1
|
Zhang W, Qiu C, Lui S. Imaging Biomarker Studies of Antipsychotic-Naïve First-Episode Schizophrenia in China: Progress and Future Directions. Schizophr Bull 2025; 51:379-391. [PMID: 39841545 PMCID: PMC11908865 DOI: 10.1093/schbul/sbaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND HYPOTHESIS Identifying biomarkers at onset and specifying the progression over the early course of schizophrenia is critical for better understanding of illness pathophysiology and providing novel information relevant to illness prognosis and treatment selection. Studies of antipsychotic-naïve first-episode schizophrenia in China are making contributions to this goal. STUDY DESIGN A review was conducted for how antipsychotic-naïve first-episode patients were identified and studied, the investigated biological measures, with a focus on neuroimaging, and how they extend the understanding of schizophrenia regarding the illness-related brain abnormality, treatment effect characterization and outcome prediction, and subtype discovery and patient stratification, in comparison to findings from western populations. Finally, how biomarker studies should be conducted in the future was also discussed. STUDY RESULTS Gray matter reduction has been most robust within temporo-frontal regions and cerebellum, whereas altered brain function has been most pronounced in cerebello-cortical connections and default mode network, each might be related to long-standing illness alterations and acute physiological alterations at measurement. By studying untreated patients, the progressive alterations in temporal and frontal regions and enlargements in bilateral putamen were found more likely effects of illness, not just treatment. Some of these changes were found with potential to predict clinical outcomes and differentiate biologically patient subgroups. CONCLUSIONS Mostly with data-driven approaches, the studies from China are helping identify candidate imaging biomarkers in schizophrenia that are related to early-stage illness, treatment effects, and biological subgroup differentiation. Future work is needed to translate these biomarkers for clinical application.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital, Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Shinn AK, Hurtado-Puerto AM, Roh YS, Ho V, Hwang M, Cohen BM, Öngür D, Camprodon JA. Cerebellar transcranial magnetic stimulation in psychotic disorders: intermittent, continuous, and sham theta-burst stimulation on time perception and symptom severity. Front Psychiatry 2023; 14:1218321. [PMID: 38025437 PMCID: PMC10679721 DOI: 10.3389/fpsyt.2023.1218321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background The cerebellum contributes to the precise timing of non-motor and motor functions, and cerebellum abnormalities have been implicated in psychosis pathophysiology. In this study, we explored the effects of cerebellar theta burst stimulation (TBS), an efficient transcranial magnetic stimulation protocol, on temporal discrimination and self-reported mood and psychotic symptoms. Methods We conducted a case-crossover study in which patients with psychosis (schizophrenias, schizoaffective disorders, or bipolar disorders with psychotic features) were assigned to three sessions of TBS to the cerebellar vermis: one session each of intermittent (iTBS), continuous (cTBS), and sham TBS. Of 28 enrolled patients, 26 underwent at least one TBS session, and 20 completed all three. Before and immediately following TBS, participants rated their mood and psychotic symptoms and performed a time interval discrimination task (IDT). We hypothesized that cerebellar iTBS and cTBS would modulate these measures in opposing directions, with iTBS being adaptive and cTBS maladaptive. Results Reaction time (RT) in the IDT decreased significantly after iTBS vs. Sham (LS-mean difference = -73.3, p = 0.0001, Cohen's d = 1.62), after iTBS vs. cTBS (LS-mean difference = -137.6, p < 0.0001, d = 2.03), and after Sham vs. cTBS (LS-mean difference = -64.4, p < 0.0001, d = 1.33). We found no effect on IDT accuracy. We did not observe any effects on symptom severity after correcting for multiple comparisons. Conclusion We observed a frequency-dependent dissociation between the effects of iTBS vs. cTBS to the cerebellar midline on the reaction time of interval discrimination in patients with psychosis. iTBS showed improved (adaptive) while cTBS led to worsening (maladaptive) speed of response. These results demonstrate behavioral target engagement in a cognitive dimension of relevance to patients with psychosis and generate testable hypotheses about the potential therapeutic role of cerebellar iTBS in this clinical population. Clinical Trial Registration clinicaltrials.gov, identifier NCT02642029.
Collapse
Affiliation(s)
- Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Aura M. Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Youkyung S. Roh
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Victoria Ho
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Joan A. Camprodon
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
3
|
Rong B, Huang H, Gao G, Sun L, Zhou Y, Xiao L, Wang H, Wang G. Widespread Intra- and Inter-Network Dysconnectivity among Large-Scale Resting State Networks in Schizophrenia. J Clin Med 2023; 12:jcm12093176. [PMID: 37176617 PMCID: PMC10179370 DOI: 10.3390/jcm12093176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia is characterized by the distributed dysconnectivity of resting-state multiple brain networks. However, the abnormalities of intra- and inter-network functional connectivity (FC) in schizophrenia and its relationship to symptoms remain unknown. The aim of the present study is to compare the intra- and inter-connectivity of the intrinsic networks between a large sample of patients with schizophrenia and healthy controls. Using the Region of interest (ROI) to ROI FC analyses, the intra- and inter-network FC of the eight resting state networks [default mode network (DMN); salience network (SN); frontoparietal network (FPN); dorsal attention network (DAN); language network (LN); visual network (VN); sensorimotor network (SMN); and cerebellar network (CN)] were investigated in 196 schizophrenia and 169-healthy controls. Compared to the healthy control group, the schizophrenia group exhibited increased intra-network FC in the DMN and decreased intra-network FC in the CN. Additionally, the schizophrenia group showed the decreased inter-network FC mainly involved the SN-DMN, SN-LN and SN-CN while increased inter-network FC in the SN-SMN and SN-DAN (p < 0.05, FDR-corrected). Our study suggests widespread intra- and inter-network dysconnectivity among large-scale RSNs in schizophrenia, mainly involving the DMN, SN and SMN, which may further contribute to the dysconnectivity hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guoqing Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Zhou
- Institute of Psychology, CAS Key Laboratory of Behavioral Science, Beijing 100101, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Corr R, Glier S, Bizzell J, Pelletier-Baldelli A, Campbell A, Killian-Farrell C, Belger A. Triple Network Functional Connectivity During Acute Stress in Adolescents and the Influence of Polyvictimization. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:867-875. [PMID: 35292406 PMCID: PMC9464656 DOI: 10.1016/j.bpsc.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Exposure to both chronic and acute stressors can disrupt functional connectivity (FC) of the default mode network (DMN), salience network (SN), and central executive network (CEN), increasing risk for negative health outcomes. During adolescence, these stress-sensitive triple networks undergo critical neuromaturation that is altered by chronic exposure to general forms of trauma or victimization. However, no work has directly examined how acute stress affects triple network FC in adolescents or whether polyvictimization-exposure to multiple categories/subtypes of victimization-influences adolescent triple network neural acute stress response. METHODS This functional magnetic resonance imaging study examined seed-to-voxel FC of the DMN, SN, and CEN during the Montreal Imaging Stress Task. Complete data from 73 participants aged 9 to 16 years (31 female) are reported. RESULTS During acute stress, FC was increased between DMN and CEN regions and decreased between the SN and the DMN and CEN. Greater polyvictimization was associated with reduced FC during acute stress exposure between the DMN seed and a cluster containing the left insula of the SN. CONCLUSIONS These results indicate that acute stress exposure alters FC between the DMN, SN, and CEN in adolescents. In addition, FC changes during stress between the DMN and SN are further moderated by polyvictimization exposure.
Collapse
Affiliation(s)
- Rachel Corr
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.
| | - Sarah Glier
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Joshua Bizzell
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Andrea Pelletier-Baldelli
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Alana Campbell
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Candace Killian-Farrell
- Department of Child and Adolescent Psychiatry & Behavioral Health Sciences, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Moussa-Tooks AB, Rogers BP, Huang AS, Sheffield JM, Heckers S, Woodward ND. Cerebellar Structure and Cognitive Ability in Psychosis. Biol Psychiatry 2022; 92:385-395. [PMID: 35680432 PMCID: PMC9378489 DOI: 10.1016/j.biopsych.2022.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysconnectivity theories, combined with advances in fundamental cognitive neuroscience, have led to increased interest in characterizing cerebellar abnormalities in psychosis. Smaller cerebellar gray matter volume has been found in schizophrenia spectrum disorders. However, the course of these deficits across illness stage, specificity to schizophrenia (vs. psychosis more broadly), and relationship to clinical phenotypes, primarily cognitive impairment, remain unclear. METHODS The Spatially Unbiased Infratentorial toolbox, a gold standard for analyzing human neuroimaging data of the cerebellum, was used to quantify cerebellar volumes and conduct voxel-based morphometry on structural magnetic resonance images obtained from 574 individuals (249 schizophrenia spectrum, 108 bipolar with psychotic features, 217 nonpsychiatric control). Analyses examining diagnosis (schizophrenia spectrum, bipolar disorder), illness stage (early, chronic), and cognitive effects on cerebellum structure in psychosis were performed. RESULTS Cerebellar structure in psychosis did not differ significantly from healthy participants, regardless of diagnosis and illness stage (effect size = 0.01-0.14). In contrast, low premorbid cognitive functioning was associated with smaller whole and regional cerebellum volumes, including cognitive (lobules VI and VII, Crus I, frontoparietal and attention networks) and motor (lobules I-IV, V, and X; somatomotor network) regions in psychosis (effect size = 0.36-0.60). These effects were not present in psychosis cohorts with average estimated premorbid cognition. CONCLUSIONS Cerebellar structural abnormalities in psychosis are related to lower premorbid cognitive functioning implicating early antecedents, atypical neurodevelopment, or both in cerebellar dysfunction. Future research focused on identifying the impact of early-life risk factors for psychosis on the development of the cerebellum and cognition is warranted.
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
6
|
Cho NS, Peck KK, Gene MN, Jenabi M, Holodny AI. Resting-state functional MRI language network connectivity differences in patients with brain tumors: exploration of the cerebellum and contralesional hemisphere. Brain Imaging Behav 2022; 16:252-262. [PMID: 34333725 DOI: 10.1007/s11682-021-00498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/19/2023]
Abstract
Brain tumors can have far-reaching impacts on functional networks. Language processing is typically lateralized to the left hemisphere, but also involves the right hemisphere and cerebellum. This resting-state functional MRI study investigated the proximal and distal effects of left-hemispheric brain tumors on language network connectivity in the ipsilesional and contralesional hemispheres. Separate language resting-state networks were generated from seeding in ipsilesional (left) and contralesional (right) Broca's Area for 29 patients with left-hemispheric brain tumors and 13 controls. Inclusion criteria for all subjects included language left-dominance based on task-based functional MRI. Functional connectivity was analyzed in each network to the respective Wernicke's Area and contralateral cerebellum. Patients were assessed for language deficits prior to scanning. Compared to controls, patients exhibited decreased connectivity in the ipsilesional and contralesional hemispheres between the Broca's Area and Wernicke's Area homologs (mean connectivity for patients/controls: left 0.51/0.59, p < 0.002; right 0.52/0.59, p < 0.0002). No differences in mean connectivity to the contralateral cerebellum were observed between groups (p > 0.09). Crossed cerebro-cerebellar connectivity was correlated in controls (rho = 0.59, p < 0.05), patients without language deficits (rho = 0.74, p < 0.0002), and patients with high-grade gliomas (rho = 0.78, p < 0.0002), but not in patients with language deficits or low-grade gliomas (p > 0.l). These findings demonstrate that brain tumors impact the language network in the contralesional hemisphere and cerebellum, which may reflect neurological deficits and lesion-induced cortical reorganization.
Collapse
Affiliation(s)
- Nicholas S Cho
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Medical Scientist Training Program, David Geffen UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Kyung K Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Madeleine N Gene
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, 10065, USA
| |
Collapse
|
7
|
Anteraper S, Guell X, Whitfield-Gabrieli S. Big contributions of the little brain for precision psychiatry. Front Psychiatry 2022; 13:1021873. [PMID: 36339842 PMCID: PMC9632752 DOI: 10.3389/fpsyt.2022.1021873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work using 3T functional Magnetic Resonance Imaging (fMRI) parcellated the human dentate nuclei (DN), the primary output of the cerebellum, to three distinct functional zones each contributing uniquely to default-mode, salience-motor, and visual brain networks. In this perspective piece, we highlight the possibility to target specific functional territories within the cerebellum using non-invasive brain stimulation, potentially leading to the refinement of cerebellar-based therapeutics for precision psychiatry. Significant knowledge gap exists in our functional understanding of cerebellar systems. Intervening early, gauging severity of illness, developing intervention strategies and assessing treatment response, are all dependent on our understanding of the cerebello-cerebral networks underlying the pathology of psychotic disorders. A promising yet under-examined avenue for biomarker discovery is disruptions in cerebellar output circuitry. This is primarily because most 3T MRI studies in the past had to exclude cerebellum from the field of view due to limitations in spatiotemporal resolutions. Using recent technological advances in 7T MRI (e.g., parallel transmit head coils) to identify functional territories of the DN, with a focus on dentato-cerebello-thalamo-cortical (CTC) circuitry can lead to better characterization of brain-behavioral correlations and assessments of co-morbidities. Such an improved mechanistic understanding of psychiatric illnesses can reveal aspects of CTC circuitry that can aid in neuroprognosis, identification of subtypes, and generate testable hypothesis for future studies.
Collapse
Affiliation(s)
- Sheeba Anteraper
- Stephens Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, United States.,Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Susan Whitfield-Gabrieli
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
8
|
Basavaraju R, Ithal D, Thanki MV, Ramalingaiah AH, Thirthalli J, Reddy RP, Brady RO, Halko MA, Bolo NR, Keshavan MS, Pascual-Leone A, Mehta UM, Kesavan M. Intermittent theta burst stimulation of cerebellar vermis enhances fronto-cerebellar resting state functional connectivity in schizophrenia with predominant negative symptoms: A randomized controlled trial. Schizophr Res 2021; 238:108-120. [PMID: 34653740 PMCID: PMC8662658 DOI: 10.1016/j.schres.2021.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Negative symptoms of schizophrenia are substantially disabling and treatment resistant. Novel treatments like repetitive transcranial magnetic stimulation (TMS) need to be examined for the same using the experimental medicine approach that incorporates tests of mechanism of action in addition to clinical efficacy in trials. METHODS Study was a double-blind, parallel, randomized, sham-controlled trial recruiting schizophrenia with at least a moderate severity of negative symptoms. Participants were randomized to real or sham intermittent theta burst stimulation (iTBS) under MRI-guided neuro-navigation, targeting the cerebellar vermis area VII-B, at a stimulus intensity of 100% active motor threshold, two sessions/day for five days (total = 6000 pulses). Assessments were conducted at baseline (T0), day-6 (T1) and week-6 (T2) after initiation of intervention. Main outcomes were, a) Scale for the Assessment of Negative Symptoms (SANS) score (T0, T1, T2), b) fronto-cerebellar resting state functional connectivity (RSFC) (T0, T1). RESULTS Thirty participants were recruited in each arm. Negative symptoms improved in both arms (p < 0.001) but was not significantly different between the two arms (p = 0.602). RSFC significantly increased between the cerebellar vermis and the right inferior frontal gyrus (pcluster-FWER = 0.033), right pallidum (pcluster-FWER = 0.042) and right frontal pole (pcluster-FWER = 0.047) in the real arm with no change in the sham arm. CONCLUSION Cerebellar vermal iTBS engaged a target belonging to the class of cerebello-subcortical-cortical networks, implicated in negative symptoms of schizophrenia. However, this did not translate to a superior clinical efficacy. Future trials should employ enhanced midline cerebellar TMS stimulation parameters for longer durations that can potentiate and translate biological changes into clinical effects.
Collapse
Affiliation(s)
- Rakshathi Basavaraju
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Milind Vijay Thanki
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Arvinda Hanumanthapura Ramalingaiah
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Jagadisha Thirthalli
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Rajakumari P Reddy
- Department of Clinical Psychology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Roscoe O Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Mark A Halko
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, USA.
| | - Nicolas R Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain.
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore 560029, Karnataka, India.
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore 560029, Karnataka, India.
| |
Collapse
|
9
|
Hwang M, Roh YS, Talero J, Cohen BM, Baker JT, Brady RO, Öngür D, Shinn AK. Auditory hallucinations across the psychosis spectrum: Evidence of dysconnectivity involving cerebellar and temporal lobe regions. Neuroimage Clin 2021; 32:102893. [PMID: 34911197 PMCID: PMC8636859 DOI: 10.1016/j.nicl.2021.102893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Auditory hallucinations (AH) are typically associated with schizophrenia (SZ), but they are also prevalent in bipolar disorder (BD). Despite the large body of research on the neural correlates of AH in SZ, the pathophysiology underlying AH remains unclear. Few studies have examined the neural substrates associated with propensity for AH in BD. Investigating AH across the psychosis spectrum has the potential to inform about the neural signature associated with the trait of AH, irrespective of psychiatric diagnosis. METHODS We compared resting state functional magnetic resonance imaging data in psychosis patients with (n = 90 AH; 68 SZ, 22 BD) and without (n = 55 NAH; 16 SZ, 39 BD) lifetime AH. We performed region of interest (ROI)-to-ROI functional connectivity (FC) analysis using 91 cortical, 15 subcortical, and 26 cerebellar atlas-defined regions. The primary aim was to identify FC differences between patients with and without lifetime AH. We secondarily examined differences between AH and NAH within each diagnosis. RESULTS Compared to the NAH group, patients with AH showed higher FC between cerebellum and frontal (left precentral gyrus), temporal [right middle temporal gyrus (MTG), left inferior temporal gyrus (ITG), left temporal fusiform gyrus)], parietal (bilateral superior parietal lobules), and subcortical (left accumbens, left palldium) brain areas. AH also showed lower FC between temporal lobe regions (between right ITG and right MTG and bilateral superior temporal gyri) relative to NAH. CONCLUSIONS Our findings suggest that dysconnectivity involving the cerebellum and temporal lobe regions may be common neurofunctional elements associated with AH propensity across the psychosis spectrum. We also found dysconnectivity patterns that were unique to lifetime AH within SZ or bipolar psychosis, suggesting both common and distinct mechanisms underlying AH pathophysiology in these disorders.
Collapse
Affiliation(s)
- Melissa Hwang
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Youkyung S Roh
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Jessica Talero
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Bruce M Cohen
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Program for Neuropsychiatric Research, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Justin T Baker
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Roscoe O Brady
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Ann K Shinn
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Anteraper SA, Guell X, Collin G, Qi Z, Ren J, Nair A, Seidman LJ, Keshavan MS, Zhang T, Tang Y, Li H, McCarley RW, Niznikiewicz MA, Shenton ME, Stone WS, Wang J, Whitfield-Gabrieli S. Abnormal Function in Dentate Nuclei Precedes the Onset of Psychosis: A Resting-State fMRI Study in High-Risk Individuals. Schizophr Bull 2021; 47:1421-1430. [PMID: 33954497 PMCID: PMC8379537 DOI: 10.1093/schbul/sbab038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The cerebellum serves a wide range of functions and is suggested to be composed of discrete regions dedicated to unique functions. We recently developed a new parcellation of the dentate nuclei (DN), the major output nuclei of the cerebellum, which optimally divides the structure into 3 functional territories that contribute uniquely to default-mode, motor-salience, and visual processing networks as indexed by resting-state functional connectivity (RsFc). Here we test for the first time whether RsFc differences in the DN, precede the onset of psychosis in individuals at risk of developing schizophrenia. METHODS We used the magnetic resonance imaging (MRI) dataset from the Shanghai At Risk for Psychosis study that included subjects at high risk to develop schizophrenia (N = 144), with longitudinal follow-up to determine which subjects developed a psychotic episode within 1 year of their functional magnetic resonance imaging (fMRI) scan (converters N = 23). Analysis used the 3 functional parcels (default-mode, salience-motor, and visual territory) from the DN as seed regions of interest for whole-brain RsFc analysis. RESULTS RsFc analysis revealed abnormalities at baseline in high-risk individuals who developed psychosis, compared to high-risk individuals who did not develop psychosis. The nature of the observed abnormalities was found to be anatomically specific such that abnormal RsFc was localized predominantly in cerebral cortical networks that matched the 3 functional territories of the DN that were evaluated. CONCLUSIONS We show for the first time that abnormal RsFc of the DN may precede the onset of psychosis. This new evidence highlights the role of the cerebellum as a potential target for psychosis prediction and prevention.
Collapse
Affiliation(s)
- Sheeba Arnold Anteraper
- Department of Psychology, Northeastern University, Boston, MA,Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, MA,To whom correspondence should be addressed; Department of Psychology, Northeastern University, Boston, MA, US; tel: 617-373-4793, fax: 617-373-8714,
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Guusje Collin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Zhenghan Qi
- Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE
| | - Jingwen Ren
- Department of Psychology, Northeastern University, Boston, MA
| | - Atira Nair
- Department of Psychology, Northeastern University, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL
| | - Robert W McCarley
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA
| | | | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Research and Development, VA Boston Healthcare System, Brockton Division, Brockton, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
11
|
Cai XL, Wang YM, Wang Y, Zhou HY, Huang J, Wang Y, Lui SSY, Møller A, Hung KSY, Mak HKF, Sham PC, Cheung EFC, Chan RCK. Neurological Soft Signs Are Associated With Altered Cerebellar-Cerebral Functional Connectivity in Schizophrenia. Schizophr Bull 2021; 47:1452-1462. [PMID: 33479738 PMCID: PMC8379549 DOI: 10.1093/schbul/sbaa200] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebellar dysfunction is associated with neurological soft signs (NSS), which is a promising endophenotype for schizophrenia spectrum disorders. However, the relationship between cerebellar-cerebral resting-state functional connectivity (rsFC) and NSS is largely unexplored. Moreover, both NSS and cerebellar-cerebral rsFC have been found to be correlated with negative symptoms of schizophrenia. Here, we investigated the correlations between NSS and cerebellar-cerebral rsFC, explored their relationship with negative symptoms in a main dataset, and validated the significant findings in a replication dataset. Both datasets comprised schizophrenia patients and healthy controls. In schizophrenia patients, we found positive correlations between NSS and rsFC of the cerebellum with the inferior frontal gyrus and the precuneus, and negative correlations between NSS and rsFC of the cerebellum with the inferior temporal gyrus. In healthy controls, NSS scores were positively correlated with rsFC of the cerebellum with the superior frontal gyrus and negatively correlated with rsFC between the cerebellum and the middle occipital gyrus. Cerebellar-prefrontal rsFC was also positively correlated with negative symptoms in schizophrenia patients. These findings were validated in the replication dataset. Our results suggest that the uncoupling of rsFC between the cerebellum and the cerebral cortex may underlie the expression of NSS in schizophrenia. NSS-related cerebellar-prefrontal rsFC may be a potential neural pathway for possible neural modulation to alleviate negative symptoms.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Yu Zhou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arne Møller
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Karen S Y Hung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for PanorOmic Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- To whom correspondence should be addressed; 16 Lincui Road, Beijing 100101, China; tel: +86(0)10-64836274, fax: 86(0)10-64836274, e-mail:
| |
Collapse
|
12
|
Zheng R, Chen Y, Jiang Y, Wen M, Zhou B, Li S, Wei Y, Yang Z, Wang C, Cheng J, Zhang Y, Han S. Dynamic Altered Amplitude of Low-Frequency Fluctuations in Patients With Major Depressive Disorder. Front Psychiatry 2021; 12:683610. [PMID: 34349681 PMCID: PMC8328277 DOI: 10.3389/fpsyt.2021.683610] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Major depressive disorder (MDD) has demonstrated abnormalities of static intrinsic brain activity measured by amplitude of low-frequency fluctuation (ALFF). Recent studies regarding the resting-state functional magnetic resonance imaging (rs-fMRI) have found the brain activity is inherently dynamic over time. Little is known, however, regarding the temporal dynamics of local neural activity in MDD. Here, we investigated whether temporal dynamic changes in spontaneous neural activity are influenced by MDD. Methods: We recruited 81 first-episode, drug-naive MDD patients and 64 age-, gender-, and education-matched healthy controls who underwent rs-fMRI. A sliding-window approach was then adopted for the estimation of dynamic ALFF (dALFF), which was used to measure time-varying brain activity and then compared between the two groups. The relationship between altered dALFF variability and clinical variables in MDD patients was also analyzed. Results: MDD patients showed increased temporal variability (dALFF) mainly focused on the bilateral thalamus, the bilateral superior frontal gyrus, the right middle frontal gyrus, the bilateral cerebellum posterior lobe, and the vermis. Furthermore, increased dALFF variability values in the right thalamus and right cerebellum posterior lobe were positively correlated with MDD symptom severity. Conclusions: The overall results suggest that altered temporal variability in corticocerebellar-thalamic-cortical circuit (CCTCC), involved in emotional, executive, and cognitive, is associated with drug-naive, first-episode MDD patients. Moreover, our study highlights the vital role of abnormal dynamic brain activity in the cerebellar hemisphere associated with CCTCC in MDD patients. These findings may provide novel insights into the pathophysiological mechanisms of MDD.
Collapse
Affiliation(s)
- Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengmeng Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Wang X, Yin Z, Sun Q, Jiang X, Chao L, Dai X, Tang Y. Comparative Study on the Functional Connectivity of Amygdala and Hippocampal Neural Circuits in Patients With First-Episode Schizophrenia and Other High-Risk Populations. Front Psychiatry 2021; 12:627198. [PMID: 34539456 PMCID: PMC8442955 DOI: 10.3389/fpsyt.2021.627198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: Cortical-limbic system neural circuit abnormalities are closely related to the onset of schizophrenia (SZ). The amygdala, hippocampus, cingulate, and prefrontal lobe are important components of the loop. In this study, we compared resting-state functional connectivity (rs-FC) between the amygdala/hippocampus and cingulate/prefrontal regions among patients with first-episode schizophrenia (FE-SZ), high risk populations with SZ (HR-SZ), and healthy controls (HCs). By discovering the abnormal pattern of the cortical-limbic system of SZ and HR-SZ, we attempted to elucidate the pathophysiological mechanism of SZ. Method: This study collected seventy-five FE-SZ patients, 59 HR-SZ, and 64 HCs. Analysis of variance and chi-square tests were used to analyze their demographic data. Analysis of covariance and post-hoc analysis were performed on the functional connectivity of the three groups. Finally, correlation analysis between the significant brain functional connectivity value and the scale score was performed. Results: The results of the analysis of covariance showed that there were significant differences in rs-FC between the amygdala and the right middle cingulate and between the hippocampus and the bilateral medial superior frontal gyrus among the three groups (Gaussian random field (GRF)-corrected voxel p < 0.001, cluster p < 0.05). Post hoc comparisons showed that the rs-FC of the amygdala-right middle cingulate and the hippocampus-bilateral medial superior frontal gyrus in patients with SZ was significantly lower than that of HR-SZ and HC (Bonferroni corrected p < 0.001). There was no significant difference between the HR-SZ and HC groups. The results of the correlation analysis showed that rs-FC of the hippocampus-medial frontal gyrus in patients with SZ was positively correlated with core depression factor scores on the Hamilton Depression Scale (P = 0.006, R = 0.357). Conclusion: There were different patterns of functional connectivity impairment in the amygdala and hippocampal neural circuits in the schizophrenic cortical-limbic system, and these patterns may be more useful than genetics as state-related imaging changes of the disease.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qikun Sun
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Li Chao
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xu Dai
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
15
|
He Y, Wu S, Chen C, Fan L, Li K, Wang G, Wang H, Zhou Y. Organized Resting-state Functional Dysconnectivity of the Prefrontal Cortex in Patients with Schizophrenia. Neuroscience 2020; 446:14-27. [PMID: 32858143 DOI: 10.1016/j.neuroscience.2020.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/23/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022]
Abstract
Schizophrenia has prominent functional dysconnectivity, especially in the prefrontal cortex (PFC). However, it is unclear whether in the same group of patients with schizophrenia, PFC functional dysconnectivity appears in an organized manner or is stochastically located in different subregions. By investigating the resting-state functional connectivity (rsFC) of each PFC subregion from the Brainnetome atlas in 40 schizophrenia patients and 40 healthy subjects, we found 24 altered connections in schizophrenia, and the connections were divided into four categories by a clustering analysis: increased connections within the PFC, increased connections between the inferior PFC and the thalamus/striatum, reduced connections between the PFC and the motor control areas, and reduced connections between the orbital PFC and the emotional perception regions. In addition, the four categories of rsFC showed distinct cognitive engagement patterns. Our findings suggest that PFC subregions have specific functional dysconnectivity patterns in schizophrenia and may reflect heterogeneous symptoms and cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yuwen He
- CAS Key Laboratory of Behavioral Science & Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shihao Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixin Li
- Harbin University of Science and Technology, Harbin 150080, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science & Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Kim D, Moussa‐Tooks AB, Bolbecker AR, Apthorp D, Newman SD, O'Donnell BF, Hetrick WP. Cerebellar-cortical dysconnectivity in resting-state associated with sensorimotor tasks in schizophrenia. Hum Brain Mapp 2020; 41:3119-3132. [PMID: 32250008 PMCID: PMC7336143 DOI: 10.1002/hbm.25002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Abnormalities of cerebellar function have been implicated in the pathophysiology of schizophrenia. Since the cerebellum has afferent and efferent projections to diverse brain regions, abnormalities in cerebellar lobules could affect functional connectivity with multiple functional systems in the brain. Prior studies, however, have not examined the relationship of individual cerebellar lobules with motor and nonmotor resting‐state functional networks. We evaluated these relationships using resting‐state fMRI in 30 patients with a schizophrenia‐spectrum disorder and 37 healthy comparison participants. For connectivity analyses, the cerebellum was parcellated into 18 lobular and vermal regions, and functional connectivity of each lobule to 10 major functional networks in the cerebrum was evaluated. The relationship between functional connectivity measures and behavioral performance on sensorimotor tasks (i.e., finger‐tapping and postural sway) was also examined. We found cerebellar–cortical hyperconnectivity in schizophrenia, which was predominantly associated with Crus I, Crus II, lobule IX, and lobule X. Specifically, abnormal cerebellar connectivity was found to the cerebral ventral attention, motor, and auditory networks. This cerebellar–cortical connectivity in the resting‐state was differentially associated with sensorimotor task‐based behavioral measures in schizophrenia and healthy comparison participants—that is, dissociation with motor network and association with nonmotor network in schizophrenia. These findings suggest that functional association between individual cerebellar lobules and the ventral attentional, motor, and auditory networks is particularly affected in schizophrenia. They are also consistent with dysconnectivity models of schizophrenia suggesting cerebellar contributions to a broad range of sensorimotor and cognitive operations.
Collapse
Affiliation(s)
- Dae‐Jin Kim
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Alexandra B. Moussa‐Tooks
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceIndiana UniversityBloomingtonIndianaUSA
| | - Amanda R. Bolbecker
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Deborah Apthorp
- School of Psychology, Faculty of Medicine and HealthUniversity of New EnglandArmidaleNew South WalesAustralia
- Research School of Computer Science, College of Engineering and Computer ScienceAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Sharlene D. Newman
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceIndiana UniversityBloomingtonIndianaUSA
| | - Brian F. O'Donnell
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceIndiana UniversityBloomingtonIndianaUSA
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - William P. Hetrick
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceIndiana UniversityBloomingtonIndianaUSA
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
17
|
Wang Y, Sibaii F, Custead R, Oh H, Barlow SM. Functional Connectivity Evoked by Orofacial Tactile Perception of Velocity. Front Neurosci 2020; 14:182. [PMID: 32210753 PMCID: PMC7068713 DOI: 10.3389/fnins.2020.00182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously (“All ON”) and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs “All ON” indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity.
Collapse
Affiliation(s)
- Yingying Wang
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Center for Research on Children, Youth, Families and schools, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Fatima Sibaii
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca Custead
- Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyuntaek Oh
- Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Steven M Barlow
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
18
|
Multivariate classification of schizophrenia and its familial risk based on load-dependent attentional control brain functional connectivity. Neuropsychopharmacology 2020; 45:613-621. [PMID: 31581175 PMCID: PMC7021788 DOI: 10.1038/s41386-019-0532-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/01/2019] [Accepted: 09/15/2019] [Indexed: 01/01/2023]
Abstract
Patients with schizophrenia (SCZ), as well as their unaffected siblings (SIB), show functional connectivity (FC) alterations during performance of tasks involving attention. As compared with SCZ, these alterations are present in SIB to a lesser extent and are more pronounced during high cognitive demand, thus possibly representing one of the pathways in which familial risk is translated into the SCZ phenotype. Our aim is to measure the separability of SCZ and SIB from healthy controls (HC) using attentional control-dependent FC patterns, and to test to which extent these patterns span a continuum of neurofunctional alterations between HC and SCZ. 65 SCZ with 65 age and gender-matched HC and 39 SIB with 39 matched HC underwent the Variable Attentional Control (VAC) task. Load-dependent connectivity matrices were generated according to correct responses in each VAC load. Classification performances of high, intermediate and low VAC load FC on HC-SCZ and HC-SIB cohorts were tested through machine learning techniques within a repeated nested cross-validation framework. HC-SCZ classification models were applied to the HC-SIB cohort, and vice-versa. A high load-related decreased FC pattern discriminated between HC and SCZ with 66.9% accuracy and with 57.7% accuracy between HC and SIB. A high load-related increased FC network separated SIB from HC (69.6% accuracy), but not SCZ from HC (48.5% accuracy). Our findings revealed signatures of attentional FC abnormalities shared by SCZ and SIB individuals. We also found evidence for potential, SIB-specific FC signature, which may point to compensatory neurofunctional mechanisms in persons at familial risk for schizophrenia.
Collapse
|
19
|
Lee KH, Oh H, Suh JHS, Cho KIK, Yoon YB, Shin WG, Lee TY, Kwon JS. Functional and Structural Connectivity of the Cerebellar Nuclei With the Striatum and Cerebral Cortex in First-Episode Psychosis. J Neuropsychiatry Clin Neurosci 2019; 31:143-151. [PMID: 30561280 DOI: 10.1176/appi.neuropsych.17110276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Evidence suggests that the cortico-striatal-thalamo-cortical circuitry plays an important role in schizophrenia pathophysiology. Cerebellar contribution from deep cerebellar nuclei to the circuitry has not yet been examined. The authors investigated resting-state functional connectivity (RSFC) of cerebellar output nuclei with striatal-thalamic-cortical regions in relation to white-matter integrity and regional gray-matter volumes in first-episode psychosis (FEP). Methods: Forty FEP patients and 40 age- and gender-matched healthy control subjects (HCs) participated. RSFC between cerebellar nuclei and striatal-thalamic-cortical regions was examined. Diffusion tensor imaging and volumetric scans were examined for possible structural constraints on RSFC. The authors also examined relationships between neuroimaging variables and cognitive and clinical measures. Results: FEP patients, compared with HCs, exhibited decreased RSFC between the left fastigial nucleus and right putamen, which was associated with poor letter fluency performance and lower global assessment of functioning scores. By contrast, patients showed widespread increased accumbens network connectivity in the left nucleus. The authors further observed both hypo- and hyper-RSFC between the cerebellar nuclei and fronto-parietal areas in patients, independent of striatal activity. Finally, the authors found impaired integrity of the left superior cerebellar peduncle and decreased bilateral putamen volume in patients, whereas structural-functional relationships found in HCs were absent in patients. Conclusions: This study provides evidence of disordered RSFC of cerebellar output nuclei to the striatum and neocortex at the early stage of schizophrenia. Furthermore, dysfunctional cerebellar influences on fronto-parietal areas that are independent of striatal dysfunction in patients with FEP were observed. The results suggest that cortico-striatal abnormalities in patients with FEP are produced by abnormal cerebellar influences.
Collapse
Affiliation(s)
- Kwang-Hyuk Lee
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Hyerim Oh
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Jee-Hyung S Suh
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Kang Ik K Cho
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Youngwoo Bryan Yoon
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Won-Gyo Shin
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Tae Young Lee
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Jun Soo Kwon
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| |
Collapse
|
20
|
Moreira PS, Marques P, Magalhães R, Esteves M, Sousa N, Soares JM, Morgado P. The resting-brain of obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2019; 290:38-41. [PMID: 31279239 DOI: 10.1016/j.pscychresns.2019.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/03/2023]
Abstract
Obsessive-compulsive disorder (OCD) is one of the most debilitating psychiatric conditions, having a dramatic impact on patients' daily living. In this work, we aimed to explore resting-state functional connectivity in OCD patients, using an independent component analysis. Eighty individuals (40 patients and 40 healthy controls) performed a resting state fMRI protocol. OCD patients displayed reduced functional connectivity (FC) in visual and sensorimotor networks. In addition, patients displayed decreased FC between sensory networks and increased FC between default-mode and cerebellar networks.
Collapse
Affiliation(s)
- Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; Clinical Academic Center - Braga, 4710-057 Braga, Portugal.
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; Clinical Academic Center - Braga, 4710-057 Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; Clinical Academic Center - Braga, 4710-057 Braga, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; Clinical Academic Center - Braga, 4710-057 Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; Clinical Academic Center - Braga, 4710-057 Braga, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; Clinical Academic Center - Braga, 4710-057 Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; Clinical Academic Center - Braga, 4710-057 Braga, Portugal
| |
Collapse
|
21
|
Qureshi MNI, Oh J, Lee B. 3D-CNN based discrimination of schizophrenia using resting-state fMRI. Artif Intell Med 2019; 98:10-17. [DOI: 10.1016/j.artmed.2019.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/23/2019] [Accepted: 06/21/2019] [Indexed: 11/30/2022]
|
22
|
Rodriguez M, Zaytseva Y, Cvrčková A, Dvořaček B, Dorazilová A, Jonáš J, Šustová P, Voráčková V, Hájková M, Kratochvílová Z, Španiel F, Mohr P. Cognitive Profiles and Functional Connectivity in First-Episode Schizophrenia Spectrum Disorders - Linking Behavioral and Neuronal Data. Front Psychol 2019; 10:689. [PMID: 31001171 PMCID: PMC6454196 DOI: 10.3389/fpsyg.2019.00689] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
The character of cognitive deficit in schizophrenia is not clear due to the heterogeneity in research results. In heterogeneous conditions, the cluster solution allows the classification of individuals based on profiles. Our aim was to examine the cognitive profiles of first-episode schizophrenia spectrum disorder (FES) subjects based on cluster analysis, and to correlate these profiles with clinical variables and resting state brain connectivity, as measured with magnetic resonance imaging. A total of 67 FES subjects were assessed with a neuropsychological test battery and on clinical variables. The results of the cognitive domains were cluster analyzed. In addition, functional connectivity was calculated using ROI-to-ROI analysis with four groups: Three groups were defined based on the cluster analysis of cognitive performance and a control group with a normal cognitive performance. The connectivity was compared between the patient clusters and controls. We found different cognitive profiles based on three clusters: Cluster 1: decline in the attention, working memory/flexibility, and verbal memory domains. Cluster 2: decline in the verbal memory domain and above average performance in the attention domain. Cluster 3: generalized and severe deficit in all of the cognitive domains. FES diagnoses were distributed among all of the clusters. Cluster comparisons in neural connectivity also showed differences between the groups. Cluster 1 showed both hyperconnectivity between the cerebellum and precentral gyrus, the salience network (SN) (insula cortex), and fronto-parietal network (FPN) as well as between the PreCG and SN (insula cortex) and hypoconnectivity between the default mode network (DMN) and seeds of SN [insula and supramarginal gyrus (SMG)]; Cluster 2 showed hyperconnectivity between the DMN and cerebellum, SN (insula) and precentral gyrus, and FPN and IFG; Cluster 3 showed hypoconnectivity between the DMN and SN (insula) and SN (SMG) and pallidum. The cluster solution confirms the prevalence of a cognitive decline with different patterns of cognitive performance, and different levels of severity in FES. Moreover, separate behavioral cognitive subsets can be linked to patterns of brain functional connectivity.
Collapse
Affiliation(s)
- Mabel Rodriguez
- National Institute of Mental Health, Klecany, Czechia
- Department of Psychology, Faculty of Arts, Charles University in Prague, Prague, Czechia
| | - Yuliya Zaytseva
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Aneta Cvrčková
- National Institute of Mental Health, Klecany, Czechia
- Department of Psychology, Faculty of Social Studies, Masaryk University, Brno, Czechia
| | - Boris Dvořaček
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Aneta Dorazilová
- National Institute of Mental Health, Klecany, Czechia
- Department of Psychology, Faculty of Arts, Masaryk University, Brno, Czechia
| | - Juraj Jonáš
- National Institute of Mental Health, Klecany, Czechia
- Department of Psychology, Faculty of Arts, Charles University in Prague, Prague, Czechia
| | - Petra Šustová
- National Institute of Mental Health, Klecany, Czechia
| | - Veronika Voráčková
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Marie Hájková
- National Institute of Mental Health, Klecany, Czechia
| | | | - Filip Španiel
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Pavel Mohr
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
23
|
Ding Y, Ou Y, Su Q, Pan P, Shan X, Chen J, Liu F, Zhang Z, Zhao J, Guo W. Enhanced Global-Brain Functional Connectivity in the Left Superior Frontal Gyrus as a Possible Endophenotype for Schizophrenia. Front Neurosci 2019; 13:145. [PMID: 30863277 PMCID: PMC6399149 DOI: 10.3389/fnins.2019.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
The notion of dysconnectivity in schizophrenia has been put forward for many years and results in substantial attempts to explore altered functional connectivity (FC) within different networks with inconsistent results. Clinical, demographical, and methodological heterogeneity may contribute to the inconsistency. Forty-four patients with first-episode, drug-naive schizophrenia, 42 unaffected siblings of schizophrenia patients and 44 healthy controls took part in this study. Global-brain FC (GFC) was employed to analyze the imaging data. Compared with healthy controls, patients with schizophrenia and unaffected siblings shared enhanced GFC in the left superior frontal gyrus (SFG). In addition, patients had increased GFC mainly in the thalamo-cortical network, including the bilateral thalamus, bilateral posterior cingulate cortex (PCC)/precuneus, left superior medial prefrontal cortex (MPFC), right angular gyrus, and right SFG/middle frontal gyrus and decreased GFC in the left ITG/cerebellum Crus I. No other altered GFC values were observed in the siblings group relative to the control group. Further ROC analysis showed that increased GFC in the left SFG could separate the patients or the siblings from the controls with acceptable sensitivities. Our findings suggest that increased GFC in the left SFG may serve as a potential endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qinji Su
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
24
|
Ding Y, Ou Y, Pan P, Shan X, Chen J, Liu F, Zhao J, Guo W. Cerebellar structural and functional abnormalities in first-episode and drug-naive patients with schizophrenia: A meta-analysis. Psychiatry Res Neuroimaging 2019; 283:24-33. [PMID: 30500474 DOI: 10.1016/j.pscychresns.2018.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/21/2018] [Accepted: 11/21/2018] [Indexed: 01/25/2023]
Abstract
Schizophrenia (SZ) is a mental disorder that involves cerebral and cerebellar abnormalities. The cerebellum plays an indispensable role in the pathophysiology of SZ. However, individual studies pertaining to the structural and resting-state functional cerebellar abnormalities in patients with SZ have been inconsistent. To make a relatively robust conclusion with little interference, such as different disease episode times and antipsychotic treatment, we conducted this meta-analysis as a first attempt to comprehensively analyze and combine studies of voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF), and functional connectivity strength (FCS) in first-episode and drug-naive SZ patients, employing the Seed-based d Mapping (SDM) method. Thirteen VBM studies, eight ALFF studies, and three FCS studies involving 783 patients and 704 matched healthy controls were included. Our results showed the presence of structural and functional abnormalities within the cerebellar regions, including most superior/anterior cerebellum (lobule III-V or VI) and posterior/inferior cerebellum (lobule VIII) related to motor function, and posterior cerebellum (lobule VIIa, Crus I, and II) associated with cognition and emotion, and such anomalies might be related to illness duration and clinical symptom severity.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Xiaoxiao Shan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital. Tianjin 300000, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China.
| |
Collapse
|
25
|
Aberrant resting-state functional connectivity of salience network in first-episode schizophrenia. Brain Imaging Behav 2019; 14:1350-1360. [DOI: 10.1007/s11682-019-00040-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Chen G, Zhao L, Jia Y, Zhong S, Chen F, Luo X, Qiu S, Lai S, Qi Z, Huang L, Wang Y. Abnormal cerebellum-DMN regions connectivity in unmedicated bipolar II disorder. J Affect Disord 2019; 243:441-447. [PMID: 30273882 DOI: 10.1016/j.jad.2018.09.076] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Bipolar disorder (BD) is a common psychiatric disease. Previous studies have found abnormalities in structural and functional brain connectivity in BD patients. However, few studies have focused on the functional connectivity (FC) of the cerebellum and its sub-regions in patients with BD. The present study aimed to examine the FC of cerebellum-default mode network (DMN) regions in patients with BD II. METHOD Ninety patients with unmedicated BD II depression and 100 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. We selected three pairs of subregions of the cerebellum that are DMN-related (the bilateral Crus I, Crus II, and lobule IX) as seed regions and calculated the whole brain FC for each subregion. RESULTS Compared with the HCs, the patients with BD II depression showed increased connectivity between the right Crus I and bilateral precuneus and decreased connectivity between the left Crus II and bilateral medial prefrontal cortex (mPFC) and between the left Crus II and right medial frontal gyrus (MFG). There was no significant difference in the whole FC of the left Crus I and bilateral lobule IX between the BD II depression group and the HCs group. LIMITATIONS This study was cross-sectional and did not examine data from euthymic BD patients. CONCLUSIONS The findings showed impaired FC of cerebellum-DMN regions in BD; partial FC between the Crus I and precuneus and the Crus II and prefrontal cortex suggests the importance of abnormal cerebellum-DMN regions FC in the pathophysiology of BD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Lianping Zhao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Radiology, Gansu Provincial Hospital, Gansu 730000, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Xiaomei Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shaojuan Qiu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
27
|
Hirjak D, Kubera KM, Thomann PA, Wolf RC. Motor dysfunction as an intermediate phenotype across schizophrenia and other psychotic disorders: Progress and perspectives. Schizophr Res 2018; 200:26-34. [PMID: 29074330 DOI: 10.1016/j.schres.2017.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Primary motor abnormalities (PMA), as found in patients with schizophrenia, are quantitatively and qualitatively distinct markers of motor system abnormalities. PMA have been often referred to phenomena that are present across schizophrenia-spectrum disorders. A dysfunction of frontoparietal and subcortical networks has been proposed as core pathophysiological mechanism underlying the expression of PMA. However, it is unclear at present if such mechanisms are a common within schizophrenia and other psychotic disorders. To address this question, we review recent neuroimaging studies investigating the neural substrates of PMA in schizophrenia and so-called "nonschizophrenic nonaffective psychoses" (NSNAP) such as schizophreniform, schizoaffective, brief psychotic, and other unspecified psychotic disorders. Although the extant data in patients with schizophrenia suggests that further investigation is warranted, MRI findings in NSNAP are less persuasive. It is unclear so far which PMA, if any, are characteristic features of NSNAP or, possibly even specific for these disorders. Preliminary data suggest a relationship between relapsing-remitting PMA in hyper-/hypokinetic cycloid syndromes and neurodegenerative disorders of the basal ganglia, likely reflecting the transnosological relevance of subcortical abnormalities. Despite this evidence, neural substrates and mechanisms underlying PMA that are common in schizophrenia and NSNAP cannot be clearly delineated at this stage of research. PMA and their underlying brain circuits could be promising intermediate phenotype candidates for psychotic disorders, but future multimodal neuroimaging studies in schizophrenia and NSNAP patients and their unaffected first-degree relatives are needed to answer fundamental transnosologic questions.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany.
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Philipp A Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany; Center for Mental Health, Odenwald District Healthcare Center, Erbach, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| |
Collapse
|
28
|
Rzepa E, McCabe C. Anhedonia and depression severity dissociated by dmPFC resting-state functional connectivity in adolescents. J Psychopharmacol 2018; 32:1067-1074. [PMID: 30260258 PMCID: PMC6380625 DOI: 10.1177/0269881118799935] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Given the heterogeneity within depression, in this study we aim to examine how resting-state functional connectivity (RSFC) in adolescents is related to anhedonia and depression severity on a continuum in line with the research domain criteria (RDoC) approach. METHODS We examined how RSFC in the dorsal medial prefrontal cortex (dmPFC), nucleus accumbens (NAcc) and pregenual anterior cingulate cortex (pgACC) was related to anhedonia and depression severity in 86 adolescents (13-21 years). RESULTS We found both anhedonia and depression severity related to decreased dmPFC RSFC with the precuneus, a part of the default mode network. However we also found that increased dmPFC connectivity with the ACC/paracingulate gyrus related to anhedonia whereas increased RSFC with the frontal pole related to depression severity. DISCUSSION This work extends the view that the dmPFC is a potential therapeutic target for depression in two ways: 1. We report dmPFC connectivity in adolescents; and 2. We show different dmPFC RSFC specific to anhedonia and depression severity, providing neural targets for intervention in young people at risk of depression.
Collapse
Affiliation(s)
| | - Ciara McCabe
- Ciara McCabe, Associate Professor of Neuroscience,
School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6
6AL, UK.
| |
Collapse
|
29
|
|
30
|
Li L, Zhi M, Hou Z, Zhang Y, Yue Y, Yuan Y. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study. Oncotarget 2018; 8:6283-6294. [PMID: 28009983 PMCID: PMC5351631 DOI: 10.18632/oncotarget.14060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.
Collapse
Affiliation(s)
- Ling Li
- Department of Endocrinology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Mengmeng Zhi
- Department of Endocrinology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yuqun Zhang
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
31
|
Abnormal neural activity as a potential biomarker for drug-naive first-episode adolescent-onset schizophrenia with coherence regional homogeneity and support vector machine analyses. Schizophr Res 2018; 192:408-415. [PMID: 28476336 DOI: 10.1016/j.schres.2017.04.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Patients with adolescent-onset schizophrenia (AOS) hold the same but severe form of symptoms with adult-onset schizophrenia, and with worse outcome and poor treatment response to antipsychotics. Several dominant brain regions of schizophrenia patients show significantly abnormal structural and functional connectivity during resting-state scans. However, coherence regional homogeneity (Cohe-ReHo) in drug-naive first-episode patients with AOS remains unclear. METHOD A total of 48 drug-naive first-episode AOS outpatients and 31 healthy controls underwent resting-state functional magnetic resonance scans. Cohe-ReHo and support vector machine analyses were used to analyze the data. RESULTS Compared with the healthy controls, the AOS group showed significantly decreased Cohe-ReHo values distributed over brain regions, including the left postcentral gyrus, left superior temporal gyrus, left paracentral lobule, right precentral gyrus, right inferior parietal lobule (IPL), right middle frontal gyrus, and bilateral precuneus. No region with increased Cohe-ReHo values was observed in the AOS group compared with healthy controls. In addition, the right IPL was correlated with fluency (r=-0.324, p=0.030). However, the correlation was not significant after the Bonferroni correction at p<0.0083 (0.05/6). A combination of the Cohe-ReHo values in the bilateral precuneus and right IPL discriminated the patients from controls with the sensitivity, specificity, and accuracy of 91.67%, 87.10%, and 89.87%, respectively. CONCLUSION Our findings suggested that the AOS patients exhibited diminished Cohe-ReHo values in some regions within the DMN network and sensorimotor network. The abnormalities in particular brain regions (bilateral precuneus and right IPL) may serve as potential biomarkers for AOS.
Collapse
|
32
|
Du Y, Fryer SL, Fu Z, Lin D, Sui J, Chen J, Damaraju E, Mennigen E, Stuart B, Loewy RL, Mathalon DH, Calhoun VD. Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis. Neuroimage 2017; 180:632-645. [PMID: 29038030 DOI: 10.1016/j.neuroimage.2017.10.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 01/14/2023] Open
Abstract
Individuals at clinical high-risk (CHR) for psychosis are characterized by attenuated psychotic symptoms. Only a minority of CHR individuals convert to full-blown psychosis. Therefore, there is a strong interest in identifying neurobiological abnormalities underlying the psychosis risk syndrome. Dynamic functional connectivity (DFC) captures time-varying connectivity over short time scales, and has the potential to reveal complex brain functional organization. Based on resting-state functional magnetic resonance imaging (fMRI) data from 70 healthy controls (HCs), 53 CHR individuals, and 58 early illness schizophrenia (ESZ) patients, we applied a novel group information guided ICA (GIG-ICA) to estimate inherent connectivity states from DFC, and then investigated group differences. We found that ESZ patients showed more aberrant connectivities and greater alterations than CHR individuals. Results also suggested that disease-related connectivity states occurred in CHR and ESZ groups. Regarding the dominant state with the highest contribution to dynamic connectivity, ESZ patients exhibited greater impairments than CHR individuals primarily in the cerebellum, frontal cortex, thalamus and temporal cortex, while CHR and ESZ populations shared common aberrances mainly in the supplementary motor area, parahippocampal gyrus and postcentral cortex. CHR-specific changes were also found in the connections between the superior frontal gyrus and calcarine cortex in the dominant state. Our findings suggest that CHR individuals generally show an intermediate functional connectivity pattern between HCs and SZ patients but also have unique connectivity alterations.
Collapse
Affiliation(s)
- Yuhui Du
- The Mind Research Network, Albuquerque, NM, USA; School of Computer & Information Technology, Shanxi University, Taiyuan, China.
| | - Susanna L Fryer
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; The Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, USA
| | - Zening Fu
- The Mind Research Network, Albuquerque, NM, USA
| | | | - Jing Sui
- The Mind Research Network, Albuquerque, NM, USA; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jiayu Chen
- The Mind Research Network, Albuquerque, NM, USA
| | | | - Eva Mennigen
- The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Barbara Stuart
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Rachel L Loewy
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; The Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
33
|
Greenland-White SE, Ragland JD, Niendam TA, Ferrer E, Carter CS. Episodic memory functions in first episode psychosis and clinical high risk individuals. Schizophr Res 2017; 188:151-157. [PMID: 28143678 PMCID: PMC5533652 DOI: 10.1016/j.schres.2017.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Individuals with schizophrenia have disproportionate memory impairments when encoding relational versus item-specific information, and when using recollection versus familiarity during retrieval. It is unclear whether this pattern is unique to people with chronic schizophrenia, or if it occurs in individuals after a first episode of psychosis (FE), or when at clinical high-risk for psychosis (CHR). METHODS We administered the Relational and Item-Specific Memory task (RiSE) to 22 CHR, 101 FE, and 58 typically developing (TD) participants. We examined group differences in item and relational encoding, and familiarity-based and recollection-based retrieval using parametric analysis and structural equation modeling (SEM). Longitudinal data allowed us to examine relations between baseline RiSE performance and change in clinical symptoms at 1-year follow-up in the FE group. RESULTS Groups did not differ on familiarity. FE and CHR groups were equally impaired on overall recognition accuracy. Although recollection was impaired in both FE and CHR groups following relational encoding, only the FE group had impaired recollection following item encoding. SEM showed atypical relationships between familiarity and recollection, as well as familiarity and item recognition for both the FE and CHR groups. For FE individuals, better baseline recognition accuracy predicted less severe negative symptoms at 1-year follow-up. CONCLUSIONS Impaired relational and recollective memory may reflect neurodevelopmental abnormalities predating conversion to psychosis. These memory deficits appear related to negative symptom changes. In contrast, item specific recollection deficits appear to occur after the development of full psychosis. Familiarity appears to be a relatively preserved memory function across the psychosis spectrum.
Collapse
Affiliation(s)
| | - J. Daniel Ragland
- Corresponding Author. Center for Neuroscience, UC Davis Imaging Research Center, 4701 X Street Sacramento CA, 95817. Tel +1 916 734 5802; fax +1 916 734 8750.
| | | | | | | |
Collapse
|
34
|
Lu S, Gao W, Wei Z, Wang D, Hu S, Huang M, Xu Y, Li L. Intrinsic brain abnormalities in young healthy adults with childhood trauma: A resting-state functional magnetic resonance imaging study of regional homogeneity and functional connectivity. Aust N Z J Psychiatry 2017; 51:614-623. [PMID: 27694638 DOI: 10.1177/0004867416671415] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Childhood trauma confers great risk for the development of multiple psychiatric disorders; however, the neural basis for this association is still unknown. The present resting-state functional magnetic resonance imaging study aimed to detect the effects of childhood trauma on brain function in a group of young healthy adults. METHODS In total, 24 healthy individuals with childhood trauma and 24 age- and sex-matched adults without childhood trauma were recruited. Each participant underwent resting-state functional magnetic resonance imaging scanning. Intra-regional brain activity was evaluated by regional homogeneity method and compared between groups. Areas with altered regional homogeneity were further selected as seeds in subsequent functional connectivity analysis. Statistical analyses were performed by setting current depression and anxiety as covariates. RESULTS Adults with childhood trauma showed decreased regional homogeneity in bilateral superior temporal gyrus and insula, and the right inferior parietal lobule, as well as increased regional homogeneity in the right cerebellum and left middle temporal gyrus. Regional homogeneity values in the left middle temporal gyrus, right insula and right cerebellum were correlated with childhood trauma severity. In addition, individuals with childhood trauma also exhibited altered default mode network, cerebellum-default mode network and insula-default mode network connectivity when the left middle temporal gyrus, right cerebellum and right insula were selected as seed area, respectively. CONCLUSION The present outcomes suggest that childhood trauma is associated with disturbed intrinsic brain function, especially the default mode network, in adults even without psychiatric diagnoses, which may mediate the relationship between childhood trauma and psychiatric disorders in later life.
Collapse
Affiliation(s)
- Shaojia Lu
- 1 Key Laboratory of Mental Disorder's Management of Zhejiang Province and Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijia Gao
- 2 Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoguo Wei
- 3 Key Laboratory of Psychiatry and Mental Health of Hunan Province and Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- 4 Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, China
| | - Dandan Wang
- 1 Key Laboratory of Mental Disorder's Management of Zhejiang Province and Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaohua Hu
- 1 Key Laboratory of Mental Disorder's Management of Zhejiang Province and Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Huang
- 1 Key Laboratory of Mental Disorder's Management of Zhejiang Province and Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- 1 Key Laboratory of Mental Disorder's Management of Zhejiang Province and Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingjiang Li
- 3 Key Laboratory of Psychiatry and Mental Health of Hunan Province and Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Sokolov AA, Miall RC, Ivry RB. The Cerebellum: Adaptive Prediction for Movement and Cognition. Trends Cogn Sci 2017; 21:313-332. [PMID: 28385461 PMCID: PMC5477675 DOI: 10.1016/j.tics.2017.02.005] [Citation(s) in RCA: 430] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
Abstract
Over the past 30 years, cumulative evidence has indicated that cerebellar function extends beyond sensorimotor control. This view has emerged from studies of neuroanatomy, neuroimaging, neuropsychology, and brain stimulation, with the results implicating the cerebellum in domains as diverse as attention, language, executive function, and social cognition. Although the literature provides sophisticated models of how the cerebellum helps refine movements, it remains unclear how the core mechanisms of these models can be applied when considering a broader conceptualization of cerebellar function. In light of recent multidisciplinary findings, we examine how two key concepts that have been suggested as general computational principles of cerebellar function- prediction and error-based learning- might be relevant in the operation of cognitive cerebro-cerebellar loops.
Collapse
Affiliation(s)
- Arseny A Sokolov
- Service de Neurologie, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne 1011, Switzerland; Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley 94720, USA
| |
Collapse
|
36
|
Du Y, Pearlson GD, Lin D, Sui J, Chen J, Salman M, Tamminga CA, Ivleva EI, Sweeney JA, Keshavan MS, Clementz BA, Bustillo J, Calhoun VD. Identifying dynamic functional connectivity biomarkers using GIG-ICA: Application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder. Hum Brain Mapp 2017; 38:2683-2708. [PMID: 28294459 PMCID: PMC5399898 DOI: 10.1002/hbm.23553] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 01/05/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have shown altered brain dynamic functional connectivity (DFC) in mental disorders. Here, we aim to explore DFC across a spectrum of symptomatically-related disorders including bipolar disorder with psychosis (BPP), schizoaffective disorder (SAD), and schizophrenia (SZ). We introduce a group information guided independent component analysis procedure to estimate both group-level and subject-specific connectivity states from DFC. Using resting-state fMRI data of 238 healthy controls (HCs), 140 BPP, 132 SAD, and 113 SZ patients, we identified measures differentiating groups from the whole-brain DFC and traditional static functional connectivity (SFC), separately. Results show that DFC provided more informative measures than SFC. Diagnosis-related connectivity states were evident using DFC analysis. For the dominant state consistent across groups, we found 22 instances of hypoconnectivity (with decreasing trends from HC to BPP to SAD to SZ) mainly involving post-central, frontal, and cerebellar cortices as well as 34 examples of hyperconnectivity (with increasing trends HC through SZ) primarily involving thalamus and temporal cortices. Hypoconnectivities/hyperconnectivities also showed negative/positive correlations, respectively, with clinical symptom scores. Specifically, hypoconnectivities linking postcentral and frontal gyri were significantly negatively correlated with the PANSS positive/negative scores. For frontal connectivities, BPP resembled HC while SAD and SZ were more similar. Three connectivities involving the left cerebellar crus differentiated SZ from other groups and one connection linking frontal and fusiform cortices showed a SAD-unique change. In summary, our method is promising for assessing DFC and may yield imaging biomarkers for quantifying the dimension of psychosis. Hum Brain Mapp 38:2683-2708, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuhui Du
- The Mind Research Network & LBERIAlbuquerqueNew Mexico
- School of Computer & Information TechnologyShanxi UniversityTaiyuanChina
| | - Godfrey D. Pearlson
- Departments of PsychiatryYale UniversityNew HavenConnecticut
- Departments of NeurobiologyYale UniversityNew HavenConnecticut
- Olin Neuropsychiatry Research Center, Institute of LivingHartfordConnecticut
| | - Dongdong Lin
- The Mind Research Network & LBERIAlbuquerqueNew Mexico
| | - Jing Sui
- The Mind Research Network & LBERIAlbuquerqueNew Mexico
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of Automation, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of SciencesBeijingChina
| | - Jiayu Chen
- The Mind Research Network & LBERIAlbuquerqueNew Mexico
| | - Mustafa Salman
- The Mind Research Network & LBERIAlbuquerqueNew Mexico
- Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueNew Mexico
| | - Carol A. Tamminga
- Department of PsychiatryUniversity of Texas Southwestern Medical SchoolDallasTexas
| | - Elena I. Ivleva
- Department of PsychiatryUniversity of Texas Southwestern Medical SchoolDallasTexas
| | - John A. Sweeney
- Department of PsychiatryUniversity of Texas Southwestern Medical SchoolDallasTexas
- University of CincinnatiCincinnatiOhio
| | - Matcheri S. Keshavan
- Department of PsychiatryBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusetts
| | - Brett A. Clementz
- Departments of Psychology and NeuroscienceBioImaging Research Center, University of GeorgiaAthensGeorgia
| | - Juan Bustillo
- Department of PsychiatryUniversity of New MexicoAlbuquerqueNew Mexico
| | - Vince D. Calhoun
- The Mind Research Network & LBERIAlbuquerqueNew Mexico
- Departments of PsychiatryYale UniversityNew HavenConnecticut
- Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueNew Mexico
- Department of PsychiatryUniversity of New MexicoAlbuquerqueNew Mexico
| |
Collapse
|
37
|
Family-based case-control study of homotopic connectivity in first-episode, drug-naive schizophrenia at rest. Sci Rep 2017; 7:43312. [PMID: 28256527 PMCID: PMC5335664 DOI: 10.1038/srep43312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/23/2017] [Indexed: 11/09/2022] Open
Abstract
Family-based case-control design is rarely used but powerful to reduce the confounding effects of environmental factors on schizophrenia. Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 family-based controls (FBC), and 40 healthy controls (HC) underwent resting-state functional MRI. Voxel-mirrored homotopic connectivity (VMHC), receiver operating characteristic curve (ROC), and support vector machine (SVM) were used to process the data. Compared with the FBC, the patients showed lower VMHC in the precuneus, fusiform gyrus/cerebellum lobule VI, and lingual gyrus/cerebellum lobule VI. The patients exhibited lower VMHC in the precuneus relative to the HC. ROC analysis exhibited that the VMHC values in these brain regions might not be ideal biomarkers to distinguish the patients from the FBC/HC. However, SVM analysis indicated that a combination of VMHC values in the precuneus and lingual gyrus/cerebellum lobule VI might be used as a potential biomarker to distinguish the patients from the FBC with a sensitivity of 96.43%, a specificity of 89.29%, and an accuracy of 92.86%. Results suggested that patients with schizophrenia have decreased homotopic connectivity in the motor and low level sensory processing regions. Neuroimaging studies can adopt family-based case-control design as a viable option to reduce the confounding effects of environmental factors on schizophrenia.
Collapse
|
38
|
Olanzapine modulation of long- and short-range functional connectivity in the resting brain in a sample of patients with schizophrenia. Eur Neuropsychopharmacol 2017; 27:48-58. [PMID: 27887859 DOI: 10.1016/j.euroneuro.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 01/12/2023]
Abstract
Treatment effects of antipsychotic drugs on cerebral function are seldom examined. Exploring functional connectivity (FC) in drug-free schizophrenia patients before and after antipsychotic treatment can improve the understanding of antipsychotic drug mechanisms. A total of 17 drug-free patients with recurrent schizophrenia and 24 healthy controls underwent resting-state functional magnetic resonance imaging scans. Long- and short-range FC strengths (FCS) were calculated for each participant. Compared with the controls, the patients at baseline exhibited increased long-range positive FCS (lpFCS) in the bilateral inferior parietal lobule (IPL) and decreased lpFCS in the brain regions of the default-mode network (DMN) regions and sensorimotor circuits of the brain. By contrast, increased short-range positive FCS was observed in the right IPL of the patients at baseline compared with the controls. After treatment with olanzapine, increased FC in the DMN and sensorimotor circuits of the brain was noted, whereas decreased FC was observed in the left superior temporal gyrus (STG). Moreover, the alterations of the FCS values and the reductions in symptom severity among the patients after treatment were correlated. The present study provides evidence that olanzapine normalizes the abnormalities of long- and short-range FCs in schizophrenia. FC reductions in the right IPL may be associated with early treatment response, whereas those in the left STG may be related to poor treatment outcome.
Collapse
|
39
|
Environmental factors linked to depression vulnerability are associated with altered cerebellar resting-state synchronization. Sci Rep 2016; 6:37384. [PMID: 27892484 PMCID: PMC5124945 DOI: 10.1038/srep37384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/28/2016] [Indexed: 11/14/2022] Open
Abstract
Hosting nearly eighty percent of all human neurons, the cerebellum is functionally connected to large regions of the brain. Accumulating data suggest that some cerebellar resting-state alterations may constitute a key candidate mechanism for depressive psychopathology. While there is some evidence linking cerebellar function and depression, two topics remain largely unexplored. First, the genetic or environmental roots of this putative association have not been elicited. Secondly, while different mathematical representations of resting-state fMRI patterns can embed diverse information of relevance for health and disease, many of them have not been studied in detail regarding the cerebellum and depression. Here, high-resolution fMRI scans were examined to estimate functional connectivity patterns across twenty-six cerebellar regions in a sample of 48 identical twins (24 pairs) informative for depression liability. A network-based statistic approach was employed to analyze cerebellar functional networks built using three methods: the conventional approach of filtered BOLD fMRI time-series, and two analytic components of this oscillatory activity (amplitude envelope and instantaneous phase). The findings indicate that some environmental factors may lead to depression vulnerability through alterations of the neural oscillatory activity of the cerebellum during resting-state. These effects may be observed particularly when exploring the amplitude envelope of fMRI oscillations.
Collapse
|
40
|
Garg S, Sinha VK, Tikka SK, Mishra P, Goyal N. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: A randomized rater blind-sham controlled study. Psychiatry Res 2016; 243:413-20. [PMID: 27450744 DOI: 10.1016/j.psychres.2016.07.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic for schizophrenia. Treatment effects of rTMS have been variable across different symptom clusters, with negative symptoms showing better response, followed by auditory hallucinations. Cerebellum, especially vermis and its abnormalities (both structural and functional) have been implicated in cognitive, affective and positive symptoms of schizophrenia. rTMS to this alternate site has been suggested as a novel target for treating patients with this disorder. Hypothesizing cerebellar vermal magnetic stimulation as an adjunct to treat schizophrenia psychopathology, we conducted a double blind randomized sham controlled rTMS study. In this study, forty patients were randomly allocated (using block randomization method) to active high frequency (theta patterned) rTMS (n=20) and sham (n=20) groups. They received 10 sessions over 2 weeks. The Positive and Negative Syndrome Scale (PANSS) and Calgary Depression Scale for Schizophrenia (CDSS) scores were assessed at baseline, after last session and at 4 weeks (2 weeks post-rTMS). We found a significantly greater improvement in the group receiving active rTMS sessions, compared to the sham group on negative symptoms, and depressive symptoms. We conclude that cerebellar stimulation can be used as an effective adjunct to treat negative and affective symptoms.
Collapse
Affiliation(s)
- Shobit Garg
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical & Health Sciences, Dehradun, Uttarakhand, India
| | - Vinod Kumar Sinha
- KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India
| | - Sai Krishna Tikka
- KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India.
| | - Preeti Mishra
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical & Health Sciences, Dehradun, Uttarakhand, India
| | - Nishant Goyal
- KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India
| |
Collapse
|
41
|
Wang H, Guo W, Liu F, Chen J, Wu R, Zhang Z, Yu M, Li L, Zhao J. Clinical significance of increased cerebellar default-mode network connectivity in resting-state patients with drug-naive somatization disorder. Medicine (Baltimore) 2016; 95:e4043. [PMID: 27428190 PMCID: PMC4956784 DOI: 10.1097/md.0000000000004043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The cerebellum has been proven to be connected to the brain network, as in the default-mode network (DMN), among healthy subjects and patients with psychiatric disorders. However, whether or not abnormal cerebellar DMN connectivity exists and what its clinical significance is among drug-naive patients with somatization disorder (SD) at rest remain unclear.A total of 25 drug-naive patients with SD and 28 healthy controls were enrolled for a resting-state scan. The imaging data were analyzed using the seed-based functional connectivity (FC) method.Compared with the controls, patients with SD showed increased left/right Crus I-left/right angular gyrus (AG) connectivity and Lobule IX-left superior medial prefrontal cortex (MPFC) connectivity. The FC values of the left/right Crus I-right AG connectivity of the patients were positively correlated with their scores in the somatization subscale of the symptom checklist-90 (Scl-90). A trend level of correlations was observed between the FC values of the left Crus I-left AG connectivity of the patients and their scores for the somatization subscale of Scl-90, as well as between the FC values of their Lobule IX-left superior MPFC connectivity and their scores for the Eysenck personality questionnaire (EPQ) extraversion.Our findings show the increased cerebellar DMN connectivity in patients with SD and therefore highlight the importance of the DMN in the neurobiology of SD. Increased cerebellar DMN connectivities are also correlated with their somatization severity and personality, both of which bear clinical significance.
Collapse
Affiliation(s)
- Houliang Wang
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health. Changsha, Hunan 410011, China
| | - Wenbin Guo
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health. Changsha, Hunan 410011, China
- Correspondence: Wenbin Guo, Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health. Changsha, Hunan 410011, China (e-mail: )
| | - Feng Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan
| | - Jindong Chen
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health. Changsha, Hunan 410011, China
| | - Renrong Wu
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health. Changsha, Hunan 410011, China
| | - Zhikun Zhang
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Miaoyu Yu
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Lehua Li
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health. Changsha, Hunan 410011, China
| | - Jingping Zhao
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health. Changsha, Hunan 410011, China
| |
Collapse
|
42
|
Mehta UM, Keshavan MS, Gangadhar BN. Bridging the schism of schizophrenia through yoga-Review of putative mechanisms. Int Rev Psychiatry 2016; 28:254-64. [PMID: 27187680 DOI: 10.1080/09540261.2016.1176905] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schizophrenia patients experience a 'disconnect' at multiple levels-neuronal networks, mental processes, and interpersonal relationships. The resultant poor quality-of-life and functional disability are related to the persistent cognitive deficits and negative symptoms, which are rather resistant to conventional antipsychotic medications. Yoga has emerged as an important therapeutic intervention to improve quality-of-life in schizophrenia. Recent preliminary evidence suggests that effects of yoga on cognitive and negative symptoms may drive this benefit. This study attempts to integrate evidence from neuroscience-based research, which focuses on the neuroplasticity-harnessing effects of yoga to bridge the schizophrenia connectopathy. In an overarching model to study putative neurobiological mechanisms that drive therapeutic effects of yoga, it is proposed that (a) various styles of meditation may help in strengthening the lateral and medial prefrontal brain networks, thus improving neurocognition and mentalizing abilities, and (b) learning and performing co-ordinated physical postures with a teacher facilitates imitation and the process of being imitated, which can improve social cognition and empathy through reinforcement of the premotor and parietal mirror neuron system. Oxytocin may play a role in mediating these processes, leading to better social connectedness and social outcomes. Clinical and heuristic implications of this model are further discussed.
Collapse
Affiliation(s)
- Urvakhsh Meherwan Mehta
- a Department of Psychiatry , National Institute of Mental Health & Neurosciences (NIMHANS) , Bengaluru , India
| | - Matcheri S Keshavan
- b Department of Psychiatry , Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| | - Bangalore N Gangadhar
- a Department of Psychiatry , National Institute of Mental Health & Neurosciences (NIMHANS) , Bengaluru , India
| |
Collapse
|
43
|
Patients with first-episode, drug-naive schizophrenia and subjects at ultra-high risk of psychosis shared increased cerebellar-default mode network connectivity at rest. Sci Rep 2016; 6:26124. [PMID: 27188233 PMCID: PMC4870637 DOI: 10.1038/srep26124] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
Increased cerebellar-default mode network (DMN) connectivity has been observed in first-episode, drug-naive patients with schizophrenia. However, it remains unclear whether increased cerebellar-DMN connectivity starts earlier than disease onset. Thirty-four ultra-high risk (UHR) subjects, 31 first-episode, drug-naive patients with schizophrenia and 37 healthy controls were enrolled for a resting-state scan. The imaging data were analyzed using the seed-based functional connectivity (FC) method. Compared with the controls, UHR subjects and patients with schizophrenia shared increased connectivity between the right Crus I and bilateral posterior cingulate cortex/precuneus and between Lobule IX and the left superior medial prefrontal cortex. There are positive correlations between the right Crus I-bilateral precuneus connectivity and clinical variables (Structured Interview for Prodromal Syndromes/Positive and Negative Symptom Scale negative symptoms/total scores) in the UHR subjects. Increased cerebellar-DMN connectivity shared by the UHR subjects and the patients not only highlights the importance of the DMN in the pathophysiology of psychosis but also may be a trait alteration for psychosis.
Collapse
|