1
|
Lin X, Zhang B. Explicit ion modeling predicts physicochemical interactions for chromatin organization. eLife 2024; 12:RP90073. [PMID: 38289342 PMCID: PMC10945522 DOI: 10.7554/elife.90073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Molecular mechanisms that dictate chromatin organization in vivo are under active investigation, and the extent to which intrinsic interactions contribute to this process remains debatable. A central quantity for evaluating their contribution is the strength of nucleosome-nucleosome binding, which previous experiments have estimated to range from 2 to 14 kBT. We introduce an explicit ion model to dramatically enhance the accuracy of residue-level coarse-grained modeling approaches across a wide range of ionic concentrations. This model allows for de novo predictions of chromatin organization and remains computationally efficient, enabling large-scale conformational sampling for free energy calculations. It reproduces the energetics of protein-DNA binding and unwinding of single nucleosomal DNA, and resolves the differential impact of mono- and divalent ions on chromatin conformations. Moreover, we showed that the model can reconcile various experiments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy between existing estimations. We predict the interaction strength at physiological conditions to be 9 kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. Our study strongly supports the contribution of physicochemical interactions to the phase behavior of chromatin aggregates and chromatin organization inside the nucleus.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
2
|
Lin X, Zhang B. Explicit Ion Modeling Predicts Physicochemical Interactions for Chromatin Organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541030. [PMID: 37293007 PMCID: PMC10245791 DOI: 10.1101/2023.05.16.541030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular mechanisms that dictate chromatin organization in vivo are under active investigation, and the extent to which intrinsic interactions contribute to this process remains debatable. A central quantity for evaluating their contribution is the strength of nucleosome-nucleosome binding, which previous experiments have estimated to range from 2 to 14 kBT. We introduce an explicit ion model to dramatically enhance the accuracy of residue-level coarse-grained modeling approaches across a wide range of ionic concentrations. This model allows for de novo predictions of chromatin organization and remains computationally efficient, enabling large-scale conformational sampling for free energy calculations. It reproduces the energetics of protein-DNA binding and unwinding of single nucleosomal DNA, and resolves the differential impact of mono and divalent ions on chromatin conformations. Moreover, we showed that the model can reconcile various experiments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy between existing estimations. We predict the interaction strength at physiological conditions to be 9 kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. Our study strongly supports the contribution of physicochemical interactions to the phase behavior of chromatin aggregates and chromatin organization inside the nucleus.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
4
|
Konrad SF, Vanderlinden W, Frederickx W, Brouns T, Menze BH, De Feyter S, Lipfert J. High-throughput AFM analysis reveals unwrapping pathways of H3 and CENP-A nucleosomes. NANOSCALE 2021; 13:5435-5447. [PMID: 33683227 DOI: 10.1039/d0nr08564b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleosomes, the fundamental units of chromatin, regulate readout and expression of eukaryotic genomes. Single-molecule experiments have revealed force-induced nucleosome accessibility, but a high-resolution unwrapping landscape in the absence of external forces is currently lacking. Here, we introduce a high-throughput pipeline for the analysis of nucleosome conformations based on atomic force microscopy and automated, multi-parameter image analysis. Our data set of ∼10 000 nucleosomes reveals multiple unwrapping states corresponding to steps of 5 bp DNA. For canonical H3 nucleosomes, we observe that dissociation from one side impedes unwrapping from the other side, but in contrast to force-induced unwrapping, we find only a weak sequence-dependent asymmetry. Notably, centromeric CENP-A nucleosomes do not unwrap anti-cooperatively, in stark contrast to H3 nucleosomes. Finally, our results reconcile previous conflicting findings about the differences in height between H3 and CENP-A nucleosomes. We expect our approach to enable critical insights into epigenetic regulation of nucleosome structure and stability and to facilitate future high-throughput AFM studies that involve heterogeneous nucleoprotein complexes.
Collapse
Affiliation(s)
- Sebastian F Konrad
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| | - Willem Vanderlinden
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| | - Wout Frederickx
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Tine Brouns
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Björn H Menze
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Steven De Feyter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| |
Collapse
|
5
|
Winogradoff D, Li P, Joshi H, Quednau L, Maffeo C, Aksimentiev A. Chiral Systems Made from DNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003113. [PMID: 33717850 PMCID: PMC7927625 DOI: 10.1002/advs.202003113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/13/2020] [Indexed: 05/05/2023]
Abstract
The very chemical structure of DNA that enables biological heredity and evolution has non-trivial implications for the self-organization of DNA molecules into larger assemblies and provides limitless opportunities for building functional nanostructures. This progress report discusses the natural organization of DNA into chiral structures and recent advances in creating synthetic chiral systems using DNA as a building material. How nucleic acid chirality naturally comes into play in a diverse array of situations is considered first, at length scales ranging from an individual nucleotide to entire chromosomes. Thereafter, chiral liquid crystal phases formed by dense DNA mixtures are discussed, including the ongoing efforts to understand their origins. The report then summarizes recent efforts directed toward building chiral structures, and other structures of complex topology, using the principle of DNA self-assembly. Discussed last are existing and proposed functional man-made nanostructures designed to either probe or harness DNA's chirality, from plasmonics and spintronics to biosensing.
Collapse
Affiliation(s)
- David Winogradoff
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Pin‐Yi Li
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Himanshu Joshi
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Lauren Quednau
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Christopher Maffeo
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Aleksei Aksimentiev
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| |
Collapse
|
6
|
Doğan D, Arslan M, Uluçay T, Kalyoncu S, Dimitrov S, Kale S. CENP-A Nucleosome is a Sensitive Allosteric Scaffold for DNA and Chromatin Factors. J Mol Biol 2020; 433:166789. [PMID: 33387534 DOI: 10.1016/j.jmb.2020.166789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/06/2020] [Accepted: 12/18/2020] [Indexed: 02/02/2023]
Abstract
Centromeric loci of chromosomes are defined by nucleosomes containing the histone H3 variant CENP-A, which bind their DNA termini more permissively than their canonical counterpart, a feature that is critical for the mitotic fidelity. A recent cryo-EM study demonstrated that the DNA termini of CENP-A nucleosomes, reconstituted with the Widom 601 DNA sequence, are asymmetrically flexible, meaning one terminus is more clearly resolved than the other. However, an earlier work claimed that both ends could be resolved in the presence of two stabilizing single chain variable fragment (scFv) antibodies per nucleosome, and thus are likely permanently bound to the histone octamer. This suggests that the binding of scFv antibodies to the histone octamer surface would be associated with CENP-A nucleosome conformational changes, including stable binding of the DNA termini. Here, we present computational evidence that allows to explain at atomistic level the structural rearrangements of CENP-A nucleosomes resulting from the antibody binding. The antibodies, while they only bind the octamer façades, are capable of altering the dynamics of the nucleosomal core, and indirectly also the surrounding DNA. This effect has more drastic implications for the structure and the dynamics of the CENP-A nucleosome in comparison to its canonical counterpart. Furthermore, we find evidence that the antibodies bind the left and the right octamer façades at different affinities, another manifestation of the DNA sequence. We speculate that the cells could use induction of similar allosteric effects to control centromere function.
Collapse
Affiliation(s)
- Deniz Doğan
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey
| | - Tuğçe Uluçay
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey
| | - Sibel Kalyoncu
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey; Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey.
| |
Collapse
|
7
|
Boopathi R, Danev R, Khoshouei M, Kale S, Nahata S, Ramos L, Angelov D, Dimitrov S, Hamiche A, Petosa C, Bednar J. Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle reveals differential flexibility of the DNA ends. Nucleic Acids Res 2020; 48:5735-5748. [PMID: 32313946 PMCID: PMC7261176 DOI: 10.1093/nar/gkaa246] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
The histone H3 variant CENP-A marks centromeres epigenetically and is essential for mitotic fidelity. Previous crystallographic studies of the CENP-A nucleosome core particle (NCP) reconstituted with a human α-satellite DNA derivative revealed both DNA ends to be highly flexible, a feature important for CENP-A mitotic functions. However, recent cryo-EM studies of CENP-A NCP complexes comprising primarily Widom 601 DNA reported well-ordered DNA ends. Here, we report the cryo-EM structure of the CENP-A 601 NCP determined by Volta phase-plate imaging. The data reveal that one (‘left’) 601 DNA end is well ordered whereas the other (‘right’) end is flexible and partly detached from the histone core, suggesting sequence-dependent dynamics of the DNA termini. Indeed, a molecular dynamics simulation of the CENP-A 601 NCP confirmed the distinct dynamics of the two DNA extremities. Reprocessing the image data using two-fold symmetry yielded a cryo-EM map in which both DNA ends appeared well ordered, indicating that such an artefact may inadvertently arise if NCP asymmetry is lost during image processing. These findings enhance our understanding of the dynamic features that discriminate CENP-A from H3 nucleosomes by revealing that DNA end flexibility can be fine-tuned in a sequence-dependent manner.
Collapse
Affiliation(s)
- Ramachandran Boopathi
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Radostin Danev
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Maryam Khoshouei
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Seyit Kale
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda MD 20894, USA
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Sunil Nahata
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Lorrie Ramos
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), CNRS/ ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Correspondence may also be addressed to Stefan Dimitrov.
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/ CNRS/INSERM, 67404 Illkirch Cedex, France
- Correspondence may also be addressed to Ali Hamiche.
| | - Carlo Petosa
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
- Correspondence may also be addressed to Carlo Petosa.
| | - Jan Bednar
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General Teaching Hospital, 128 00 Prague, Czech Republic
- To whom correspondence should be addressed. Tel: +33 4 76 54 94 73;
| |
Collapse
|
8
|
Pitman M, Dalal Y, Papoian GA. Minimal Cylinder Analysis Reveals the Mechanical Properties of Oncogenic Nucleosomes. Biophys J 2020; 118:2309-2318. [PMID: 32097625 PMCID: PMC7203005 DOI: 10.1016/j.bpj.2020.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Histone variants regulate replication, transcription, DNA damage repair, and chromosome segregation. Though widely accepted as a paradigm, it has not been rigorously demonstrated that histone variants encode unique mechanical properties. Here, we present a new theoretical approach called minimal cylinder analysis that uses strain fluctuations to determine the Young's modulus of nucleosomes from all-atom molecular dynamics simulations. Recently, we validated this computational tool against in vitro single-molecule nanoindentation of histone variant nucleosomes. In this report, we further extend minimal cylinder analysis to study the biophysical properties of hybrid nucleosomes that are known to exist in human cancer cells and contain H3 histone variants CENP-A and H3.3. Here, we report that the heterotypic nucleosome has an intermediate elasticity (8.5 ± 0.5 MPa) compared to CENP-A (6.2 ± 0.4 MPa) and H3 (9.8 ± 0.7 MPa) and that the dynamics of both canonical and CENP-A nucleosomes are preserved and partitioned across the nucleosome pseudodyad. Furthermore, we investigate the mechanism by which the elasticity of these heterotypic nucleosomes augments cryptic binding surfaces. From these analyses, we predict that the heterotypic nucleosome is permissive to the binding of one copy of the kinetochore protein CENP-C while still retaining a closed DNA end configuration required for linker histone H1 to bind. We discuss that the ectopic deposition of CENP-A in cancer by H3.3 chaperones HIRA and DAXX may fortuitously result in hybrid nucleosome formation. Using these results, we propose biological outcomes that might arise when such heterotypic nucleosomes occupy large regions of the genome.
Collapse
Affiliation(s)
- Mary Pitman
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| | - Garegin A Papoian
- Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland.
| |
Collapse
|
9
|
Winogradoff D, John S, Aksimentiev A. Protein unfolding by SDS: the microscopic mechanisms and the properties of the SDS-protein assembly. NANOSCALE 2020; 12:5422-5434. [PMID: 32080694 PMCID: PMC7291819 DOI: 10.1039/c9nr09135a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The effects of detergent sodium dodecyl sulfate (SDS) on protein structure and dynamics are fundamental to the most common laboratory technique used to separate proteins and determine their molecular weights: polyacrylamide gel electrophoresis. However, the mechanism by which SDS induces protein unfolding and the microstructure of protein-SDS complexes remain largely unknown. Here, we report a detailed account of SDS-induced unfolding of two proteins-I27 domain of titin and β-amylase-obtained through all-atom molecular dynamics simulations. Both proteins were found to spontaneously unfold in the presence of SDS at boiling water temperature on the time scale of several microseconds. The protein unfolding was found to occur via two distinct mechanisms in which specific interactions of individual SDS molecules disrupt the protein's secondary structure. In the final state of the unfolding process, the proteins are found to wrap around SDS micelles in a fluid necklace-and-beads configuration, where the number and location of bound micelles changes dynamically. The global conformation of the protein was found to correlate with the number of SDS micelles bound to it, whereas the number of SDS molecules directly bound to the protein was found to define the relaxation time scale of the unfolded protein. Our microscopic characterization of SDS-protein interactions sets the stage for future refinement of SDS-enabled protein characterization methods, including protein fingerprinting and sequencing using a solid-state nanopore.
Collapse
Affiliation(s)
- David Winogradoff
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | | |
Collapse
|
10
|
Job Opening for Nucleosome Mechanic: Flexibility Required. Cells 2020; 9:cells9030580. [PMID: 32121488 PMCID: PMC7140402 DOI: 10.3390/cells9030580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The nucleus has been studied for well over 100 years, and chromatin has been the intense focus of experiments for decades. In this review, we focus on an understudied aspect of chromatin biology, namely the chromatin fiber polymer’s mechanical properties. In recent years, innovative work deploying interdisciplinary approaches including computational modeling, in vitro manipulations of purified and native chromatin have resulted in deep mechanistic insights into how the mechanics of chromatin might contribute to its function. The picture that emerges is one of a nucleus that is shaped as much by external forces pressing down upon it, as internal forces pushing outwards from the chromatin. These properties may have evolved to afford the cell a dynamic and reversible force-induced communication highway which allows rapid coordination between external cues and internal genomic function.
Collapse
|
11
|
Krajewski WA. "Direct" and "Indirect" Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality. Bioessays 2019; 42:e1900136. [PMID: 31805213 DOI: 10.1002/bies.201900136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Indexed: 12/26/2022]
Abstract
The chromatin-regulatory principles of histone post-translational modifications (PTMs) are discussed with a focus on the potential alterations in chromatin functional state due to steric and mechanical constraints imposed by bulky histone modifications such as ubiquitin and SUMO. In the classical view, PTMs operate as recruitment platforms for histone "readers," and as determinants of chromatin array compaction. Alterations of histone charges by "small" chemical modifications (e.g., acetylation, phosphorylation) could regulate nucleosome spontaneous dynamics without globally affecting nucleosome structure. These fluctuations in nucleosome wrapping can be exploited by chromatin-processing machinery. In contrast, ubiquitin and SUMO are comparable in size to histones, and it seems logical that these PTMs could conflict with canonical nucleosome organization. An experimentally testable hypothesis that by adding sterical bulk these PTMs can robustly alter nucleosome primary structure is proposed. The model presented here stresses the diversity of mechanisms by which histone PTMs regulate chromatin dynamics, primary structure and, hence, functionality.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| |
Collapse
|
12
|
Kono H, Sakuraba S, Ishida H. Free energy profile for unwrapping outer superhelical turn of CENP-A nucleosome. Biophys Physicobiol 2019; 16:337-343. [PMID: 31984189 PMCID: PMC6975924 DOI: 10.2142/biophysico.16.0_337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic genome is packaged in a nucleus in the form of chromatin. The fundamental structural unit of the chromatin is the protein-DNA complex, nucleosome, where DNA of about 150 bp is wrapped around a histone core almost twice. In cellular processes such as gene expression, DNA repair and duplication, the nucleosomal DNA has to be unwrapped. Histone proteins have their variants, indicating there are a variety of constitutions of nucleosomes. These different constitutions are observed in different cellular processes. To investigate differences among nucleosomes, we calculated free energy profiles for unwrapping the outer superhelical turn of CENP-A nucleosome and compared them with those of the canonical nucleosome. The free energy profiles for CENP-A nucleosome suggest that CENP-A nucleosome is the most stable when 16 to 22 bps are unwrapped in total whereas the canonical nucleosome is the most stable when it is fully wrapped. This indicates that the flexible conformation of CENP-A nucleosome is ready to provide binding sites for the structural integrity of the centromere.
Collapse
Affiliation(s)
- Hidetoshi Kono
- Molecular Modelling and Simulation Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 Japan
| | - Shun Sakuraba
- Molecular Modelling and Simulation Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 Japan
| | - Hisashi Ishida
- Molecular Modelling and Simulation Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 Japan
| |
Collapse
|
13
|
Melters DP, Pitman M, Rakshit T, Dimitriadis EK, Bui M, Papoian GA, Dalal Y. Intrinsic elasticity of nucleosomes is encoded by histone variants and calibrated by their binding partners. Proc Natl Acad Sci U S A 2019; 116:24066-24074. [PMID: 31712435 PMCID: PMC6883791 DOI: 10.1073/pnas.1911880116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone variants fine-tune transcription, replication, DNA damage repair, and faithful chromosome segregation. Whether and how nucleosome variants encode unique mechanical properties to their cognate chromatin structures remains elusive. Here, using in silico and in vitro nanoindentation methods, extending to in vivo dissections, we report that histone variant nucleosomes are intrinsically more elastic than their canonical counterparts. Furthermore, binding proteins, which discriminate between histone variant nucleosomes, suppress this innate elasticity and also compact chromatin. Interestingly, when we overexpress the binding proteins in vivo, we also observe increased compaction of chromatin enriched for histone variant nucleosomes, correlating with diminished access. Taken together, these data suggest a plausible link between innate mechanical properties possessed by histone variant nucleosomes, the adaptability of chromatin states in vivo, and the epigenetic plasticity of the underlying locus.
Collapse
Affiliation(s)
- Daniël P Melters
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Mary Pitman
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Tatini Rakshit
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Emilios K Dimitriadis
- Scanning Probe Microscopy Unit, Biomedical Engineering and Physical Science Shared Resource, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Minh Bui
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Garegin A Papoian
- Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742;
| | - Yamini Dalal
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892;
| |
Collapse
|
14
|
Stumme-Diers MP, Banerjee S, Hashemi M, Sun Z, Lyubchenko YL. Nanoscale dynamics of centromere nucleosomes and the critical roles of CENP-A. Nucleic Acids Res 2019; 46:94-103. [PMID: 29040671 PMCID: PMC5758880 DOI: 10.1093/nar/gkx933] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/02/2017] [Indexed: 01/12/2023] Open
Abstract
In the absence of a functioning centromere, chromosome segregation becomes aberrant, leading to an increased rate of aneuploidy. The highly specific recognition of centromeres by kinetochores suggests that specific structural characteristics define this region, however, the structural details and mechanism underlying this recognition remains a matter of intense investigation. To address this, high-speed atomic force microscopy was used for direct visualization of the spontaneous dynamics of CENP-A nucleosomes at the sub-second time scale. We report that CENP-A nucleosomes change conformation spontaneously and reversibly, utilizing two major pathways: unwrapping, and looping of the DNA; enabling core transfer between neighboring DNA substrates. Along with these nucleosome dynamics we observed that CENP-A stabilizes the histone core against dissociating to histone subunits upon unwrapping DNA, unique from H3 cores which are only capable of such plasticity in the presence of remodeling factors. These findings have implications for the dynamics and integrity of nucleosomes at the centromere.
Collapse
Affiliation(s)
- Micah P Stumme-Diers
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Siddhartha Banerjee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Mohtadin Hashemi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
15
|
Zhao H, Winogradoff D, Dalal Y, Papoian GA. The Oligomerization Landscape of Histones. Biophys J 2019; 116:1845-1855. [PMID: 31005236 DOI: 10.1016/j.bpj.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Winogradoff
- Chemical Physics Program, Institute for Physical Science and Technology
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Chemical Physics Program, Institute for Physical Science and Technology; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
16
|
Winogradoff D, Aksimentiev A. Molecular Mechanism of Spontaneous Nucleosome Unraveling. J Mol Biol 2019; 431:323-335. [PMID: 30468737 PMCID: PMC6331254 DOI: 10.1016/j.jmb.2018.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022]
Abstract
Meters of DNA wrap around histone proteins to form nucleosomes and fit inside the micron-diameter nucleus. For the genetic information encoded in the DNA to become available for transcription, replication, and repair, the DNA-histone assembly must be disrupted. Experiment has indicated that the outer stretches of nucleosomal DNA "breathe" by spontaneously detaching from and reattaching to the histone core. Here, we report direct observation of spontaneous DNA breathing in atomistic molecular dynamics simulations, detailing a microscopic mechanism of the DNA breathing process. According to our simulations, the outer stretches of nucleosomal DNA detach in discrete steps involving 5 or 10 base pairs, with the detachment process being orchestrated by the motion of several conserved histone residues. The inner stretches of nucleosomal DNA are found to be more stably associated with the histone core by more abundant nonspecific DNA-protein contacts, providing a microscopic interpretation of nucleosome unraveling experiments. The CG content of nucleosomal DNA is found to anticorrelate with the extent of unwrapping, supporting the possibility that AT-rich segments may signal the start of transcription by forming less stable nucleosomes.
Collapse
Affiliation(s)
- David Winogradoff
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Wu H, Wolynes PG, Papoian GA. AWSEM-IDP: A Coarse-Grained Force Field for Intrinsically Disordered Proteins. J Phys Chem B 2018; 122:11115-11125. [PMID: 30091924 PMCID: PMC6713210 DOI: 10.1021/acs.jpcb.8b05791] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The associative memory, water-mediated, structure and energy model (AWSEM) has been successfully used to study protein folding, binding, and aggregation problems. In this work, we introduce AWSEM-IDP, a new AWSEM branch for simulating intrinsically disordered proteins (IDPs), where the weights of the potentials determining secondary structure formation have been finely tuned, and a novel potential is introduced that helps to precisely control both the average extent of protein chain collapse and the chain's fluctuations in size. AWSEM-IDP can efficiently sample large conformational spaces, while retaining sufficient molecular accuracy to realistically model proteins. We applied this new model to two IDPs, demonstrating that AWSEM-IDP can reasonably well reproduce higher-resolution reference data, thus providing the foundation for a transferable IDP force field. Finally, we used thermodynamic perturbation theory to show that, in general, the conformational ensembles of IDPs are highly sensitive to fine-tuning of force field parameters.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Peter G. Wolynes
- Departments of Chemistry and Physics and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Garegin A. Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
18
|
Rajagopalan M, Balasubramanian S, Ramaswamy A. Insights into the RNA binding mechanism of human L1-ORF1p: a molecular dynamics study. MOLECULAR BIOSYSTEMS 2018; 13:1728-1743. [PMID: 28714502 DOI: 10.1039/c7mb00358g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recognition and binding of nucleic acids by ORF1p, an L1 retrotransposon protein, have not yet been clearly understood due to the lack of structural knowledge. The present study attempts to identify the probable single-stranded RNA binding pathway of trimeric ORF1p using computational methods like ligand mapping methodology combined with molecular dynamics simulations. Using the ligand mapping methodology, the possible RNA interacting sites on the surface of the trimeric ORF1p were identified. The crystal structure of the ORF1p timer and an RNA molecule of 29 nucleotide bases in length were used to generate the structure of the ORF1p complex based on information on predicted binding sites as well as the functional states of the CTD. The various complexes of ORF1p-RNA were generated using polyU, polyA and L1RNA sequences and were simulated for a period of 75 ns. The observed stable interaction pattern was used to propose the possible binding pathway. Based on the binding free energy for complex formation, both polyU and L1RNA complexes were identified as stable complexes, while the complex formed with polyA was the least stable one. Furthermore, the importance of the residues in the CC domain (Lys137 and Arg141), the RRM loop (Arg206, Arg210 and Arg211) and the CTD (Arg 261 and Arg262) of all three chains in stabilizing the wrapped RNA has been highlighted in this study. The presence of several electrostatic interactions including H-bond interactions increases the affinity towards RNA and hence plays a vital role in retaining the wrapped position of RNA around ORF1p. Altogether, this study presents one of the possible RNA binding pathways of ORF1p and clearly highlights the functional state of ORF1p visited during RNA binding.
Collapse
Affiliation(s)
- Muthukumaran Rajagopalan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| | | | | |
Collapse
|
19
|
Niina T, Brandani GB, Tan C, Takada S. Sequence-dependent nucleosome sliding in rotation-coupled and uncoupled modes revealed by molecular simulations. PLoS Comput Biol 2017; 13:e1005880. [PMID: 29194442 PMCID: PMC5728581 DOI: 10.1371/journal.pcbi.1005880] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/13/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022] Open
Abstract
While nucleosome positioning on eukaryotic genome play important roles for genetic regulation, molecular mechanisms of nucleosome positioning and sliding along DNA are not well understood. Here we investigated thermally-activated spontaneous nucleosome sliding mechanisms developing and applying a coarse-grained molecular simulation method that incorporates both long-range electrostatic and short-range hydrogen-bond interactions between histone octamer and DNA. The simulations revealed two distinct sliding modes depending on the nucleosomal DNA sequence. A uniform DNA sequence showed frequent sliding with one base pair step in a rotation-coupled manner, akin to screw-like motions. On the contrary, a strong positioning sequence, the so-called 601 sequence, exhibits rare, abrupt transitions of five and ten base pair steps without rotation. Moreover, we evaluated the importance of hydrogen bond interactions on the sliding mode, finding that strong and weak bonds favor respectively the rotation-coupled and -uncoupled sliding movements.
Collapse
Affiliation(s)
- Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
20
|
Shaytan AK, Xiao H, Armeev GA, Wu C, Landsman D, Panchenko AR. Hydroxyl-radical footprinting combined with molecular modeling identifies unique features of DNA conformation and nucleosome positioning. Nucleic Acids Res 2017; 45:9229-9243. [PMID: 28934480 PMCID: PMC5765820 DOI: 10.1093/nar/gkx616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Nucleosomes are the most abundant protein–DNA complexes in eukaryotes that provide compaction of genomic DNA and are implicated in regulation of transcription, DNA replication and repair. The details of DNA positioning on the nucleosome and the DNA conformation can provide key regulatory signals. Hydroxyl-radical footprinting (HRF) of protein–DNA complexes is a chemical technique that probes nucleosome organization in solution with a high precision unattainable by other methods. In this work we propose an integrative modeling method for constructing high-resolution atomistic models of nucleosomes based on HRF experiments. Our method precisely identifies DNA positioning on nucleosome by combining HRF data for both DNA strands with the pseudo-symmetry constraints. We performed high-resolution HRF for Saccharomyces cerevisiae centromeric nucleosome of unknown structure and characterized it using our integrative modeling approach. Our model provides the basis for further understanding the cooperative engagement and interplay between Cse4p protein and the A-tracts important for centromere function.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894, USA.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grigoriy A Armeev
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Carl Wu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.,Department of Biology, Johns Hopkins University, 3400 N. Charles Street-UTL 387, Baltimore, MD 21218, USA.,Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - David Landsman
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894, USA
| |
Collapse
|
21
|
Bui M, Pitman M, Nuccio A, Roque S, Donlin-Asp PG, Nita-Lazar A, Papoian GA, Dalal Y. Internal modifications in the CENP-A nucleosome modulate centromeric dynamics. Epigenetics Chromatin 2017; 10:17. [PMID: 28396698 PMCID: PMC5379712 DOI: 10.1186/s13072-017-0124-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background Posttranslational modifications of core histones are correlated with changes in transcriptional status, chromatin fiber folding, and nucleosome dynamics. However, within the centromere-specific histone H3 variant CENP-A, few modifications have been reported, and their functions remain largely unexplored. In this multidisciplinary report, we utilize in silico computational and in vivo approaches to dissect lysine 124 of human CENP-A, which was previously reported to be acetylated in advance of replication. Results Computational modeling demonstrates that acetylation of K124 causes tightening of the histone core and hinders accessibility to its C-terminus, which in turn diminishes CENP-C binding. Additionally, CENP-A K124ac/H4 K79ac containing nucleosomes are prone to DNA sliding. In vivo experiments using a CENP-A acetyl or unacetylatable mimic (K124Q and K124A, respectively) reveal alterations in CENP-C levels and a modest increase in mitotic errors. Furthermore, mutation of K124 results in alterations in centromeric replication timing. Purification of native CENP-A proteins followed by mass spectrometry analysis reveals that while CENP-A K124 is acetylated at G1/S, it switches to monomethylation during early S and mid-S phases. Finally, we provide evidence implicating the histone acetyltransferase (HAT) p300 in this cycle. Conclusions Taken together, our data suggest that cyclical modifications within the CENP-A nucleosome contribute to the binding of key kinetochore proteins, the integrity of mitosis, and centromeric replication. These data support the paradigm that modifications in histone variants can influence key biological processes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0124-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minh Bui
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA
| | - Mary Pitman
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA.,Department of Biophysics, University of Maryland, College Park, MD USA
| | - Arthur Nuccio
- Cellular Networks Proteomics Unit, Laboratory of Systems Biology, NIAID, NIH, Bethesda, MD 20892 USA
| | - Serene Roque
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA
| | - Paul Gregory Donlin-Asp
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA.,Department of Cell Biology, Emory University, Atlanta, GA USA
| | - Aleksandra Nita-Lazar
- Cellular Networks Proteomics Unit, Laboratory of Systems Biology, NIAID, NIH, Bethesda, MD 20892 USA
| | - Garegin A Papoian
- Department of Biophysics, University of Maryland, College Park, MD USA
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
22
|
Moreno-Moreno O, Torras-Llort M, Azorín F. Variations on a nucleosome theme: The structural basis of centromere function. Bioessays 2017; 39. [PMID: 28220502 DOI: 10.1002/bies.201600241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The centromere is a specialized chromosomal structure that dictates kinetochore assembly and, thus, is essential for accurate chromosome segregation. Centromere identity is determined epigenetically by the presence of a centromere-specific histone H3 variant, CENP-A, that replaces canonical H3 in centromeric chromatin. Here, we discuss recent work by Roulland et al. that identifies structural elements of the nucleosome as essential determinants of centromere function. In particular, CENP-A nucleosomes have flexible DNA ends due to the short αN helix of CENP-A. The higher flexibility of the DNA ends of centromeric nucleosomes impairs binding of linker histones H1, while it facilitates binding of other essential centromeric proteins, such as CENP-C, and is required for mitotic fidelity. This work extends previous observations indicating that the differential structural properties of CENP-A nucleosomes are on the basis of its contribution to centromere identity and function. Here, we discuss the implications of this work and the questions arising from it.
Collapse
Affiliation(s)
- Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| |
Collapse
|
23
|
Zhang B, Wolynes PG. Genomic Energy Landscapes. Biophys J 2017; 112:427-433. [PMID: 27692923 PMCID: PMC5300775 DOI: 10.1016/j.bpj.2016.08.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022] Open
Abstract
Energy landscape theory, developed in the context of protein folding, provides, to our knowledge, a new perspective on chromosome architecture. We review what has been learned concerning the topology and structure of both the interphase and mitotic chromosomes from effective energy landscapes constructed using Hi-C data. Energy landscape thinking raises new questions about the nonequilibrium dynamics of the chromosome and gene regulation.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Physics and Astronomy, Rice University, Houston, Texas.
| |
Collapse
|
24
|
Vlijm R, Kim SH, De Zwart PL, Dalal Y, Dekker C. The supercoiling state of DNA determines the handedness of both H3 and CENP-A nucleosomes. NANOSCALE 2017; 9:1862-1870. [PMID: 28094382 PMCID: PMC7959483 DOI: 10.1039/c6nr06245h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nucleosomes form the unit structure of the genome in eukaryotes, thereby constituting a fundamental tenet of chromatin biology. In canonical nucleosomes, DNA wraps around the histone octamer in a left-handed toroidal ramp. Here, in single-molecule magnetic tweezers studies of chaperone-assisted nucleosome assembly, we show that the handedness of the DNA wrapping around the nucleosome core is intrinsically ambidextrous, and depends on the pre-assembly supercoiling state of the DNA, i.e., it is not uniquely determined by the octameric histone core. Nucleosomes assembled onto negatively supercoiled DNA are found to exhibit a left-handed conformation, whereas assembly onto positively supercoiled DNA results in right-handed nucleosomes. This intrinsic flexibility to adopt both chiralities is observed both for canonical H3 nucleosomes, and for centromere-specific variant CENP-A nucleosomes. These data support recent advances suggesting an intrinsic adaptability of the nucleosome, and provide insights into how nucleosomes might rapidly re-assemble after cellular processes that generate positive supercoiling in vivo.
Collapse
Affiliation(s)
- R Vlijm
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - S H Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - P L De Zwart
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - Y Dalal
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - C Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| |
Collapse
|
25
|
CENP-A and H3 Nucleosomes Display a Similar Stability to Force-Mediated Disassembly. PLoS One 2016; 11:e0165078. [PMID: 27820823 PMCID: PMC5098787 DOI: 10.1371/journal.pone.0165078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
Centromere-specific nucleosomes are a central feature of the kinetochore complex during mitosis, in which microtubules exert pulling and pushing forces upon the centromere. CENP-A nucleosomes have been assumed to be structurally unique, thereby providing resilience under tension relative to their H3 canonical counterparts. Here, we directly test this hypothesis by subjecting CENP-A and H3 octameric nucleosomes, assembled on random or on centromeric DNA sequences, to varying amounts of applied force by using single-molecule magnetic tweezers. We monitor individual disassembly events of CENP-A and H3 nucleosomes. Regardless of the DNA sequence, the force-mediated disassembly experiments for CENP-A and H3 nucleosomes demonstrate similar rupture forces, life time residency and disassembly steps. From these experiments, we conclude that CENP-A does not, by itself, contribute unique structural features to the nucleosome that lead to a significant resistance against force-mediated disruption. The data present insights into the mechanistic basis for how CENP-A nucleosomes might contribute to the structural foundation of the centromere in vivo.
Collapse
|
26
|
Zhao H, Winogradoff D, Bui M, Dalal Y, Papoian GA. Promiscuous Histone Mis-Assembly Is Actively Prevented by Chaperones. J Am Chem Soc 2016; 138:13207-13218. [PMID: 27454815 PMCID: PMC7757119 DOI: 10.1021/jacs.6b05355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histone proteins are essential for the organization, expression, and inheritance of genetic material for eukaryotic cells. A centromere-specific H3 histone variant, centromere protein A (CENP-A), shares about 50% amino acid sequence identity with H3. CENP-A is required for packaging the centromere and for the proper separation of chromosomes during mitosis. Despite their distinct biological functions, previously reported crystal structures of the CENP-A/H4 and H3/H4 dimers reveal a high degree of similarity. In this work, we characterize the structural dynamics of CENP-A/H4 and H3/H4 dimers based on a dual-resolution approach, using both microsecond-scale explicit-solvent all-atom and coarse-grained (CG) molecular dynamics (MD) simulations. Our data show that the H4 histone is significantly more rigid compared with the H3 histone and its variant CENP-A, hence, serving as a reinforcing structural element within the histone core. We report that the CENP-A/H4 dimer is significantly more dynamic than its canonical counterpart H3/H4, and our results provide a physical explanation for this flexibility. Further, we observe that the centromere-specific chaperone Holliday Junction Recognition Protein (HJURP) stabilizes the CENP-A/H4 dimer by forming a specific electrostatic interaction network. Finally, replacing CENP-A S68 with E68 disrupts the binding interface between CENP-A and HJURP in all-atom MD simulation, and consistently, in vivo experiments demonstrate that replacing CENP-A S68 with E68 disrupts CENP-A's localization to the centromere. Based on all our results, we propose that, during the CENP-A/H4 deposition process, the chaperone HJURP protects various substructures of the dimer, serving both as a folding and binding chaperone.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David Winogradoff
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Minh Bui
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Garegin A. Papoian
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
27
|
Kim J, Wei S, Lee J, Yue H, Lee TH. Single-Molecule Observation Reveals Spontaneous Protein Dynamics in the Nucleosome. J Phys Chem B 2016; 120:8925-31. [PMID: 27487198 PMCID: PMC5436049 DOI: 10.1021/acs.jpcb.6b06235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural dynamics of a protein molecule is often critical to its function. Single-molecule methods provide efficient ways to investigate protein dynamics, although it is very challenging to achieve a millisecond or higher temporal resolution. Here we report spontaneous structural dynamics of the histone protein core in the nucleosome based on a single-molecule method that can reveal submillisecond dynamics by combining maximum likelihood estimation and fluorescence correlation spectroscopy. The nucleosome, comprising ∼147 bp DNA and an octameric histone protein core consisting of H2A, H2B, H3, and H4, is the fundamental packing unit of the eukaryotic genome. The nucleosome imposes a physical barrier that should be overcome during various DNA-templated processes. Structural fluctuation of the nucleosome in the histone core has been hypothesized to be required for nucleosome disassembly but has yet to be directly probed. Our results indicate that at 100 mM NaCl the histone H2A-H2B dimer dissociates from the histone core transiently once every 3.6 ± 0.6 ms and returns to its position within 2.0 ± 0.3 ms. We also found that the motion is facilitated upon H3K56 acetylation and inhibited upon replacing H2A with H2A.Z. These results provide the first direct examples of how a localized post-translational modification or an epigenetic variation affects the kinetic and thermodynamic stabilities of a macromolecular protein complex, which may directly contribute to its functions.
Collapse
Affiliation(s)
- Jongseong Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Department of Neurology, Dongguk University Ilsan Hospital, Goyang 10326, The Republic of Korea
| | - Sijie Wei
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jaehyoun Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongjun Yue
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
28
|
Zhang B, Zheng W, Papoian GA, Wolynes PG. Exploring the Free Energy Landscape of Nucleosomes. J Am Chem Soc 2016; 138:8126-33. [DOI: 10.1021/jacs.6b02893] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Garegin A. Papoian
- Department
of Chemistry and Biochemistry and Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742, United States
| | | |
Collapse
|