1
|
Lapcik P, Stacey RG, Potesil D, Kulhanek P, Foster LJ, Bouchal P. Global Interactome Mapping Reveals Pro-tumorigenic Interactions of NF-κB in Breast Cancer. Mol Cell Proteomics 2024; 23:100744. [PMID: 38417630 PMCID: PMC10988130 DOI: 10.1016/j.mcpro.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
NF-κB pathway is involved in inflammation; however, recent data shows its role also in cancer development and progression, including metastasis. To understand the role of NF-κB interactome dynamics in cancer, we study the complexity of breast cancer interactome in luminal A breast cancer model and its rearrangement associated with NF-κB modulation. Liquid chromatography-mass spectrometry measurement of 160 size-exclusion chromatography fractions identifies 5460 protein groups. Seven thousand five hundred sixty eight interactions among these proteins have been reconstructed by PrInCE algorithm, of which 2564 have been validated in independent datasets. NF-κB modulation leads to rearrangement of protein complexes involved in NF-κB signaling and immune response, cell cycle regulation, and DNA replication. Central NF-κB transcription regulator RELA co-elutes with interactors of NF-κB activator PRMT5, and these complexes are confirmed by AlphaPulldown prediction. A complementary immunoprecipitation experiment recapitulates RELA interactions with other NF-κB factors, associating NF-κB inhibition with lower binding of NF-κB activators to RELA. This study describes a network of pro-tumorigenic protein interactions and their rearrangement upon NF-κB inhibition with potential therapeutic implications in tumors with high NF-κB activity.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - David Potesil
- Proteomics Core Facility, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petr Kulhanek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Grossemy S, Chan PPY, Doran PM. Enhanced Neural Differentiation Using Simultaneous Application of 3D Scaffold Culture, Fluid Flow, and Electrical Stimulation in Bioreactors. Adv Biol (Weinh) 2021; 5:e2000136. [PMID: 33852182 DOI: 10.1002/adbi.202000136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/25/2021] [Indexed: 12/22/2022]
Abstract
Neural differentiation is studied using a simultaneous application of 3D scaffold culture and hydrodynamic and electrical stimuli in purpose-designed recirculation bioreactors operated with continuous fluid flow. Pheochromocytoma (PC12) cells are seeded into nonwoven microfibrous viscose-rayon scaffolds functionalized with poly-l-lysine and laminin. Compared with the results from static control cultures with and without electrical stimulation and bioreactor cultures with the fluid flow without electrical stimulation, expression levels of the differentiation markers β3-tubulin, shootin1, and ephrin type-A receptor 2 are greatest when cells are cultured in bioreactors with fluid flow combined with in-situ electrical stimulus. Immunocytochemical assessment of neurite development and morphology within the scaffolds confirm the beneficial effects of exposing the cells to concurrent hydrodynamic and electrical treatments. Under the conditions tested, electrical stimulation by itself produces more pronounced levels of cell differentiation than fluid flow alone; however, significant additional improvements in differentiation are achieved by combining these treatments. Fluid flow and electrical stimuli exert independent and noninteractive effects on cellular differentiation, suggesting that interference between the mechanisms of differentiation enhancement by these two treatments is minimal during their simultaneous application. This work demonstrates the beneficial effects of combining several different potent physical environmental stimuli in cell culture systems to promote neurogenesis.
Collapse
Affiliation(s)
- Simon Grossemy
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia
| | - Peggy P Y Chan
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia
| | - Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia
| |
Collapse
|
3
|
Grossemy S, Chan PP, Doran PM. Stimulation of cell growth and neurogenesis using protein-functionalized microfibrous scaffolds and fluid flow in bioreactors. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Ergin V, Zheng S. Putative Coiled-Coil Domain-Dependent Autoinhibition and Alternative Splicing Determine SHTN1's Actin-Binding Activity. J Mol Biol 2020; 432:4154-4166. [PMID: 32371045 DOI: 10.1016/j.jmb.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022]
Abstract
The actin cytoskeleton plays a pivotal role in cell development, morphogenesis, and other cellular functions. Precise control of actin dynamics requires actin-binding proteins. Here, we characterize multifarious regulation of SHTN1 (shootin1) and show that, unlike known actin-binding proteins, SHTN1's actin binding activity is intrinsically inhibited by a putative coiled-coil domain (CCD) and the autoinhibition is overcome by alternative splicing regulation. We found SHTN1 contains a noncanonical WH2 domain and an upstream proline-rich region (PRR) that by themselves are sufficient for actin interaction. Alternative splicing of Shtn1 at the C terminus and downstream of the WH2-PRR domain produces a long (SHTN1L or shootin1b) and a short (SHTN1S or shootin1a) isoform, which both contain the described PRR and WH2 domains. However, SHTN1S does not interact with actin due to inhibition mediated by an N-terminal CCD. A SHTN1L-specific C-terminal motif counters the intramolecular inhibition and allows SHNT1L to bind actin. A nuclear localization signal is embedded between PRR and WH2 and is subject to similar autoinhibition. SHTN1 would be the first WH2-containing molecule that adopts CCD-dependent autoinhibition and alternative splicing-dependent actin interaction.
Collapse
Affiliation(s)
- Volkan Ergin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Grossemy S, Chan PPY, Doran PM. Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds. Integr Biol (Camb) 2019; 11:264-279. [DOI: 10.1093/intbio/zyz022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/01/2019] [Accepted: 06/12/2019] [Indexed: 11/13/2022]
Abstract
Abstract
The effect of exogenous electrical stimulation on cell viability, attachment, growth, and neurogenesis was examined using PC12 cells in microfibrous viscose-rayon scaffolds immersed in culture medium. The scaffolds were applied either in their nonconductive state or after coating the fibres with 200 nm of gold to give a scaffold sheet resistivity of (13 ± 1.3) Ω square−1. The cells were treated for 12 days using direct current electrical stimulation of 2 h per day. No cytotoxic effects were observed when up to 500 mV (8.3 mV mm−1) was applied to the scaffolds without gold, or when up to 100 mV (1.7 mV mm−1) was applied to the scaffolds with gold. Compared with unstimulated cells, whereas electrical stimulation significantly enhanced cell growth and attachment in the nonconductive scaffolds without gold, similar effects were not found for the conductive scaffolds with gold. Neural differentiation in the presence of nerve growth factor was improved by electrical stimulation in both scaffolds; however, neurite development and the expression of key differentiation markers were greater in the nonconductive scaffolds without gold than in the scaffolds with gold. Application of the same current to scaffolds with and without gold led to much higher levels of neurogenesis in the scaffolds without gold. This work demonstrates that substantial benefits in terms of cell growth and neural differentiation can be obtained using electric fields exerted across nonconductive microfibrous scaffolds, and that this approach to electrical stimulation can be more effective than when the stimulus is applied to cells on conductive scaffolds.
Collapse
Affiliation(s)
- Simon Grossemy
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Australia
| | - Peggy P Y Chan
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Australia
| | - Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Australia
| |
Collapse
|
6
|
Colangelo AM, Cirillo G, Alberghina L, Papa M, Westerhoff HV. Neural plasticity and adult neurogenesis: the deep biology perspective. Neural Regen Res 2019; 14:201-205. [PMID: 30530998 PMCID: PMC6301164 DOI: 10.4103/1673-5374.244775] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recognition that neurogenesis does not stop with adolescence has spun off research towards the reduction of brain disorders by enhancing brain regeneration. Adult neurogenesis is one of the tougher problems of developmental biology as it requires the generation of complex intracellular and pericellular anatomies, amidst the danger of neuroinflammation. We here review how a multitude of regulatory pathways optimized for early neurogenesis has to be revamped into a new choreography of time dependencies. Distinct pathways need to be regulated, ranging from neural growth factor induced differentiation to mitochondrial bioenergetics, reactive oxygen metabolism, and apoptosis. Requiring much Gibbs energy consumption, brain depends on aerobic energy metabolism, hence on mitochondrial activity. Mitochondrial fission and fusion, movement and perhaps even mitoptosis, thereby come into play. All these network processes are interlinked and involve a plethora of molecules. We recommend a deep thinking approach to adult neurobiology.
Collapse
Affiliation(s)
- Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Dept. of Biotechnology and Biosciences; SYSBIO Centre of Systems Biology; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Giovanni Cirillo
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Lilia Alberghina
- SYSBIO Centre of Systems Biology; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Michele Papa
- SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano; Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, University of Amsterdam, Molecular Cell Physiology, VU University Amsterdam, and Infrastructure Systems Biology at NL (ISBE.NL), Amsterdam, NL, and Systems Biology, School for Chemical Engineering and Analytical Science, University of Manchester, UK
| |
Collapse
|
7
|
Orlowska A, Perera PT, Al Kobaisi M, Dias A, Nguyen HKD, Ghanaati S, Baulin V, Crawford RJ, Ivanova EP. The Effect of Coatings and Nerve Growth Factor on Attachment and Differentiation of Pheochromocytoma Cells. MATERIALS 2017; 11:ma11010060. [PMID: 29301234 PMCID: PMC5793558 DOI: 10.3390/ma11010060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023]
Abstract
Cellular attachment plays a vital role in the differentiation of pheochromocytoma (PC12) cells. PC12 cells are noradrenergic clonal cells isolated from the adrenal medulla of Rattus norvegicus and studied extensively as they have the ability to differentiate into sympathetic neuron-like cells. The effect of several experimental parameters including (i) the concentration of nerve growth factor (NGF); (ii) substratum coatings, such as poly-L-lysine (PLL), fibronectin (Fn), and laminin (Lam); and (iii) double coatings composed of PLL/Lam and PLL/Fn on the differentiation process of PC12 cells were studied. Cell morphology was visualised using brightfield phase contrast microscopy, cellular metabolism and proliferation were quantified using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, and the neurite outgrowth and axonal generation of the PC12 cells were evaluated using wide field fluorescence microscopy. It was found that double coatings of PLL/Lam and PLL/Fn supported robust adhesion and a two-fold enhanced neurite outgrowth of PC12 cells when treated with 100 ng/mL of NGF while exhibiting stable metabolic activity, leading to the accelerated generation of axons.
Collapse
Affiliation(s)
- Anna Orlowska
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Avenue dels Paisos Catalans, 43007 Tarragona, Spain.
| | - Pallale Tharushi Perera
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia.
| | - Mohammad Al Kobaisi
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia.
| | - Andre Dias
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Avenue dels Paisos Catalans, 43007 Tarragona, Spain.
| | - Huu Khuong Duy Nguyen
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia.
| | - Shahram Ghanaati
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Vladimir Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Avenue dels Paisos Catalans, 43007 Tarragona, Spain.
| | - Russell J Crawford
- School of Science, RMIT University, P.O. Box 2476, Melbourne VIC 3001, Australia.
| | - Elena P Ivanova
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia.
| |
Collapse
|