR 6.3-29.0%) versus 32.5% (IQR 18.5-46.1%), p = 0.003, and this retained significance in a multiple logistic regression model that included gestational age, birthweight, and race. CONCLUSION This is the first study describing OLFM4+ neutrophils in neonates and it shows that this neutrophil subpopulation is not influenced by gestational age but is elevated in inflammatory conditions such as sepsis and severe chorioamnionitis, and lower percentage at birth is associated with developing bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Faris N Al Gharaibeh
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kristalynn M Kempton
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew N Alder
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Proteomic Analysis of Intracellular and Membrane-Associated Fractions of Canine (Canis lupus familiaris) Epididymal Spermatozoa and Sperm Structure Separation. Animals (Basel) 2022; 12:ani12060772. [PMID: 35327169 PMCID: PMC8944539 DOI: 10.3390/ani12060772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Epididymal spermatozoa have great potential in current dog reproductive technologies. In the case of azoospermia or when the male dies, the recovery of epididymal spermatozoa opens new possibilities for reproduction. It is of great importance to analyze the quality of the sperm in such cases. Proteomic studies contribute to explaining the role of proteins at various stages of epididymal sperm maturation and offer potential opportunities to use them as markers of sperm quality. The present study showed, for the first time, mass spectrometry and bioinformatic analysis of intracellular and membrane-associated proteins of canine epididymal spermatozoa. Additionally, sonication was used for the separation of dog epididymal sperm morphological elements (heads, tails and acrosomes). The results revealed the presence of differentially abundant proteins in both sperm protein fractions significant for sperm function and fertilizing ability. It was also shown that these proteins participate in important sperm metabolic pathways, which may suggest their potential as sperm quality biomarkers. Abstract This study was provided for proteomic analysis of intracellular and membrane-associated fractions of canine (Canis lupus familiaris) epididymal spermatozoa and additionally to find optimal sonication parameters for the epididymal sperm morphological structure separation and sperm protein isolation. Sperm samples were collected from 15 dogs. Sperm protein fractions: intracellular (SIPs) and membrane-associated (SMAPs) were isolated. After sonication, sperm morphology was evaluated using Spermac Stain™. The sperm protein fractions were analyzed using gel electrophoresis (SDS-PAGE) and nanoliquid chromatography coupled to quadrupole time-of-flight mass spectrometry (NanoLC-Q-TOF/MS). UniProt database-supported identification resulted in 42 proteins identified in the SIPs and 153 proteins in the SMAPs. Differentially abundant proteins (DAPs) were found in SIPs and SMAPs. Based on a gene ontology analysis, the dominant molecular functions of SIPs were catalytic activity (50%) and binding (28%). Hydrolase activity (33%) and transferase activity (21%) functions were dominant for SMAPs. Bioinformatic analysis of SIPs and SMAPs showed their participation in important metabolic pathways in epididymal sperm, which may suggest their potential as sperm quality biomarkers. The use of sonication 150 W, 10 min, may be recommended for the separation of dog epididymal sperm heads, tails, acrosomes and the protein isolation.
Collapse
|
6
|
Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proc Natl Acad Sci U S A 2021; 118:2106770118. [PMID: 34548398 PMCID: PMC8488674 DOI: 10.1073/pnas.2106770118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia are tubulin-based cellular appendages, and their dysfunction has been linked to a variety of genetic diseases. Ciliary chondrodysplasia is one such condition that can co-occur with cystic kidney disease and other organ manifestations. We modeled skeletal ciliopathies by mutating two established disease genes in Xenopus tropicalis frogs. Bioinformatic analysis identified ttc30a as a ciliopathy network component, and targeting it replicated skeletal malformations and renal cysts as seen in patients and the amphibian models. A loss of Ttc30a affected cilia by altering posttranslational tubulin modifications. Our findings identify TTC30A/B as a component of ciliary segmentation essential for cartilage differentiation and renal tubulogenesis. These findings may lead to novel therapeutic targets in treating ciliary skeletopathies and cystic kidney disease. Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis. Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining–based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type–specific manner. These findings have implications for potential therapeutic strategies.
Collapse
|
7
|
Suzuki T, Yamazaki H, Honda K, Ryo E, Kaneko A, Ota Y, Mori T. Altered DNA methylation is associated with aberrant stemness gene expression in early‑stage HNSCC. Int J Oncol 2019; 55:915-924. [PMID: 31432153 DOI: 10.3892/ijo.2019.4857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 11/05/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by morphological and functional cellular heterogeneity, which are properties of progenitor cells, as opposed to cell alterations caused by accidental expression of stem cell‑related molecules. The expression levels of stemness molecules and their distribution in HNSCC are unclear. As regards sporadic cellular heterogeneity, methylation is an important factor for transcriptional regulation in tumors. Integrative screening analysis of mRNA expression and altered methylation status was performed with original microarrays in 12 tumor and non‑tumor pairs of oral squamous cell carcinoma (SCC) cases. From this data set, genes regulated via aberrant DNA methylation and classified proteins were validated by function clustering. Olfactomedin 4 (OLFM4), known as an intestinal stemness molecule and cell‑cell adhesion factor, was found to be highly expressed in tumors, with an mRNA expression ratio [tumor/normal (T/N)] of 40.7686 and low methylation (‑18.02%) in the promoter region. In addition, the OLFM4 expression levels increased following treatment with the demethylating agent 5‑azacytidine in two HNSCC cell lines. Furthermore, the expression levels of OLFM4 in 59 cases of early‑stage tongue SCC were analyzed using immunohistochemistry to examine protein expression corresponding to the histopathological definition of tumors and to evaluate prognosis. The aberrant stemness gene expression caused by altered DNA methylation appeared to regulate early‑stage HNSCC characteristics. The results of the present study indicated a correlation between OLFM4 expression and promoter methylation, and suggest that it plays an important role in tumor cell heterogeneity in HNSCC.
Collapse
Affiliation(s)
- Takatsugu Suzuki
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Hiroshi Yamazaki
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Kazufumi Honda
- Division of Biomarker for Cancer Early Detection, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Akihiro Kaneko
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Yoshihide Ota
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Taisuke Mori
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| |
Collapse
|
8
|
Valo I, Raro P, Boissard A, Maarouf A, Jézéquel P, Verriele V, Campone M, Coqueret O, Guette C. OLFM4 Expression in Ductal Carcinoma In Situ and in Invasive Breast Cancer Cohorts by a SWATH-Based Proteomic Approach. Proteomics 2019; 19:e1800446. [PMID: 31318138 DOI: 10.1002/pmic.201800446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/04/2019] [Indexed: 12/13/2022]
Abstract
Human olfactomedin-4 (OLFM4) is a secreted protein involved in a variety of cellular functions including proliferation, differentiation, apoptosis, and cell adhesion. OLFM4 expression has been studied in several tumor types including gastric, colorectal, lung, and endometrioid cancers where it has been suggested to be an independent favorable or unfavorable prognostic marker. For breast cancer, the clinical significance of OLFM4 is still unclear. In the present study, SWATH-MS is used as a tool for the robust identification and quantification of breast tissue proteins. SWATH-MS data show that OLFM4 expression is higher in DCIS than in invasive breast cancer. In-depth analysis of the breast tumor proteome show that OLFM4 is a favorable pronostic marker. Serum OLFM4 levels in peripheral blood are also analyzed by ELISA in 825 cases, including 94 cases of healthy individuals, 61 cases of non-invasive breast tumor (DCIS) and 670 cases of breast cancer (BC). It is found that serum OLFM4 levels are significantly higher in the DCIS cohort and in the breast cancer cohort compared with the healthy controls. This result suggests that circulating OLFM4 could be an interesting biomarker of early breast cancer. Data are available via ProteomeXchange with identifier PXD014194.
Collapse
Affiliation(s)
- Isabelle Valo
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France
| | - Pedro Raro
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France
| | - Amine Maarouf
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France.,Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, 49100, Angers, France
| | - Pascal Jézéquel
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Unité de Bioinfomique, 44805, Nantes, France.,SIRIC ILIAD, Angers, Nantes, France
| | | | - Mario Campone
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France.,SIRIC ILIAD, Angers, Nantes, France
| | - Olivier Coqueret
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, 49100, Angers, France.,SIRIC ILIAD, Angers, Nantes, France
| | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France.,SIRIC ILIAD, Angers, Nantes, France
| |
Collapse
|
9
|
Li H, Kim C, Liu W, Zhu J, Chin K, Rodriguez‐Canales J, Rodgers GP. Olfactomedin 4 downregulation is associated with tumor initiation, growth and progression in human prostate cancer. Int J Cancer 2019; 146:1346-1358. [PMID: 31241767 PMCID: PMC7004162 DOI: 10.1002/ijc.32535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Abstract
The olfactomedin 4 (OLFM4) gene has been analyzed as a tumor‐suppressor gene and a putative biomarker in many cancers. In our study, we analyzed the relationship of OLFM4 expression with clinicopathological features and with CpG site methylation in the OLFM4 gene promoter region in human primary prostate adenocarcinoma. OLFM4 protein expression was significantly reduced in prostate cancer tissue compared to adjacent normal tissue and was further significantly reduced in more advanced cancers. Bioinformatic studies with clinical datasets revealed that primary prostate adenocarcinoma patients with reduced OLFM4 mRNA expression exhibited higher Gleason scores and higher preoperative serum prostate‐specific antigen levels, as well as lower recurrence‐free survival. Three of the eight CpG sites in the OLFM4 gene promoter region were hypermethylated in cancerous prostate cells compared to adjacent normal cells, and reduced methylation of eight CpG sites was associated with increased OLFM4 mRNA expression in RWPE1 and PC‐3 cells. Furthermore, knockdown of OLFM4 gene expression was associated with enhanced epithelial–mesenchymal transition (EMT)‐marker expression in RWPE immortalized normal prostate cells. In contrast, restoration of OLFM4 expression in PC‐3 and DU145 prostate cancer cells lacking OLFM4 significantly inhibited both EMT‐marker expression and tumor cell growth in in vitro and in vivo models, indicating that OLFM4 may play a tumor‐suppressor role in inhibiting the EMT program, as well as tumor initiation and growth, in prostate cells. Taken together, these findings suggest that OLFM4 plays an important tumor‐suppressor role in prostate cancer progression and might be useful as a novel candidate biomarker for prostate cancer. What's new? Altered expression of the OLFM4 gene appears to be involved in many cancers. In this study of prostate cancers, the authors found that OLFM4 can suppress tumor initiation, growth and progression. Downregulation of OLFM4 was associated with higher serum PSA levels, higher Gleason scores, and lower recurrence‐free survival in prostate cancer patients. These results indicate that OLFM4 may play an important tumor‐suppressor role in the progression of prostate cancer, and may provide a novel prognostic biomarker for prostate cancer treatment.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Christine Kim
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Kay Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Jaime Rodriguez‐Canales
- Pathogenetics Unit, Laboratory of Pathology, Center for Cancer ResearchNational Institutes of HealthBethesdaMD
- MedimmuneGaithersburgMD
| | - Griffin P. Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| |
Collapse
|
10
|
Mangiola S, Stuchbery R, Macintyre G, Clarkson MJ, Peters JS, Costello AJ, Hovens CM, Corcoran NM. Periprostatic fat tissue transcriptome reveals a signature diagnostic for high-risk prostate cancer. Endocr Relat Cancer 2018; 25:569-581. [PMID: 29592867 DOI: 10.1530/erc-18-0058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Evidence suggests that altered adipose tissue homeostasis may be an important contributor to the development and/or progression of prostate cancer. In this study, we investigated the adipose transcriptional profiles of low- and high-risk disease to determine both prognostic potential and possible biological drivers of aggressive disease. RNA was extracted from periprostatic adipose tissue from patients categorised as having prostate cancer with either a low or high risk of progression based on tumour characteristics at prostatectomy and profiled by RNA sequencing. The expression of selected genes was then quantified by qRT-PCR in a cross-validation cohort. In the first phase, a total of 677 differentially transcribed genes were identified, from which a subset of 14 genes was shortlisted. In the second phase, a 3 gene (IGHA1, OLFM4, RERGL) signature was refined and evaluated using recursive feature selection and cross-validation, obtaining a promising discriminatory utility (area under curve 0.72) at predicting the presence of high-risk disease. Genes implicated in immune and/or inflammatory responses predominated. Periprostatic adipose tissue from patients with high-risk prostate cancer has a distinct transcriptional signature that may be useful for detecting its occult presence. Differential expression appears to be driven by a local immune/inflammatory reaction to more advanced tumours, than any specific adipose tissue-specific tumour-promoting mechanism. This signature is transferable into a clinically usable PCR-based assay, which in a cross-validation cohort shows diagnostic potential.
Collapse
Affiliation(s)
- Stefano Mangiola
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Ryan Stuchbery
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
| | - Geoff Macintyre
- Centre for Neural Engineering, Department of Computing and Information Systems, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Diagnostic Genomics, NICTA, Victoria Research Laboratory, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J Clarkson
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
| | - Justin S Peters
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anthony J Costello
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Christopher M Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Niall M Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Urology, Frankston Hospital, Frankston, Victoria, Australia
| |
Collapse
|
11
|
Molecular Subgroup of Primary Prostate Cancer Presenting with Metastatic Biology. Eur Urol 2017; 72:509-518. [DOI: 10.1016/j.eururo.2017.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/17/2017] [Indexed: 12/24/2022]
|
12
|
Smoothened is a poor prognosis factor and a potential therapeutic target in glioma. Sci Rep 2017; 7:42630. [PMID: 28195165 PMCID: PMC5307388 DOI: 10.1038/srep42630] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/13/2017] [Indexed: 01/22/2023] Open
Abstract
Malignant gliomas are associated with a high mortality rate. Thus, there is an urgent need for the development of novel targeted therapeutics. Aberrant Hedgehog signaling has been directly linked to glioma. GDC-0449 is a novel small molecule inhibitor of Hedgehog signaling that blocks the activity of smoothened (Smo). In this study, we evaluated the in vitro and in vivo effects of the smoothened inhibitor GDC-0449 on cell proliferation in human gliomas. We found that high expression of smoothened in glioma is a predictor of short overall survival and poor patient outcome. Our data suggest that GDC-0449 significantly inhibits the proliferation of glioma cells by inducing cell cycle arrest at the G1 phase. Our results demonstrate that GDC-0449 can effectively inhibit the migration and invasion of glioma cells. Furthermore, GDC-0449 treatment significantly suppressed glioma cell xenograft tumorigenesis. Mechanistically, GDC-0449 treatment markedly decreases the expression levels of key Hedgehog pathway component genes (Shh, Patched-1, Patched-2, smoothened, Gli1 and Gli2). These results indicate that GDC-0449 works through targeting the Hedgehog pathway. Taken together, our study suggests that smoothened could be used as a prognostic marker and molecular therapeutic target for glioma.
Collapse
|
13
|
Abstract
Olfactomedin 4 (OLFM4) is an olfactomedin domain-containing glycoprotein. Multiple signaling pathways and factors, including NF-κB, Wnt, Notch, PU.1, retinoic acids, estrogen receptor, and miR-486, regulate its expression. OLFM4 interacts with several other proteins, such as gene associated with retinoic-interferon-induced mortality 19 (GRIM-19), cadherins, lectins, nucleotide oligomerization domain-1 (NOD1) and nucleotide oligomerization domain-2 (NOD2), and cathepsins C and D, known to regulate important cellular functions. Recent investigations using Olfm4-deficient mouse models have provided important clues about its in vivo biological functions. Olfm4 inhibited Helicobacter pylori-induced NF-κB pathway activity and inflammation and facilitated H. pylori colonization in the mouse stomach. Olfm4-deficient mice exhibited enhanced immunity against Escherichia coli and Staphylococcus aureus infection. Olfm4 deletion in a chronic granulomatous disease mouse model rescued them from S. aureus infection. Olfm4 deletion in mice treated with azoxymethane/dextran sodium sulfate led to robust intestinal inflammation and intestinal crypt hyperplasia. Olfm4 deletion in Apc (Min/+) mice promoted intestinal polyp formation as well as adenocarcinoma development in the distal colon. Further, Olfm4-deficient mice spontaneously developed prostatic epithelial lesions as they age. OLFM4 expression is correlated with cancer differentiation, stage, metastasis, and prognosis in a variety of cancers, suggesting its potential clinical value as an early-stage cancer marker or a therapeutic target. Collectively, these data suggest that OLFM4 plays important roles in innate immunity against bacterial infection, gastrointestinal inflammation, and cancer. In this review, we have summarized OLFM4's initial characterization, expression, regulation, protein interactions, and biological functions.
Collapse
|
14
|
Dabiri A, Baghaei K, Hashemi M, Sadravi S, Malekpour H, Habibi M, Lahmi F. Identification of differentially-expressed of Olfactomedin-related proteins 4 and COL11A1 in Iranian patients with intestinal gastric cancer. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:S62-S69. [PMID: 29511474 PMCID: PMC5838183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM Due to limited information on these genes and to a better understanding of common biomarkers associated with cancer of the digestive tract routes, we aim to evaluated expression level of Olfactomedin4 (OLFM4) and (pro)collagen11A1/COL11A1 genes in people with gastric cancer in Iran. BACKGROUND Gastric cancer is one of the main cause of cancer death. The early prognosis of gastric cancer is still a matter of debate. Human olfactomedin4 (OLFM4) is a glycoprotein that generally known as the antiapoptotic protein. (pro) collagen11A1/COL11A1 codes for the alpha-1 subunit of type XI collagen which exists in extracellular minor fibrillar collagen. In most cases, OLFM4 and COL11A1 are found to be up-regulated in many types of human cancers including gastric cancer. METHODS 35 tissue samples were collected including 25 sample of patients with intestinal gastric cancer and 10 healthy controls. Expression level of OLFM4 and COL11A1 genes identified by using RGQ software. For analysis of real time-PCR products, Rotor-Gene Q series software was used. RESULTS Our finding showed that expression level of OLFM4 was significantly upregulated and COL11A1 did not show any significant difference in expression level in Iranian population with gastric cancer samples compared with those in normal samples. CONCLUSION The results recommend that expression profiling of OLFM4 can be used for diagnosis of gastric cancer, and OLFM4 seems to be used as a biomarker for the diagnosis of gastric cancer. Regarding to our result, unlike some studies, COL11A1 did not show any significant difference between normal and tumor tissue which could explain ethological role in distribution of gastric cancer.
Collapse
Affiliation(s)
- Asma Dabiri
- Department of Genetic, Tehran Medical Science Branch, Islamic Azad University, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetic, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| | - Shekoofeh Sadravi
- Department of Agronomy and Natural Resources, University of Tehran, Tehran, Iran
| | - Habib Malekpour
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Manijeh Habibi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Lahmi
- Behbood Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Bordeau BM, Ciulla DA, Callahan BP. Hedgehog Proteins Consume Steroidal CYP17A1 Antagonists: Potential Therapeutic Significance in Advanced Prostate Cancer. ChemMedChem 2016; 11:1983-6. [PMID: 27435344 DOI: 10.1002/cmdc.201600238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/29/2016] [Indexed: 12/21/2022]
Abstract
Abiraterone, a potent inhibitor of the human enzyme CYP17A1 (cytochrome P450c17), provides a last line of defense against ectopic androgenesis in advanced prostate cancer. Herein we report an unprecedented off-target interaction between abiraterone and oncogenic hedgehog proteins. Our experiments indicate that abiraterone and its structural congener, galeterone, can replace cholesterol as a substrate in a specialized biosynthetic event of hedgehog proteins, known as cholesterolysis. The off-target reaction generates covalent hedgehog-drug conjugates. Cell-based reporter assays indicate that these conjugates activate hedgehog signaling when present in the low nanomolar range. Because hedgehog signaling is implicated in prostate cancer progression, and abiraterone is administered to treat advanced stages of the disease, this off-target interaction may have therapeutic significance.
Collapse
Affiliation(s)
- Brandon M Bordeau
- Chemistry Department, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Daniel A Ciulla
- Chemistry Department, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Brian P Callahan
- Chemistry Department, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| |
Collapse
|