1
|
Saptarshi VR, Natarajan S, Sudhakar Baviskar P, Arjun Ahuja S, Dinesh Dhirawani A. Does Integration of Technology and Customization of Implants Produce Better Outcomes in Post-Traumatic Orbital Reconstruction? A Systematic Review and Meta-Analysis. J Oral Maxillofac Surg 2024; 82:806-819. [PMID: 38640959 DOI: 10.1016/j.joms.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/24/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE This review aims to compare and evaluate the outcomes achieved by integrating technological aids and the influence of different implant designs in the reconstruction of post-traumatic orbital defects. METHODS Electronic searches of the MEDLINE, Embase, Cochrane Library, and Google Scholar databases until March 2023 were conducted. Clinical controlled trials, observational studies, cohort studies, and retrospective studies were identified and included. The predictor variables were the integration of technological aids namely, computer-assisted surgical planning, mirror image overlay, and intraoperative navigation with the utilization of different orbital implant designs (standard orbital meshes, preformed implants, prebent implants, and patient-specific implant [PSI]) during post-traumatic orbital reconstruction. The primary outcome variables were orbital volume, diplopia, and enophthalmos. Weighted or mean difference and risk ratios at 95% confidence intervals were calculated, where P < .05 was considered significant and a random effects model was adopted. RESULTS This review included 7 studies with 560 participants. The results indicate that the difference in postoperative orbital volume between affected and nonaffected eye showed no statistically significant difference between PSI and prebent group (mean difference, -0.41 P = .28, I2 = 46%). PSI group resulted in diplopia 0.71-fold less than that of the standard orbital mesh group but was not statistically significant (P = .15). Standard orbital mesh group is 0.30 times at higher risk of developing enophthalmos as compared to PSI group (P = .010). The literature suggests PSIs are preferred for patients with large defects (Jaquiéry's III-IV), whereas prebent implants are equally effective as PSIs in patients with preserved infraorbital buttress and retrobulbar bulge. CONCLUSION PSIs are associated with improved outcomes, especially for correcting enophthalmos. The data suggests the potential efficacy of prebent implants and PSIs in orbital volume corrections. There is a lack of randomized studies. This review should serve as a recommendation for further studies to contribute to the existing literature.
Collapse
Affiliation(s)
- Varad Rajendra Saptarshi
- Resident, Department of Oral & Maxillofacial Surgery, MGM Dental College & Hospital, Navi Mumbai, Maharashtra, India
| | - Srivalli Natarajan
- Dean, Professor and Head, Department of Oral & Maxillofacial Surgery, MGM Dental College & Hospital, Navi Mumbai, Maharashtra, India.
| | - Padmakar Sudhakar Baviskar
- Assistant Professor, Department of Oral & Maxillofacial Surgery, MGM Dental College & Hospital, Navi Mumbai, Maharashtra, India
| | - Suraj Arjun Ahuja
- Associate Professor, Department of Oral & Maxillofacial Surgery, MGM Dental College & Hospital, Navi Mumbai, Maharashtra, India
| | - Aditya Dinesh Dhirawani
- Resident, Department of Oral & Maxillofacial Surgery, MGM Dental College & Hospital, Navi Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Hardisty M, Wei YT, Hontscharuk R, Ibrahimi A, Antonyshyn O, Edwards G, Mainprize JG, Whyne CM. Accuracy of Orbital Shape Reconstruction-Comparative Analysis of Errors in Implant Shape Versus Implant Positioning: A Cadaveric Study. J Craniofac Surg 2023; 34:1727-1731. [PMID: 37552131 DOI: 10.1097/scs.0000000000009566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/24/2023] [Indexed: 08/09/2023] Open
Abstract
INTRODUCTION Orbital blowout fractures are commonly reconstructed with implants shaped to repair orbital cavity defects, restore ocular position and projection, and correct diplopia. Orbital implant shaping has traditionally been performed manually by surgeons, with more recent use of computer-assisted design (CAD). Accuracy of implant placement is also key to reconstruction. This study compares the placement accuracy of orbital implants, testing the hypothesis that CAD-shaped implants indexed to patient anatomy will better restore orbit geometry compared with manually shaped implants and manually placed implants. METHODS The placement accuracy of orbital implants was assessed within a cadaveric blowout fracture model (3 skulls, 6 orbits) via 3-dimensional CT analysis. Defects were repaired with 4 different techniques: manually placed-manually shaped composite (titanium-reinforced porous polyethylene), manually placed CAD composite, indexed placed CAD composite, and indexed placed CAD titanium mesh. RESULTS Implant placement accuracy differed significantly with the implant preparation method ( P =0.01). Indexing significantly improved the placement accuracy ( P =0.002). Indexed placed titanium mesh CAD implants (1.42±0.33 mm) were positioned significantly closer to the intact surface versus manually placed-manually shaped composite implants (2.12±0.39 mm). DISCUSSION Computer-assisted design implants indexed to patient geometry yielded average errors below the acceptable threshold (2 mm) for enophthalmos and diplopia. This study highlights the importance of adequately indexing CAD-designed implants to patient geometry to ensure accurate orbital reconstructions.
Collapse
Affiliation(s)
- Michael Hardisty
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute
- Physical Sciences, Sunnybrook Research Institute
- Department of Surgery
| | - Yuan Tao Wei
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute
- Biomedical Engineering, University of Toronto
| | | | - Amani Ibrahimi
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute
| | - Oleh Antonyshyn
- Department of Surgery
- Division of Plastic Surgery, Sunnybrook Health Sciences Centre
- Calavera Surgical Design, Toronto, Ontario, Canada
| | | | - James G Mainprize
- Physical Sciences, Sunnybrook Research Institute
- Calavera Surgical Design, Toronto, Ontario, Canada
| | - Cari M Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute
- Physical Sciences, Sunnybrook Research Institute
- Department of Surgery
- Biomedical Engineering, University of Toronto
| |
Collapse
|
3
|
Rana M, Moellmann HL, Schorn L, Lommen J, Rana M, Wilkat M, Hufendiek K. Primary Orbital Reconstruction with Selective Laser Melting (SLM) of Patient-Specific Implants (PSIs): An Overview of 96 Surgically Treated Patients. J Clin Med 2022; 11:jcm11123361. [PMID: 35743432 PMCID: PMC9224837 DOI: 10.3390/jcm11123361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Contemporary advances in technology have allowed the transfer of knowledge from industrial laser melting systems to surgery; such an approach could increase the degree of accuracy in orbital restoration. The aim of this study was to examine the accuracy of selective laser melted PSIs (patient-specific implants) and navigation in primary orbital reconstruction. Ninety-six patients with orbital fractures were included in this study. Planned vs. achieved orbital volumes (a) and angles (b) were compared to the unaffected side (n = 96). The analysis included the overlay of post-treatment on planned images (iPlan 3.0.5, Brainlab®, Feldkirchen, Germany). The mean difference in orbital volume between the digitally planned orbit and the postoperative orbit was 29.16 cm3 (SD 3.54, presurgical) to 28.33 cm3 (SD 3.64, postsurgical, t = 5.00, df = 95.00; p < 0.001), resulting in a mean volume difference (planned vs. postop) of less than 1 cm3. A 3D analysis of the color mapping showed minor deviations compared to the mirrored unaffected side. The results suggested that primary reconstruction in complex orbital wall fractures can be routinely achieved with a high degree of accuracy by using selective laser melted orbital PSIs.
Collapse
Affiliation(s)
- Majeed Rana
- Department of Oral and Maxillofacial Surgery, Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (M.R.); (L.S.); (J.L.); (M.W.)
| | - Henriette L. Moellmann
- Department of Oral and Maxillofacial Surgery, Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (M.R.); (L.S.); (J.L.); (M.W.)
- Correspondence:
| | - Lara Schorn
- Department of Oral and Maxillofacial Surgery, Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (M.R.); (L.S.); (J.L.); (M.W.)
| | - Julian Lommen
- Department of Oral and Maxillofacial Surgery, Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (M.R.); (L.S.); (J.L.); (M.W.)
| | - Madiha Rana
- Department of Psychology, University of Applied Sciences, Doberaner Weg 20, 22143 Hamburg, Germany;
| | - Max Wilkat
- Department of Oral and Maxillofacial Surgery, Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (M.R.); (L.S.); (J.L.); (M.W.)
| | - Karsten Hufendiek
- Department of Ophthalmology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany;
| |
Collapse
|
4
|
Kotecha S, Ferro A, Harrison P, Fan K. Orbital reconstruction: a systematic review and meta-analysis evaluating the role of patient-specific implants. Oral Maxillofac Surg 2022:10.1007/s10006-022-01074-x. [PMID: 35589881 DOI: 10.1007/s10006-022-01074-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
The purpose of this study is to execute an evidence-based review answering the following question (PICO): "Do patient-specific implants (PSI), manufactured or designed using computer-assisted technology, improve outcomes (orbital volume change, enophthalmos, diplopia, and operative duration) compared to conventional methods in orbital reconstruction following traumatic orbital injury in the adult patient population?" We performed a systematic review and meta-analysis in accordance with PRISMA guidelines. Inclusion criteria included any comparative paper whereby computer-assisted technology was used in the prefabrication or design process of implants for use in post-traumatic orbital reconstruction. Paediatric patient populations were excluded. Eight databases were systematically searched for relevant studies. Risk of bias was assessed through the NOS and RoB2 tools. Random-effects models were used to identify differences in outcomes between groups where possible. Analysis was performed using R 4.0.0. Eleven of 4784 identified studies were included, comprising 628 adult patients, with 302 and 326 patients in the patient-specific and conventional groups, respectively. Weighted mean difference between unaffected and post-operative orbital volume was 0.32 ml (SD 0.75) and 0.95 ml (SD 1.03) for patient-specific and conventional groups, respectively. Significant improvement was identified in post-operative orbital volume reconstitution with the use of PSI, compared to conventional implants, in 3 of the 5 reporting studies. Equally, post-operative enophthalmos trended towards lower severity in the patient-specific group, with 11.2% of patients affected in the patient-specific group and 19.2% in the conventional group, and operative duration was significantly reduced with the use of PSI in 3 of the 6 reporting studies. Despite a tendency to favour PSI, no statistically significant differences in key outcomes were identified on meta-analysis. Although there is some encouraging data to support improved outcomes with the use of patient-specific orbital implants in post-traumatic reconstruction, there is, at present, no statistically significant evidence to objectively support their use over conventional implants based on the currently available comparative studies. Based on the results of this study, the choice of implant used should, thus, be left to the discretion of the surgeon.
Collapse
Affiliation(s)
- Sanjeev Kotecha
- Oral and Maxillofacial Surgery Department, King's College Hospital NHS Foundation Trust, London, UK. .,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK.
| | - Ashley Ferro
- Oral and Maxillofacial Surgery Department, King's College Hospital NHS Foundation Trust, London, UK.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK
| | - Patrick Harrison
- Oral and Maxillofacial Surgery Department, King's College Hospital NHS Foundation Trust, London, UK.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK
| | - Kathleen Fan
- Oral and Maxillofacial Surgery Department, King's College Hospital NHS Foundation Trust, London, UK.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK
| |
Collapse
|
5
|
Customized and Navigated Primary Orbital Fracture Reconstruction: Computerized Operation Neuronavigated Surgery Orbital Recent Trauma (CONSORT) Protocol. J Craniofac Surg 2022; 33:1236-1240. [PMID: 34999613 DOI: 10.1097/scs.0000000000008461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Combined orbital medial wall and floor fractures and large isolated orbital floor fractures commonly require surgical treatment due to the high probability of diplopia and enophthalmos. Primary reconstruction of these orbital fractures requires a high-level surgeon with a great amount of technical surgical skill. The use of novel technology can greatly improve the accuracy of reconstruction and achieve satisfactory clinical outcomes. Hence, the authors aimed to present our findings and overall experience with respect to extensive floor and medial wall orbital fracture reconstruction according to the Computerized Operation Neuronavigated Surgery Orbital Recent Trauma (CONSORT) protocol, a workflow designed for the primary reconstruction of orbital fractures with customized mesh and intraoperative navigation. A total of 25 consecutively presenting patients presenting with unilateral extensive orbital floor fractures and orbital floor and medial wall fractures were treated following the CONSORT workflow from January 2017 to March 2020. Fractures were surgically treated with a customized implant and intraoperative navigation. Patients underwent surgery within 14 days of the trauma injury. Preoperative and postoperative functional and aesthetic outcomes are described herein. All fractures were successfully reconstructed. Postoperatively, all 19 patients with preoperative diplopia reported the resolution of diplopia. Enophthalmos resolved in 18/20 cases. No patients had major complications during follow-up. Thus, the authors conclude that the CONSORT protocol introduced by the authors is an adaptable and reliable workflow for the early treatment of orbital fractures and can clearly optimize functional and aesthetic outcomes, reduce costs and intensive time commitments, and make customized and navigated surgery more available for institutions.
Collapse
|
6
|
Nazimi AJ, Nabil S. Intraoperative Computed Tomography Image Fusion for Orbital Blowout Fracture Reconstruction. ARCHIVES OF OROFACIAL SCIENCES 2021; 16:1-12. [DOI: 10.21315/aos2021.16.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Intraoperative computed tomography (CT) has been previously described and acknowledged for its use in orbital blowout fracture reconstructions. We described a clinical case series managed by this technique combined with intraoperative image fusion for accuracy in orbital implant position. In total, eight patients who sustained a total number of 19 orbital wall fractures were described. From the total number of 19 blowout orbital fracture reconstructions comprised of medial and inferior (floor) orbital fractures, malposition was identified in a total of four orbital implants by using image fusion. All cases of implant malposition were immediately revised intraoperatively. Subsequent fusion was carried out to confirm whether the revision was satisfactorily achieved. We found that the intraoperative image fusion technique utilised to determine orbital implant position, especially at the posterior ledge, further augmented the role of intraoperative CT scanning. Image fusion conceptually provides an immediate, real-time, and objective solution for intraoperative image analysis and potentially eliminates problems with misaligned CT images. It also reduces the need for the surgeon to ‘eye-ball’ the CT images acquired or the need for additional intraoperative time, since the patient’s head orientation is always axially at random during the acquisition of the CT. Conventional methods for CT image assessment are subjected to one’s own interpretation and may introduce inconsistent or longer intraoperative decision-making. The technique facilitates intraoperative decision-making and reduces the risk of orbital implant malposition in orbital blowout fracture reconstructions. Hence, surgical complication in relation to orbital implant malposition in orbital blowout fracture management could be minimised. In addition, no further postoperative imaging is required.
Collapse
Affiliation(s)
- Abd Jabar Nazimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Syed Nabil
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Assesing Intraoperative Virtual Navigation on My Craniofacial Surgery Fellowship for Orbital Fractures Repair: Is it Useful? J Craniofac Surg 2020; 32:238-241. [PMID: 32833825 DOI: 10.1097/scs.0000000000006921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Orbital fractures pose specific challenge in its surgical management. One of the greatest challenges is to obtain satisfactory restoration of normal orbital volume and globe projection following traumatic injury, due to the inability of the surgeon to gain adequate visibility and to verify proper implant position and placement during the operation. Surgical navigation is a very helpful tool when dealing with the reconstruction of such orbital fractures. During the training of the craniofacial fellowship learning to recognize the orbital floor boundaries is essential for the correct implant placement for reconstruction, their identification is a critical step, which may be assisted by intraoperative virtual navigation. Six patients were surgically treated for orbital floor fracture with intraoperative virtual navigation. The clinical evaluation showed no complications such as enophtalmos, exophtalmos or dystopia in all the patients 2 months post operatively and a correct implant/graft position.During surgery, navigation provides exact determination of transverse, cranio-caudal and postero-anterior dimensions within the orbit and precise control of the position of implants/bone grafts.This tool aids consistently on the craniofacial surgery fellow's formation, as it facilitates the identification of the bony floor boundaries and verifies the correct placement of the implants/bone grafts. It is routinely use could help to avoid implants/bone grafts misplacement not only for craniofacial surgeon's fellow, but for all the orbital surgeons.
Collapse
|
8
|
Functional and Aesthetic Outcome of Extensive Orbital Floor and Medial Wall Fracture via Navigation and Endoscope-assisted Reconstruction. Ann Plast Surg 2020; 82:S77-S85. [PMID: 30516560 DOI: 10.1097/sap.0000000000001700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Extensive orbital floor and medial wall fractures compared with isolated orbital wall fractures are more likely to require surgical correction because of a higher possibility of complications like diplopia, enophthalmos, or numbness. The unique and complex contours of the orbital anatomy limit the intraoperative view of the intraorbital anatomy, and complex orbital fractures involving the buttress of the transition zone area all make orbital reconstruction surgery more challenging. The aim of this study was to describe our experience with surgical approaches using navigation- and endoscope-assisted guidance for extensive orbital floor and medial wall fracture reconstruction. PATIENTS AND METHODS A retrospective study was conducted on consecutive 17 patients from 2015 to 2017 presenting with unilateral extensive orbital floor and medial wall fractures at the Chang Gung Memorial Hospital, Linkou Branch. The fractures were treated surgically with a preformed mesh plate and layered Medpor (Porex Surgical Inc, Atlanta, Ga) through navigation and endoscopy. The preoperative and postoperative functional and aesthetic outcomes were described. RESULTS All extensive orbital floor and medial wall fractures were successfully reconstructed. Of the 17 patients, 11 experienced diplopia preoperatively, and for 2 of the 11 patients, diplopia improved immediately after surgery. In the remaining 9 patients, diplopia still persisted after surgery; however, diplopia recovered after an average of 3.44 months (range, 1-9 months). Average enophthalmos among the 10 patients, evaluated by postoperative follow-up computed tomography scan, improved from 2.99 to 0.68 mm. There were no major complications during follow-up, and all patients were satisfied with their final appearance and function. CONCLUSIONS On the basis of the results, our surgical approach using preformed titanium mesh plates and Medpor under the assistance of navigation and endoscopy can be a safe, accurate, and effective method for the management of extensive orbital floor and medial wall fractures and clearly optimizes functional and aesthetic outcomes.
Collapse
|
9
|
Stereotactic Navigation Improves Outcomes of Orbital Decompression Surgery for Thyroid Associated Orbitopathy. Ophthalmic Plast Reconstr Surg 2020; 36:553-556. [DOI: 10.1097/iop.0000000000001630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
RETRACTED: The association between metformin therapy and risk of gynecological cancer in patients: two meta-analyses. Br J Oral Maxillofac Surg 2019; 57:782-787. [DOI: 10.1016/j.bjoms.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022]
|
11
|
Intraoperative Image-Guided Navigation in Craniofacial Surgery: Review and Grading of the Current Literature. J Craniofac Surg 2019; 30:465-472. [PMID: 30640846 DOI: 10.1097/scs.0000000000005130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Image-guided navigation has existed for nearly 3 decades, but its adoption to craniofacial surgery has been slow. A systematic review of the literature was performed to assess the current status of navigation in craniofacial surgery. METHODS A Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) systematic review of the Medline and Web of Science databases was performed using a series of search terms related to Image-Guided Navigation and Craniofacial Surgery. Titles were then filtered for relevance and abstracts were reviewed for content. Single case reports were excluded as were animal, cadaver, and virtual data. Studies were categorized based on the type of study performed and graded using the Jadad scale and the Newcastle-Ottawa scales, when appropriate. RESULTS A total of 2030 titles were returned by our search criteria. Of these, 518 abstracts were reviewed, 208 full papers were evaluated, and 104 manuscripts were ultimately included in the study. A single randomized controlled trial was identified (Jadad score 3), and 12 studies were identified as being case control or case cohort studies (Average Newcastle-Ottawa score 6.8) The most common application of intraoperative surgical navigation cited was orbital surgery (n = 36), followed by maxillary surgery (n = 19). Higher quality studies more commonly pertained to the orbit (6/13), and consistently show improved results. CONCLUSION Image guided surgical navigation improves outcomes in orbital reconstruction. Although image guided navigation has promise in many aspects of craniofacial surgery, current literature is lacking and future studies addressing this paucity of data are needed before universal adoption can be recommended.
Collapse
|
12
|
Al Jabri S, Kirkham J, Rowe FJ. Development of a core outcome set for amblyopia, strabismus and ocular motility disorders: a review to identify outcome measures. BMC Ophthalmol 2019; 19:47. [PMID: 30736755 PMCID: PMC6368710 DOI: 10.1186/s12886-019-1055-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Core Outcome Sets (COS) are defined as the minimum sets of outcomes that should be measured and reported in all randomised controlled trials to facilitate combination and comparability of research. The aim of this review is to produce an item bank of previously reported outcome measures from published studies in amblyopia, strabismus and ocular motility disorders to initiate the development of COS. METHODS A review was conducted to identify articles reporting outcome measures for amblyopia, strabismus and ocular motility disorders. Using systematic methods according to the COMET handbook we searched key electronic bibliographic databases from 1st January 2011 to 27th September 2016 using MESH terms and alternatives indicating the different subtypes of amblyopia, strabismus and ocular motility disorders in relation to treatment outcomes and all synonyms. We included Cochrane reviews, other systematic reviews, controlled trials, non-systematic reviews and retrospective studies. Data was extracted to tabulate demographics of included studies, primary and secondary outcomes, methods of measurement and their time points. RESULTS A total of 142 studies were included; 42 in amblyopia, 33 in strabismus, and 68 in ocular motility disorders (one study overlap between amblyopia and strabismus). We identified ten main outcome measure domains for amblyopia, 14 for strabismus, and ten common "visual or motility" outcome measure domains for ocular motility disorders. Within the domains, we found variable nomenclature being used and diversity in methods and timings of measurements. CONCLUSION This review highlights discrepancies in outcome measure reporting within published literature for amblyopia, strabismus and ocular motility and it generated an item bank of the most commonly used and reported outcome measures for each of the three conditions from recent literature to start the process of COS development. Consensus among all stakeholders including patients and professionals is recommended to establish a useful COS.
Collapse
Affiliation(s)
- Samia Al Jabri
- Department of Health Services Research, University of Liverpool, Waterhouse Building Block B, 2nd Floor, 1-3 Brownlow Street, L69 3GL Liverpool, UK
| | - Jamie Kirkham
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Fiona J. Rowe
- Department of Health Services Research, University of Liverpool, Waterhouse Building Block B, 2nd Floor, 1-3 Brownlow Street, L69 3GL Liverpool, UK
| |
Collapse
|
13
|
Development and refinement of computer-assisted planning and execution system for use in face-jaw-teeth transplantation to improve skeletal and dento-occlusal outcomes. Curr Opin Organ Transplant 2017; 21:523-9. [PMID: 27517508 DOI: 10.1097/mot.0000000000000350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To describe the development and refinement of the computer-assisted planning and execution (CAPE) system for use in face-jaw-teeth transplants (FJTTs). RECENT FINDINGS Although successful, some maxillofacial transplants result in suboptimal hybrid occlusion and may require subsequent surgical orthognathic revisions. Unfortunately, the use of traditional dental casts and splints pose several compromising shortcomings in the context of FJTT and hybrid occlusion. Computer-assisted surgery may overcome these challenges. Therefore, the use of computer-assisted orthognathic techniques and functional planning may prevent the need for such revisions and improve facial-skeletal outcomes. SUMMARY A comprehensive CAPE system for use in FJTT was developed through a multicenter collaboration and refined using plastic models, live miniature swine surgery, and human cadaver models. The system marries preoperative surgical planning and intraoperative execution by allowing on-table navigation of the donor fragment relative to recipient cranium, and real-time reporting of patient's cephalometric measurements relative to a desired dental-skeletal outcome. FJTTs using live-animal and cadaveric models demonstrate the CAPE system to be accurate in navigation and beneficial in improving hybrid occlusion and other craniofacial outcomes. Future refinement of the CAPE system includes integration of more commonly performed orthognathic/maxillofacial procedures.
Collapse
|