1
|
Sun X, Zhou J, Zeng X, Jiang Y. Relationship Between Chemokine in Aqueous Humor and Primary Glaucoma: A Meta-Analysis. Am J Ophthalmol 2025; 273:1-12. [PMID: 39922477 DOI: 10.1016/j.ajo.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE Glaucoma is a group of diseases characterized by optic nerve damage and corresponding visual field loss as clinical changes. A close relationship has been identified between chemokine in aqueous humor and primary glaucoma; however, this association remains controversial. DESIGN Systematic review and meta-analysis. METHODS The Web of Science, Wiley Online Library, PubMed, and Embase databases were searched. The title or abstract search term "glaucoma" was used together with "chemokine". Meta-analysis results were presented as the standardized mean difference (SMD) with a corresponding 95% confidence interval (Cl). RESULTS Twenty studies were included in this meta-analysis, which showed that patients with primary glaucoma had significantly elevated CCL2 (SMD: 0.48, 95% CI [0.11, 0.86]), CCL4 (SMD: 0.74, 95% CI [0.30, 1.17]), CCL5 (SMD: 0.97, 95% CI [0.07, 1.85]), CCL7 (SMD: 2.28, 95% CI [0.86, 3.71]), CXCL8 (SMD: 1.75, 95% CI [1.04, 2.46]), and CXCL10 (SMD: 1.45, 95% CI [0.46, 2.43]) levels in aqueous humor compared to the control group (P < .05). CONCLUSIONS This systematic review is the first to systematically and comprehensively evaluate chemokine levels in aqueous humor of patients with primary glaucoma. Clarifying the role of chemokines will be helpful for the treatment of glaucoma.
Collapse
Affiliation(s)
- Xin Sun
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University (X.S.), Suzhou, Jiangsu, China
| | - Jing Zhou
- Department of Ophthalmology, Fourth People`s Hospital of Shenyang (J.Z, X.Z, Y.J.), Shenyang, Liaoning, China
| | - Xiandong Zeng
- Department of Ophthalmology, Fourth People`s Hospital of Shenyang (J.Z, X.Z, Y.J.), Shenyang, Liaoning, China.
| | - Yanhua Jiang
- Department of Ophthalmology, Fourth People`s Hospital of Shenyang (J.Z, X.Z, Y.J.), Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Nishiguchi KM, Fujita K, Miya F, Katayama S, Nakazawa T. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice. Nat Commun 2020; 11:482. [PMID: 31980606 PMCID: PMC6981188 DOI: 10.1038/s41467-019-14181-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Supplementing wildtype copies of functionally defective genes with adeno-associated virus (AAV) is a strategy being explored clinically for various retinal dystrophies. However, the low cargo limit of this vector allows its use in only a fraction of patients with mutations in relatively small pathogenic genes. To overcome this issue, we developed a single AAV platform that allows local replacement of a mutated sequence with its wildtype counterpart, based on combined CRISPR-Cas9 and micro-homology-mediated end-joining (MMEJ). In blind mice, the mutation replacement rescued approximately 10% of photoreceptors, resulting in an improvement in light sensitivity and an increase in visual acuity. These effects were comparable to restoration mediated by gene supplementation, which targets a greater number of photoreceptors. This strategy may be applied for the treatment of inherited disorders caused by mutations in larger genes, for which conventional gene supplementation therapy is not currently feasible. Replacing mutant genes with wildtype copies using adeno-associated virus (AAV) has been explored for the treatment of inherited retinopathies, but the low cargo limit restricts its use. Here the authors describe a single AAV platform that allows local replacement of a mutated sequence with its wildtype counterpart, based on combined CRISPR-Cas9 and micro-homology-mediated end joining.
Collapse
Affiliation(s)
- Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| | - Kosuke Fujita
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Shota Katayama
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
3
|
Fujita K, Nishiguchi KM, Sato K, Nakagawa Y, Nakazawa T. In vivo imaging of the light response in mouse retinal ganglion cells based on a neuronal activity-dependent promoter. Biochem Biophys Res Commun 2020; 521:471-477. [PMID: 31672273 DOI: 10.1016/j.bbrc.2019.10.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 11/19/2022]
Abstract
Diseases of the retinal ganglion cells (RGCs) are an important cause of blindness, yet the light response of individual RGCs is difficult to assess in vivo, particularly in mammals, due to a lack of effective methods. We report a simple in vivo platform for imaging the light response of mouse RGCs based on a fluorescent reporter-tagged enhanced synaptic activity-responsive element (E-SARE) that mediates neuronal activity-dependent gene transcription. When E-SARE-driven d2Venus, packaged into an AAV vector, was injected intravitreally, light-responsive retinal neurons expressing d2Venus were visible at single-cell resolution using confocal ophthalmoscopy. Immunohistological assessment identified the majority of these cells as RGCs. In a murine model of RGC injury, the number of d2Venus-positive cells was correlated with the amplitude of light-induced responses and with visual acuity, measured electrophysiologically at the visual cortex, indicating that the vector can be used as a tool to assess visual function in RGCs. The platform described herein allows a simple in vivo assessment of RGC function, which should help basic research into the mechanisms of RGC death and the development of treatments for diseases involving the RGCs.
Collapse
Affiliation(s)
- Kosuke Fujita
- Department of Ophthalmic Imaging and Information Analytics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan; Department of Ophthalmology, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Kota Sato
- Collaborative Program of Ophthalmic Drug Discovery, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan; Department of Ophthalmology, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Yurika Nakagawa
- Department of Ophthalmology, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmic Imaging and Information Analytics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan; Department of Advanced Ophthalmic Medicine, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan; Collaborative Program of Ophthalmic Drug Discovery, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan; Department of Ophthalmology, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan.
| |
Collapse
|
4
|
Katayama S, Sato K, Nakazawa T. In vivo and in vitro knockout system labelled using fluorescent protein via microhomology-mediated end joining. Life Sci Alliance 2019; 3:3/1/e201900528. [PMID: 31874862 PMCID: PMC6932181 DOI: 10.26508/lsa.201900528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Gene knockout is important for understanding gene function and genetic disorders. The CRISPR/Cas9 system has great potential to achieve this purpose. However, we cannot distinguish visually whether a gene is knocked out and in how many cells it is knocked out among a population of cells. Here, we developed a new system that enables the labelling of knockout cells with fluorescent protein through microhomology-mediated end joining-based knock-in. Using a combination with recombinant adeno-associated virus, we delivered our system into the retina, where the expression of Staphylococcus aureus Cas9 was driven by a retina ganglion cell (RGC)-specific promoter, and knocked out carnitine acetyltransferase (CAT). We evaluated RGCs and revealed that CAT is required for RGC survival. Furthermore, we applied our system to Keap1 and confirmed that Keap1 is not expressed in fluorescently labelled cells. Our system provides a promising framework for cell type-specific genome editing and fluorescent labelling of gene knockout based on knock-in.
Collapse
Affiliation(s)
- Shota Katayama
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan .,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
5
|
Zhang M, Chen L, Xu F, Jiang L, Yan W, Kunwar B, Tang F, Yang K, Shen C, Huang H, Lv J, Qin C, Wu X, Zeng S, Li M, Zhong S, Chen Q. Involvement of Upregulated P53-Induced Death Domain Protein in Retinal Ganglion Cells Apoptosis After Optic Nerve Crush. Curr Mol Med 2019; 20:51-59. [PMID: 31533600 DOI: 10.2174/1566524019666190918160032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Purpose:
Retinal ganglion cells (RGCs) apoptosis is a common characteristic
of optic neuropathies. p53-induced protein with a death domain (PIDD) is a well-known
regulator of genotoxic stress-induced apoptosis, which is constitutively cleaved into
three main fragments: PIDD-N, PIDD-C and PIDD-CC. Thus, we aim to determine the
physiological relevance of PIDD in RGCs apoptosis in an optic nerve crush (ONC)
model.
Methods:
All animals were evenly randomized into four groups: sham-control group,
con-siRNA group, ONC group, and PIDD-siRNA group (ONC +PIDD-siRNA).
Expressions of PIDD, caspase-2, Brn3a and tBid in ONC model were analyzed by
Western blot and immunofluorescence. Mean densities of RGCs/mm2 were calculated
with Fluoro-Gold (FG). Moreover, we tested the effect of PIDD-siRNA on ONC-induced
RGCs apoptosis using TUNEL staining.
Results:
The level of full-length PIDD was weakly present and showed no significant
differences at any time points. PIDD-CC and PIDD-C were significantly up-regulated in
the retina at 3 days after ONC. Meanwhile, the expression of PIDD was significantly
increased in Brn3a (a marker of RGCs) positive cells, indicating that the localization of
PIDD appeared to be confined to RGCs. Furthermore, inhibition of PIDD prevented
RGCs apoptosis by inhibiting caspase-2 and tBid activation.
Conclusions:
Taken together, PIDD may play a crucial role in RGCs apoptosis after
ONC, and this process may be relevant to caspase-2 and tBid.
Collapse
Affiliation(s)
- Mingyuan Zhang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Lifei Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou 511436, China
| | - Bibhav Kunwar
- Guangzhou Medical University, Guangzhou 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Ke Yang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chen Qin
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Xiaonian Wu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Shan Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| |
Collapse
|
6
|
Reliable detection of low visual acuity in mice with pattern visually evoked potentials. Sci Rep 2018; 8:15948. [PMID: 30374137 PMCID: PMC6206061 DOI: 10.1038/s41598-018-34413-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/17/2018] [Indexed: 01/27/2023] Open
Abstract
Measuring the optokinetic response (OKR) to rotating sinusoidal gratings is becoming an increasingly common method to determine visual function thresholds in mice. This is possible also through direct electrophysiological recording of the response of the neurons in the visual cortex to the presentation of reversing patterned stimuli, i.e. the pattern visually evoked potential (pVEP). Herein, we optimized the conditions for recording pVEPs in wild-type mice: we investigated the optimal depth (1, 2, or 3 mm) of the inserted electrode and the optimal stimulus pattern (vertical, horizontal, or oblique black and white stripes, or a checkerboard pattern). Visual acuity was higher when measured with the optimal pVEP recording conditions, i.e., with the electrode at 2 mm and a vertical-stripe stimulus (0.530 ± 0.021 cycle/degree), than with OKR (0.455 ± 0.006 cycle/degree). Moreover, in murine eyes with optic nerve crush-induced low vision, OKR could not measure any visual acuity, while pVEPs allowed the reliable quantification of residual vision (0.064 ± 0.004 cycle/degree). Our results show that pVEPs allow more sensitive measurement of visual function than the OKR-based method. This technique should be particularly useful in mouse models of ocular disease and low vision.
Collapse
|
7
|
Sato K, Saigusa D, Saito R, Fujioka A, Nakagawa Y, Nishiguchi KM, Kokubun T, Motoike IN, Maruyama K, Omodaka K, Shiga Y, Uruno A, Koshiba S, Yamamoto M, Nakazawa T. Metabolomic changes in the mouse retina after optic nerve injury. Sci Rep 2018; 8:11930. [PMID: 30093719 PMCID: PMC6085332 DOI: 10.1038/s41598-018-30464-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
In glaucoma, although axonal injury drives retinal ganglion cell (RGC) death, little is known about the underlying pathomechanisms. To provide new mechanistic insights and identify new biomarkers, we combined latest non-targeting metabolomics analyses to profile altered metabolites in the mouse whole retina 2, 4, and 7 days after optic nerve crush (NC). Ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry and liquid chromatography Fourier transform mass spectrometry covering wide spectrum of metabolites in combination highlighted 30 metabolites that changed its concentration after NC. The analysis displayed similar changes for purine nucleotide and glutathione as reported previously in another animal model of axonal injury and detected multiple metabolites that increased after the injury. After studying the specificity of the identified metabolites to RGCs in histological sections using imaging mass spectrometry, two metabolites, i.e., L-acetylcarnitine and phosphatidylcholine were increased not only preceding the peak of RGC death in the whole retina but also at the RGC layer (2.3-fold and 1.2-fold, respectively). These phospholipids propose novel mechanisms of RGC death and may serve as early biomarkers of axonal injury. The combinatory metabolomics analyses promise to illuminate pathomechanisms, reveal biomarkers, and allow the discovery of new therapeutic targets of glaucoma.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Ophthalmic imaging and information analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,LEAP, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Amane Fujioka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yurika Nakagawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikuko N Motoike
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Department of Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Ophthalmic imaging and information analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Ophthalmic imaging and information analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
8
|
Sato K, Shiga Y, Nakagawa Y, Fujita K, Nishiguchi KM, Tawarayama H, Murayama N, Maekawa S, Yabana T, Omodaka K, Katayama S, Feng Q, Tsuda S, Nakazawa T. Ecel1 Knockdown With an AAV2-Mediated CRISPR/Cas9 System Promotes Optic Nerve Damage-Induced RGC Death in the Mouse Retina. Invest Ophthalmol Vis Sci 2018; 59:3943-3951. [PMID: 30073365 DOI: 10.1167/iovs.18-23784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the therapeutic potential of endothelin-converting enzyme-like 1 (Ecel1) in a mouse model of optic nerve crush. Methods Ecel1 expression was evaluated with real time quantitative (qRT)-PCR, Western blotting, and immunohistochemistry in mouse retinas after optic nerve crush. Vinblastine administration to the optic nerve and the intravitreal injection of N-methyl-d-aspartate (NMDA) were used to assess Ecel1 gene expression. Ecel1 was deleted with an adeno-associated viral (AAV) clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas9 system, and retinal ganglion cell (RGC) survival was investigated with retrograde labeling, qRT-PCR, and visual evoked potential. Results Optic nerve crush induced Ecel1 expression specifically in the RGCs, peaking on day 4 after optic nerve crush. Ecel1 gene expression was induced by the vinblastine-induced inhibition of axonal flow, but not by NMDA-induced excitotoxicity, even though both are triggers of RGC death. Knockdown of Ecel1 promoted the loss of RGCs after optic nerve crush. Conclusions Our data suggest that Ecel1 induction is part of the retinal neuroprotective response to axonal injury in mice. These findings might provide insight into novel therapeutic targets for the attenuation of RGC damage, such as occurs in traumatic optic neuropathy.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yurika Nakagawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Namie Murayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shota Katayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Qiwei Feng
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
9
|
Nishiguchi KM, Fujita K, Tokashiki N, Komamura H, Takemoto-Kimura S, Okuno H, Bito H, Nakazawa T. Retained Plasticity and Substantial Recovery of Rod-Mediated Visual Acuity at the Visual Cortex in Blind Adult Mice with Retinal Dystrophy. Mol Ther 2018; 26:2397-2406. [PMID: 30064895 DOI: 10.1016/j.ymthe.2018.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 12/01/2022] Open
Abstract
In patients born blind with retinal dystrophies, understanding the critical periods of cortical plasticity is important for successful visual restoration. In this study, we sought to model childhood blindness and investigate the plasticity of visual pathways. To this end, we generated double-mutant (Pde6ccpfl1/cpfl1Gnat1IRD2/IRD2) mice with absent rod and cone photoreceptor function, and we evaluated their response for restoring rod (GNAT1) function through gene therapy. Despite the limited effectiveness of gene therapy in restoring visual acuity in patients with retinal dystrophy, visual acuity was, unexpectedly, successfully restored in the mice at the level of the primary visual cortex in this study. This success in visual restoration, defined by changes in the quantified optokinetic response and pattern visually evoked potential, was achieved regardless of the age at treatment (up to 16 months). In the contralateral visual cortex, cortical plasticity, tagged with light-triggered transcription of Arc, was also restored after the treatment in blind mice carrying an Arc promoter-driven reporter gene, dVenus. Our results demonstrate the remarkable plasticity of visual circuits for one of the two photoreceptor mechanisms in older as well as younger mice with congenital blindness due to retinal dystrophies.
Collapse
Affiliation(s)
- Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Naoyuki Tokashiki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hiroshi Komamura
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Sayaka Takemoto-Kimura
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; PRESTO-Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Hiroyuki Okuno
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
10
|
Nakamura O, Moritoh S, Sato K, Maekawa S, Murayama N, Himori N, Omodaka K, Sogon T, Nakazawa T. Bilberry extract administration prevents retinal ganglion cell death in mice via the regulation of chaperone molecules under conditions of endoplasmic reticulum stress. Clin Ophthalmol 2017; 11:1825-1834. [PMID: 29066860 PMCID: PMC5644593 DOI: 10.2147/opth.s145159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To investigate the effect of bilberry extract anthocyanins on retinal ganglion cell (RGC) survival after optic nerve crush. Additionally, to determine details of the mechanism of the neuroprotective effect of bilberry extract anthocyanins and the involvement of endoplasmic reticulum stress suppression in the mouse retina. Materials and methods Anthocyanins in bilberry extract (100 mg/kg/day or 500 mg/kg/day) were administrated orally to C57BL/6J mice. The expression levels of various molecular chaperones were assessed with quantitative reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemistry. RGC survival was evaluated by measuring the gene expression of RGC markers and counting retrogradely labeled RGCs after optic nerve crush. Results The protein levels of Grp78 and Grp94 increased significantly in mice after bilberry extract administration. Increased Grp78 and Grp94 levels were detected in the inner nuclear layer and ganglion cell layer of the retina, surrounding the RGCs. Gene expression of Chop, Bax, and Atf4 increased in mice after optic nerve crush and decreased significantly after oral bilberry extract administration. RGC survival after nerve crush also increased with bilberry extract administration. Conclusion These results indicate that oral bilberry extract administration suppresses RGC death. Bilberry extract administration increased Grp78 and Grp94 protein levels, an effect which may underlie the neuroprotective effect of bilberry extract after optic nerve crush. Thus, bilberry extract has a potential role in neuroprotective treatments for retinal injuries, such as those which occur in glaucoma.
Collapse
Affiliation(s)
- Orie Nakamura
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Satoru Moritoh
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Namie Murayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Tetsuya Sogon
- R&D Department, Wakasa Seikatsu Co., Ltd., Kyoto, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
11
|
Maekawa S, Sato K, Fujita K, Daigaku R, Tawarayama H, Murayama N, Moritoh S, Yabana T, Shiga Y, Omodaka K, Maruyama K, Nishiguchi KM, Nakazawa T. The neuroprotective effect of hesperidin in NMDA-induced retinal injury acts by suppressing oxidative stress and excessive calpain activation. Sci Rep 2017; 7:6885. [PMID: 28761134 PMCID: PMC5537259 DOI: 10.1038/s41598-017-06969-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
We found that hesperidin, a plant-derived bioflavonoid, may be a candidate agent for neuroprotective treatment in the retina, after screening 41 materials for anti-oxidative properties in a primary retinal cell culture under oxidative stress. We found that the intravitreal injection of hesperidin in mice prevented reductions in markers of the retinal ganglion cells (RGCs) and RGC death after N-methyl-D-aspartate (NMDA)-induced excitotoxicity. Hesperidin treatment also reduced calpain activation, reactive oxygen species generation and TNF-α gene expression. Finally, hesperidin treatment improved electrophysiological function, measured with visual evoked potential, and visual function, measured with optomotry. Thus, we found that hesperidin suppressed a number of cytotoxic factors associated with NMDA-induced cell death signaling, such as oxidative stress, over-activation of calpain, and inflammation, thereby protecting the RGCs in mice. Therefore, hesperidin may have potential as a therapeutic supplement for protecting the retina against the damage associated with excitotoxic injury, such as occurs in glaucoma and diabetic retinopathy.
Collapse
Affiliation(s)
- Shigeto Maekawa
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kota Sato
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Reiko Daigaku
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroshi Tawarayama
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Namie Murayama
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Satoru Moritoh
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takeshi Yabana
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
12
|
Fujita K, Nishiguchi KM, Shiga Y, Nakazawa T. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:130-141. [PMID: 28480312 PMCID: PMC5415330 DOI: 10.1016/j.omtm.2017.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 02/03/2023]
Abstract
Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.
Collapse
Affiliation(s)
- Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toru Nakazawa
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
13
|
Maes ME, Schlamp CL, Nickells RW. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res 2017; 57:1-25. [PMID: 28064040 DOI: 10.1016/j.preteyeres.2017.01.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma.
Collapse
Affiliation(s)
- Margaret E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|