1
|
Bhalla V, Devi M, Sharma P, Kumar A, Kaur S, Kumar M. ESIPT Active Assemblies for 'On-On' Detection, Cell Imaging and Hampering Cellular Activity of 2, 6-dichloro-4-nitroaniline. Chem Asian J 2021; 17:e202101219. [PMID: 34942037 DOI: 10.1002/asia.202101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/19/2021] [Indexed: 11/05/2022]
Abstract
NIR-emissive ESIPT active PBI-keto/enol assemblies have been developed for the detection of 2, 6-dichloro-4-nitroaniline (DCN). These assemblies show 'on-on' optical response towards DCN due to combined ESIPT-AIEE phenomenon with a detection limit of 1.65 nM. The potential of PBI-keto/enol assemblies to detect DCN has also been explored in grapes juice/grape residue, and soil for six consecutive days. Further, the biological applications of PBI-keto/enol assemblies to detect DCN in blood serum and to image DCN in live cells and to restrict the DCN induced cell death has been demonstrated in MG-63 cell lines.
Collapse
Affiliation(s)
- Vandana Bhalla
- Guru Nanak Dev University, Amritsar, Chemistry, Assistant Professor, Department of Chemistry,, Guru Nanak Dev University, Amritsar, Punjab, 143005, AMRITSAR, INDIA
| | - Minakshi Devi
- Guru Nanak Dev University, Amritsar, Chemistry, INDIA
| | - Pooja Sharma
- Guru Nanak Dev University, Amritsar, Department of Chemistry, INDIA
| | - Ajay Kumar
- Guru Nanak Dev University, Amritsar, Botanical and Enviormental Sciences, INDIA
| | - Satwinderjeet Kaur
- Guru Nanak Dev University, Department of botanical and environmental sciences, INDIA
| | - Manoj Kumar
- Guru Nanak Dev University Department of Chemistry, Department of Chemistry, Amritsar, INDIA
| |
Collapse
|
2
|
He S, Zhu J, Xie P, Liu J, Zhang D, Tang J, Ye Y. A novel NIR fluorescent probe for the highly sensitive detection of HNO and its application in bioimaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj04015d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “naked-eye” HNO probe based on xanthene was obtained.
Collapse
Affiliation(s)
- Shenwei He
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianming Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peiyao Xie
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianfei Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jun Tang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Wei C, Wang X, Li X, Jia X, Hao X, Zhang J, Zhang P, Li X. An isophorone-fused near-infrared fluorescent probe with a large Stokes shift for imaging endogenous nitroxyl in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117765. [PMID: 31707025 DOI: 10.1016/j.saa.2019.117765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Nitroxyl (HNO) plays an important role in multiple physiological and pathological processes, but the detailed generation mechanism of the endogenous HNO still remained to explore and perfect further. There is an urgent need to develop an excellent fluorescent probe for selective recognition and sensitive detection of HNO in biological systems. Near-infrared (NIR) fluorescent probes with a large Stokes shift are an ideal tool for bioimaging applications. Here, we have developed a NIR fluorescent probe with a large Stokes shift, namely, NIR-HNO, to monitor HNO in cells and zebrafish. NIR-HNO consists of an isophorone-fused NIR fluorescence reporter and a diphenylphosphinobenzoyl HNO-responsive unit. Based on an aza-ylide intramolecular ester aminolysis reaction, NIR-HNO showed a rapid selective NIR fluorescent turn-on response for HNO, high sensitivity (detection limit was 39.6 nM), and large Stokes shift (265 nm). The biological imaging results indicate that NIR-HNO is a good candidate for imaging of endogenous HNO in living systems.
Collapse
Affiliation(s)
- Chao Wei
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Xiaofen Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xueyan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xu Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xinya Hao
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Jiangyan Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Pingzhu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiaoliu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
5
|
Ebaston TM, Rozovsky A, Zaporozhets A, Bazylevich A, Tuchinsky H, Marks V, Gellerman G, Patsenker LD. Peptide‐Driven Targeted Drug‐Delivery System Comprising Turn‐On Near‐Infrared Fluorescent Xanthene–Cyanine Reporter for Real‐Time Monitoring of Drug Release. ChemMedChem 2019; 14:1727-1734. [DOI: 10.1002/cmdc.201900464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/25/2022]
Affiliation(s)
- T. M. Ebaston
- Department of Chemical SciencesAriel University Ariel 40700 Israel
| | - Alex Rozovsky
- Department of Chemical SciencesAriel University Ariel 40700 Israel
| | | | | | - Helena Tuchinsky
- Department of Molecular BiologyAriel University Ariel 40700 Israel
| | - Vered Marks
- Department of Chemical SciencesAriel University Ariel 40700 Israel
| | - Gary Gellerman
- Department of Chemical SciencesAriel University Ariel 40700 Israel
| | | |
Collapse
|
6
|
Zhao X, Gao C, Li N, Liu F, Huo S, Li J, Guan X, Yan N. BODIPY based fluorescent turn-on sensor for highly selective detection of HNO and the application in living cells. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Development of large Stokes shift, near-infrared fluorescence probe for rapid and bioorthogonal imaging of nitroxyl (HNO) in living cells. Talanta 2019; 193:152-160. [DOI: 10.1016/j.talanta.2018.09.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022]
|
8
|
Huang Y, Zhang X, He N, Wang Y, Kang Q, Shen D, Yu F, Chen L. Imaging of anti-inflammatory effects of HNO via a near-infrared fluorescent probe in cells and in rat gouty arthritis model. J Mater Chem B 2018; 7:305-313. [PMID: 32254555 DOI: 10.1039/c8tb02494d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitroxyl (HNO) plays a crucial role in anti-inflammatory effects via the inhibition of inflammatory pathways, but the details of the endogenous generation of HNO still remain challenging owing to the complex biosynthetic pathways, in which the interaction between H2S and NO simultaneously generates HNO and polysulfides (H2Sn) in mitochondria. Moreover, nearly all the available fluorescent probes for HNO are utilized for imaging HNO in cells and tissues, instead of the in situ real-time detection of the simultaneous formation of HNO and H2Sn in mitochondria and animals. Here, we have developed a mitochondria-targeting near-infrared fluorescent probe, namely, Mito-JN, to detect the generation of HNO in cells and a rat model. The probe consists of three moieties: Aza-BODIPY as a fluorescent signal transducer, a triphenylphosphonium cation as a mitochondria-targeting agent, and a diphenylphosphinobenzoyl group as an HNO-responsive unit. The response mechanism is based on an aza-ylide intramolecular ester aminolysis reaction with fluorescence emissions on. Mito-JN displays high selectivity and sensitivity for HNO over various other biologically relevant species. Mito-JN was successfully used for the detection of the endogenous generation of HNO, which is derived from the crosstalk between H2S and NO in living cells. The additional generation of H2Sn was also confirmed using our previous probe Cy-Mito. The anti-inflammatory effect of HNO was examined in a cell model of LPS-induced inflammation and a rat model of gouty arthritis. The results imply that our probe is a good candidate for the assessment of the protective effects of HNO in inflammatory processes.
Collapse
Affiliation(s)
- Yan Huang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Smulik-Izydorczyk R, Dębowska K, Pięta J, Michalski R, Marcinek A, Sikora A. Fluorescent probes for the detection of nitroxyl (HNO). Free Radic Biol Med 2018; 128:69-83. [PMID: 29704623 DOI: 10.1016/j.freeradbiomed.2018.04.564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/19/2022]
Abstract
Nitroxyl (HNO), which according to the IUPAC recommended nomenclature should be named azanone, is the protonated one-electron reduction product of nitric oxide. Recently, it has gained a considerable attention due to the interesting pharmacological effects of its donors. Although there has been great progress in the understanding of HNO chemistry and chemical biology, it still remains the most elusive reactive nitrogen species, and its selective detection is a real challenge. The development of reliable methodologies for the direct detection of azanone is essential for the understanding of important signaling properties of this reactive intermediate and its pharmacological potential. Over the last decade, there has been considerable progress in the development of low-molecular-weight fluorogenic probes for the detection of HNO, and therefore, in this review, we have focused on the challenges and limitations of and perspectives on nitroxyl detection based on the use of such probes.
Collapse
Affiliation(s)
- Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
10
|
Swasey SM, Nicholson HC, Copp SM, Bogdanov P, Gorovits A, Gwinn EG. Adaptation of a visible wavelength fluorescence microplate reader for discovery of near-infrared fluorescent probes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:095111. [PMID: 30278750 DOI: 10.1063/1.5023258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present an inexpensive, generalizable approach for modifying visible wavelength fluorescence microplate readers to detect emission in the near-infrared (NIR) I (650-950 nm) and NIR II (1000-1350 nm) tissue imaging windows. These wavelength ranges are promising for high sensitivity fluorescence-based cell assays and biological imaging, but the inaccessibility of NIR microplate readers is limiting development of the requisite, biocompatible fluorescent probes. Our modifications enable rapid screening of NIR candidate probes, using short pulses of UV light to provide excitation of diverse systems including dye molecules, semiconductor quantum dots, and metal clusters. To confirm the utility of our approach for rapid discovery of new NIR probes, we examine the silver cluster synthesis products formed on 375 candidate DNA strands that were originally designed to produce green-emitting, DNA-stabilized silver clusters. The fast, sensitive system developed here discovered DNA strands that unexpectedly stabilize NIR-emitting silver clusters.
Collapse
Affiliation(s)
- Steven M Swasey
- Department of Chemistry and Biochemistry, UCSB, Santa Barbara, California 93106, USA
| | | | - Stacy M Copp
- Center for Integrated Nanotechnologies, Los Alamos National Laboratories, Los Alamos, New Mexico 87545, USA
| | - Petko Bogdanov
- Department of Computer Science, University at Albany, SUNY, Albany, New York 12222, USA
| | - Alexander Gorovits
- Department of Computer Science, University at Albany, SUNY, Albany, New York 12222, USA
| | | |
Collapse
|
11
|
Dong B, Kong X, Lin W. Reaction-Based Fluorescent Probes for the Imaging of Nitroxyl (HNO) in Biological Systems. ACS Chem Biol 2018; 13:1714-1720. [PMID: 29210560 DOI: 10.1021/acschembio.7b00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitroxyl (HNO) has been identified as an important signaling molecule in biological systems and plays critical roles in many physiological processes. Fluorescence imaging could provide a robust approach to explore the biological formation of HNO and its physiological functions. Herein, we summarize the organic reaction types for constructing HNO probes and specifically focus on review of the recent advances in the development of the reaction-based HNO probes and their imaging applications in living systems.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| |
Collapse
|
12
|
Liu T, Zhang M, Terry MH, Schroeder H, Wilson SM, Power GG, Li Q, Tipple TE, Borchardt D, Blood AB. Hemodynamic Effects of Glutathione-Liganded Binuclear Dinitrosyl Iron Complex: Evidence for Nitroxyl Generation and Modulation by Plasma Albumin. Mol Pharmacol 2018; 93:427-437. [PMID: 29476040 PMCID: PMC5878675 DOI: 10.1124/mol.117.110957] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/21/2018] [Indexed: 12/25/2022] Open
Abstract
Glutathione-liganded binuclear dinitrosyl iron complex (glut-BDNIC) has been proposed to be a donor of nitric oxide (NO). This study was undertaken to investigate the mechanisms of vasoactivity, systemic hemodynamic effects, and pharmacokinetics of glut-BDNIC. To test the hypothesis that glut-BDNICs vasodilate by releasing NO in its reduced [nitroxyl (HNO)] state, a bioassay method of isolated, preconstricted ovine mesenteric arterial rings was used in the presence of selective scavengers of HNO or NO free radical (NO•); the vasodilatory effects of glut-BDNIC were found to have characteristics similar to those of an HNO donor and markedly different than an NO• donor. In addition, products of the reaction of glut-BDNIC with CPTIO [2-(4-carboxyphenyl)-4,4,5-tetramethyl imidazoline-1-oxyl-3-oxide] were found to have electron paramagnetic characteristics similar to those of an HNO donor compared with an NO• donor. In contrast to S-nitroso-glutathione, which was vasodilative both in vitro and in vivo, the potency of glut-BDNIC-mediated vasodilation was markedly diminished in both rats and sheep. Wire myography showed that plasma albumin contributed to this loss of hypotensive effects, an effect abolished by modification of the cysteine-thiol residue of albumin. High doses of glut-BDNIC caused long-lasting hypotension in rats that can be at least partially attributed to its long circulating half-life of ∼44 minutes. This study suggests that glut-BDNIC is an HNO donor, and that its vasoactive effects are modulated by binding to the cysteine residue of plasma proteins, such as albumin.
Collapse
Affiliation(s)
- Taiming Liu
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Meijuan Zhang
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Michael H Terry
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Hobe Schroeder
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Sean M Wilson
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Gordon G Power
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Qian Li
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Dan Borchardt
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Arlin B Blood
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| |
Collapse
|
13
|
Ong MJH, Debieu S, Moreau M, Romieu A, Richard JA. Synthesis ofN,N-Dialkylamino-nor-Dihydroxanthene-Hemicyanine Fused Near-Infrared Fluorophores and Their First Water-Soluble and/or Bioconjugatable Analogues. Chem Asian J 2017; 12:936-946. [DOI: 10.1002/asia.201700176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Michelle Jui Hsien Ong
- Organic Chemistry, Institute of Chemical and Engineering Sciences, ICES; Agency for Science, Technology and Research, A*STAR; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| | - Sylvain Debieu
- ICMUB, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
| | - Mathieu Moreau
- ICMUB, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| | - Jean-Alexandre Richard
- Organic Chemistry, Institute of Chemical and Engineering Sciences, ICES; Agency for Science, Technology and Research, A*STAR; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| |
Collapse
|
14
|
Tan Y, Zhang L, Man KH, Peltier R, Chen G, Zhang H, Zhou L, Wang F, Ho D, Yao SQ, Hu Y, Sun H. Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6796-6803. [PMID: 28139117 DOI: 10.1021/acsami.6b14176] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alkaline phosphatases are a group of enzymes that play important roles in regulating diverse cellular functions and disease pathogenesis. Hence, developing fluorescent probes for in vivo detection of alkaline phosphatase activity is highly desirable for studying the dynamic phosphorylation in living organisms. Here, we developed the very first reaction-based near-infrared (NIR) probe (DHXP) for sensitive detection of alkaline phosphatase activity both in vitro and in vivo. Our studies demonstrated that the probe displayed an up to 66-fold fluorescence increment upon incubation with alkaline phosphatases, and the detection limit of our probe was determined to be 0.07 U/L, which is lower than that of most of alkaline phosphatase probes reported in literature. Furthermore, we demonstrated that the probe can be applied to detecting alkaline phosphatase activity in cells and mice. In addition, our probe possesses excellent biocompatibility and rapid cell-internalization ability. In light of these prominent properties, we envision that DHXP will add useful tools for investigating alkaline phosphatase activity in biomedical research.
Collapse
Affiliation(s)
- Yi Tan
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University , Xuzhou 221002, P. R. China
| | | | - Raoul Peltier
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Ganchao Chen
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Huatang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Liyi Zhou
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | | | | | - Shao Q Yao
- Department of Chemistry, National University of Singapore , Singapore 117543
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) , Beijing 100049, P. R. China
| | - Hongyan Sun
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| |
Collapse
|
15
|
Liu C, Wang Y, Tang C, Liu F, Ma Z, Zhao Q, Wang Z, Zhu B, Zhang X. A reductant-resistant ratiometric, colorimetric and far-red fluorescent probe for rapid and ultrasensitive detection of nitroxyl. J Mater Chem B 2017; 5:3557-3564. [DOI: 10.1039/c6tb03359h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reductant-resistant ratiometric, colorimetric and far-red fluorescent probe for rapid and ultrasensitive detection of nitroxyl was developed.
Collapse
Affiliation(s)
- Caiyun Liu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Yawei Wang
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Chengcheng Tang
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Fang Liu
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Zhenmin Ma
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Qiang Zhao
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Zhongpeng Wang
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Baocun Zhu
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
16
|
Ren M, Deng B, Zhou K, Wang JY, Kong X, Lin W. A targetable fluorescent probe for imaging exogenous and intracellularly formed nitroxyl in mitochondria in living cells. J Mater Chem B 2017; 5:1954-1961. [DOI: 10.1039/c6tb03388a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a new mitochondrial-targeted turn-on fluorescent HNO probe (Mito-HNO). Fluorescence imaging shows that Mito-HNO is suitable for ratiometric visualization of HNO within mitochondria in living cells.
Collapse
Affiliation(s)
- Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Beibei Deng
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Kai Zhou
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Jian-Yong Wang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| |
Collapse
|
17
|
Sunwoo K, Bobba KN, Lim JY, Park T, Podder A, Heo JS, Lee SG, Bhuniya S, Kim JS. A bioorthogonal ‘turn-on’ fluorescent probe for tracking mitochondrial nitroxyl formation. Chem Commun (Camb) 2017; 53:1723-1726. [DOI: 10.1039/c6cc09082f] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A bioorthogonal mitochondria targeted HNO sensor was applied for the detection of biological concentrations of HNO in vitro in organelles.
Collapse
Affiliation(s)
- Kyoung Sunwoo
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
| | - Kondapa Naidu Bobba
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore 641112
- India
| | - Ja-Yun Lim
- Department of Integrated Biomedical and Life Sciences
- College of Health Science
- Korea University
- Seoul 136-701
- Korea
| | - Taegun Park
- Department of Integrated Biomedical and Life Sciences
- College of Health Science
- Korea University
- Seoul 136-701
- Korea
| | - Arup Podder
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore 641112
- India
| | - June Seok Heo
- Department of Integrated Biomedical and Life Sciences
- College of Health Science
- Korea University
- Seoul 136-701
- Korea
| | - Seung Gwan Lee
- Department of Health and Environmental Science
- College of Health Science
- Korea University
- Seoul 136-701
- Korea
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore 641112
- India
| | - Jong Seung Kim
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
| |
Collapse
|
18
|
Dong B, Song X, Kong X, Wang C, Zhang N, Lin W. Two-photon red-emissive fluorescent probe for imaging nitroxyl (HNO) in living cells and tissues. J Mater Chem B 2017; 5:5218-5224. [DOI: 10.1039/c7tb00703e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A two-photon red-emissive fluorescent probe has been developed for imaging nitroxyl (HNO) in living cells and tissues.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Xuezhen Song
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Chao Wang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Nan Zhang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| |
Collapse
|