1
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA-Based Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202202211. [PMID: 35307938 DOI: 10.1002/anie.202202211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/14/2022]
Abstract
The use of DNA-based nanostructures as probes has led to significant advances in chemical and biological sensing, allowing the detection of analytes in complex media, the understanding of fundamental biological processes, and the ability to diagnose diseases based on molecular signatures. The utility of these structures arises both from DNA's inherent ability to selectively recognize and bind a variety of chemical species and from the unique properties observed when DNA is restructured at the nanoscale. In this Minireview, we chronicle the most commonly used signal transduction strategies that have been interfaced with various DNA-based nanostructures. We discuss the types of analytes and the detection scenarios that are sought after, delineate the advantages and disadvantages of each signaling strategy, and outline the key considerations that guide the selection of each signaling method.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shivudu Godhulayyagari
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shadler T Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Jasmine K Lu
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Sasha B Ebrahimi
- Biopharmaceutical Product Sciences, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| |
Collapse
|
2
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
3
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA‐Based Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seungheon Lee
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shivudu Godhulayyagari
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shadler T. Nguyen
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Jasmine K. Lu
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Sasha B. Ebrahimi
- Biopharmaceutical Product Sciences GlaxoSmithKline 1250 S Collegeville Road Collegeville PA 19426 USA
| | - Devleena Samanta
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| |
Collapse
|
4
|
Alenichev M, Levin A, Yushina A, Kostrikina E, Lebedin Y, Andreeva I, Grigorenko V, Krylov V, Nifantiev N. Nano-biosensor based on the combined use of the dynamic and static light scattering for Aspergillus galactomannan analysis. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
Li B, Xie S, Xia A, Suo T, Huang H, Zhang X, Chen Y, Zhou X. Recent advance in the sensing of biomarker transcription factors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Yaraki MT, Tan YN. Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-enhanced Raman Scattering. Chem Asian J 2020; 15:3180-3208. [PMID: 32808471 PMCID: PMC7693192 DOI: 10.1002/asia.202000847] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Indexed: 12/17/2022]
Abstract
Metal nanoparticles (NP) that exhibit localized surface plasmon resonance play an important role in metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). Among the optical biosensors, MEF and SERS stand out to be the most sensitive techniques to detect a wide range of analytes from ions, biomolecules to macromolecules and microorganisms. Particularly, anisotropic metal NPs with strongly enhanced electric field at their sharp corners/edges under a wide range of excitation wavelengths are highly suitable for developing the ultrasensitive plasmon-enhanced biosensors. In this review, we first highlight the reliable methods for the synthesis of anisotropic gold NPs and silver NPs in high yield, as well as their alloys and composites with good control of size and shape. It is followed by the discussion of different sensing mechanisms and recent advances in the MEF and SERS biosensor designs. This includes the review of surface functionalization, bioconjugation and (directed/self) assembly methods as well as the selection/screening of specific biorecognition elements such as aptamers or antibodies for the highly selective bio-detection. The right combinations of metal nanoparticles, biorecognition element and assay design will lead to the successful development of MEF and SERS biosensors targeting different analytes both in-vitro and in-vivo. Finally, the prospects and challenges of metal-enhanced biosensors for future nanomedicine in achieving ultrasensitive and fast medical diagnostics, high-throughput drug discovery as well as effective and reliable theranostic treatment are discussed.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Yen Nee Tan
- Faculty of Science, Agriculture & EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUnited Kingdom
- Newcastle Research & Innovation Institute (NewRIIS)80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & EmployabilitySingapore609607Singapore
| |
Collapse
|
7
|
Tavakkoli Yaraki M, Hu F, Daqiqeh Rezaei S, Liu B, Tan YN. Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. NANOSCALE ADVANCES 2020; 2:2859-2869. [PMID: 36132415 PMCID: PMC9419615 DOI: 10.1039/d0na00182a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/09/2020] [Indexed: 05/10/2023]
Abstract
Photosensitizers with aggregation-induced emission (AIE-PS) are attractive for image-guided photodynamic therapy due to their dual functional role in generating singlet oxygen and producing high fluorescent signal in the aggregated state. However, their brightness and treatment efficiency maybe limited in current practice. Herein we report the first systematic investigation on the metal-enhanced fluorescence (MEF) and singlet oxygen generation (ME-SOG) ability of our newly synthesized AIE-photosensitizers. The Ag@AIE-PS of varied sizes were prepared via layer-by-layer assembly with controlled distance between silver nanoparticles (AgNPs) and AIE-PS. A maximum of 6-fold enhancement in fluorescence and 2-fold increment in SOG were observed for the 85nmAg@AIE-PS. Comprehensive characterization and simulation were conducted to unravel the plasmon-enhancement mechanisms of Ag@AIE-PS. Results show that MEF of AIE-PS is determined by the enhanced electric field around AgNPs, while ME-SOG is dictated by the scattering efficiency of the metal core, where bigger AgNPs would result in larger enhancement factor. Furthermore, the optimum distance between AgNPs and AIE-PS to achieve maximum SOG enhancement is shorter than that required for the highest MEF. The correlation of MEF and ME-SOG found in this study is useful for designing new a generation of AIE-photosensitizers with high brightness and treatment efficiency towards practical theranostic application in the future.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 138634 Singapore
- Department Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Fang Hu
- Department Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Soroosh Daqiqeh Rezaei
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 138634 Singapore
- Department of Mechanical Engineering, National University of Singapore 9 Engineering Drive 1 117575 Singapore
| | - Bin Liu
- Department Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 138634 Singapore
- Faculty of Science, Agriculture & Engineering, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
8
|
Dynamic light scattering biosensing based on analyte-induced inhibition of nanoparticle aggregation. Anal Bioanal Chem 2020; 412:3423-3431. [DOI: 10.1007/s00216-020-02605-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
|
9
|
Tavakkoli Yaraki M, Daqiqeh Rezaei S, Tan YN. Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and SERS applications. Phys Chem Chem Phys 2020; 22:5673-5687. [PMID: 32103209 DOI: 10.1039/c9cp06029d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmonic nanostructures such as gold and silver could alter the intrinsic properties of fluorophores, photosensitizers or Raman reporters in their close vicinity. In this study, we have conducted systematic simulations to provide insight for the design of silver nanostructures with appropriate geometrical features for metal-enhanced fluorescence (MEF), metal-enhanced singlet oxygen generation (ME-SOG) and surface-enhanced Raman scattering (SERS) applications. The size-dependent optical properties and electric field enhancement of single and dimeric nanocubes were simulated. The extinction spectra of silver nanocubes were analysed by the multipole expansion method. Results show that a suitable size of Ag nanocubes for MEF and ME-SOG can be selected based on their maximum light scattering yield, the excitation and emission wavelengths of a particular fluorophore/photosensitizer and their maximum spectral overlap. Simulations of the 'hot-spot' or gap distance between two silver nanocubes with different configurations (i.e., face-to-face, edge-to-edge and corner-to-corner) were also performed. A direct correlation was found between the size and enhanced electric field around the Ag nanocubes simulated under 15 common Raman laser wavelengths from the UV to near-infrared region. The maximum SERS enhancement factor can be achieved by selecting the silver nanocubes with the right orientation, suitable edge length and gap distance that give the highest electric field at a specific Raman laser wavelength. It was also found that the higher order of silver nanostructures, e.g., trimer and tetramer, can lead to better enhancement effects. These simulation results can serve as generic guidelines to rationally design metal-enhancement systems including MEF, ME-SOG and SERS for different application needs without cumbersome optimization and tedious trial-and-error experimentation.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634, Singapore
| | | | | |
Collapse
|
10
|
Recent development of nucleic acid nanosensors to detect sequence-specific binding interactions: From metal ions, small molecules to proteins and pathogens. SENSORS INTERNATIONAL 2020; 1:100034. [PMID: 34766041 PMCID: PMC7434487 DOI: 10.1016/j.sintl.2020.100034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
DNA carries important genetic instructions and plays vital roles in regulating biological activities in living cells. Proteins such as transcription factors binds to DNA to regulate the biological functions of DNA, and similarly many drug molecules also bind to DNA to modulate its functions. Due to the importance of protein-DNA and drug-DNA binding, there has been intense effort in developing novel nanosensors in the same length scale as DNA, to effectively study these binding interactions in details. In addition, aptamers can be artificially selected to detect metal ions and pathogens such as bacteria and viruses, making nucleic acid nanosensors more versatile in detecting a large variety of analytes. In this minireview, we first explained the different types and binding modes of protein-DNA and drug-DNA interactions in the biological systems, as well as aptamer-target binding. This was followed by the review of five types of nucleic acid nanosensors based on optical or electrochemical detection. The five types of nucleic acid nanosensors utilizing colorimetric, dynamic light scattering (DLS), surface-enhanced Raman spectroscopy (SERS), fluorescence and electrochemical detections have been recently developed to tackle some of the challenges in high-throughput screening technology for large scale analysis, which is especially useful for drug development and mass screening for pandemic outbreak such as SARS or COVID-19.
Collapse
|
11
|
Marchant MJ, Guzmán L, Corvalán AH, Kogan MJ. Gold@Silica Nanoparticles Functionalized with Oligonucleotides: A Prominent Tool for the Detection of the Methylated Reprimo Gene in Gastric Cancer by Dynamic Light Scattering. NANOMATERIALS 2019; 9:nano9091333. [PMID: 31540371 PMCID: PMC6781027 DOI: 10.3390/nano9091333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Reprimo (RPRM) is a tumor suppressor gene involved in the development of gastric cancer. Hypermethylation of the RPRM promoter region has been found in tumor tissue and plasma samples from patients with gastric cancer. These findings suggest that circulating methylated DNA of RPRM could be a candidate for a noninvasive detection of gastric cancer. We designed a nanosystem based on the functionalization of silica coated gold nanoparticles with oligonucleotides that recognize a specific DNA fragment of the RPRM promoter region. The functionality of the oligonucleotide on the surface of the nanoparticle was confirmed by polymerase chain reaction (PCR). The nanoparticles were incubated with a synthetic DNA fragment of methylated DNA of RPRM and changes in the size distribution after hybridization were evaluated by dynamic light scattering (DLS). A difference in the size distribution of nanoparticles hybridized with genomic DNA from the KATO III gastric cancer cell line was observed when was compared with DNA from the GES-1 normal cell line. These results showed that this nanosystem may be a useful tool for the specific and sensitive detection of methylated DNA of RPRM in patients at risk of developing gastric cancer.
Collapse
Affiliation(s)
- María José Marchant
- Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, 2373223 Valparaíso, Chile.
| | - Leda Guzmán
- Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, 2373223 Valparaíso, Chile.
| | - Alejandro H Corvalán
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330032 Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Independencia, Santiago, Chile.
| |
Collapse
|
12
|
Levin AD, Filimonov IS, Alenichev MK, Goidina TA. Mathematical Modeling of Nanosensor Systems Based on Dynamic Light Scattering. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s1995078018040092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Mobed A, Hasanzadeh M, Aghazadeh M, Saadati A, Hassanpour S, Mokhtarzadeh A. The bioconjugation of DNA with gold nanoparticles towards the spectrophotometric genosensing of pathogenic bacteria. ANALYTICAL METHODS 2019; 11:4289-4298. [DOI: 10.1039/c9ay01339c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The investigation of important bio-molecular events such as expression of special genes has shown promise with the advent of nanotechnology.
Collapse
Affiliation(s)
- Ahmad Mobed
- Student Research Committee
- Department of Microbiology
- Faculty of Medicine
- Tabriz University of Medical Sciences
- Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Mohammad Aghazadeh
- Student Research Committee
- Department of Microbiology
- Faculty of Medicine
- Tabriz University of Medical Sciences
- Iran
| | - Arezoo Saadati
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
14
|
Li B, Chen Y, Wang J, Lu Q, Zhu W, Luo J, Hong J, Zhou X. Detecting transcription factors with allosteric DNA-Silver nanocluster switches. Anal Chim Acta 2018; 1048:168-177. [PMID: 30598147 DOI: 10.1016/j.aca.2018.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
Sensitive and efficient detection of protein markers, such as transcription factors (TFs), is an important issue in postgenomic era. In this paper, we report a DNA nanodevice, allosteric DNA-silver nanocluster switches (AgSwitches), for TFs detection. The mechanism of this nanodevice is based on the binding-induced allostery whereby the binding between AgSwitches and TFs alters the conformation of AgSwitches. This alteration brings DNA-silver nanocluster (DNA-AgNCs) and guanine-rich enhancer sequences (GRS) into close proximity, generating fluorescent enhancement for quantifications. Our results revealed that the sequence design of AgSwitches can be rationally optimized according to stimulated free energy, and we demonstrated that this method can not only be used for detecting TFs in nuclear extracts of cells, but also be developed as a tool for screening inhibitors of TFs. Overall, this work expanded the category allosteric DNA nanodevices by first introducing DNA-AgNCs into this area, and the obtained method was efficient for TFs-related investigations.
Collapse
Affiliation(s)
- Bingzhi Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Jieping Luo
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
15
|
Bahreyni A, Yazdian-Robati R, Ramezani M, Abnous K, Taghdisi SM. Fluorometric aptasensing of the neonicotinoid insecticide acetamiprid by using multiple complementary strands and gold nanoparticles. Mikrochim Acta 2018; 185:272. [DOI: 10.1007/s00604-018-2805-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 01/13/2023]
|
16
|
Zheng T, Li Sip YY, Leong MB, Huo Q. Linear self-assembly formation between gold nanoparticles and aminoglycoside antibiotics. Colloids Surf B Biointerfaces 2018; 164:185-191. [DOI: 10.1016/j.colsurfb.2018.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 12/31/2022]
|
17
|
Ansari Z, Bhattacharya TS, Saha A, Sen K. Block copolymer mediated generation of bimetallic Ni-Pd nanoparticles: Raman sensors of ethyl paraben and ciprofloxacin. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Midelet J, El-Sagheer AH, Brown T, Kanaras AG, Débarre A, Werts MHV. Spectroscopic and Hydrodynamic Characterisation of DNA-Linked Gold Nanoparticle Dimers in Solution using Two-Photon Photoluminescence. Chemphyschem 2018; 19:827-836. [PMID: 29465817 DOI: 10.1002/cphc.201701228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 01/08/2023]
Abstract
Two-photon photoluminescence (TPPL) emission spectra of DNA-gold nanoparticle (AuNP) monoconjugates and the corresponding DNA-linked AuNP dimers are obtained by photon time-of-flight spectroscopy. This technique is combined with two-photon photoluminescence fluctuation correlation spectroscopy (TPPL-FCS) to simultaneously monitor the optical and hydrodynamic behaviour of these nano-assemblies in solution, with single-particle sensitivity and microsecond temporal resolution. In this study, the AuNPs have an average core diameter of 12 nm, which renders their dark-field plasmonic light scattering too weak for single-particle imaging. Moreover, as a result of the lack of plasmonic coupling in the dimers, the optical extinction, scattering and photoluminescence spectra of the DNA-AuNP complexes are not sufficiently different to distinguish between monomers and dimers. The use of TPPL-FCS successfully addresses these bottlenecks and enables the distinction between AuNP monomers and AuNP dimers in solution by measurement of their hydrodynamic rotational and translational diffusion.
Collapse
Affiliation(s)
- Johanna Midelet
- Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Antonios G Kanaras
- Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Anne Débarre
- Lab. Aimé-Cotton and PPSM, École Normale Supérieure de Cachan, CNRS, 61 Av. du Président Wilson, 94235, Cachan, France
| | - Martinus H V Werts
- Univ Rennes, CNRS, SATIE-UMR8029, 35000, Rennes, France.,École Normale Supérieure de Rennes, Av. R. Schuman, Campus de Ker Lann, 35170, Bruz, France
| |
Collapse
|
19
|
Xiao Z, Tang A, Huang H, Wang Z. A simple and sensitive sensor for silver ions based on unmodified gold nanoparticles by using dynamic light scattering techniques. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A simple and sensitive assay for Ag+ was developed with unmodified gold nanoparticles (AuNPs) by using dynamic light scattering techniques. Ag+ could induce the oligonucleotide (5′-ATC ACT ATA TCA TAT ACT CAT-3′) to change from a single-stranded structure to a double-stranded structure and desorb from the surface of AuNPs, which triggered the aggregation of AuNPs in the salt solution. The average hydrodynamic diameter of aggregated AuNPs could be detected by using dynamic light scattering techniques. Under the optimum conditions, the average hydrodynamic diameter of AuNPs is proportional to the concentration of Ag+ within the range of 13.3–100.0 nmol/L, with a detection limit of 3.2 nmol/L. The method is easy to operate and has low sample consumption, high sensitivity and selectivity.
Collapse
Affiliation(s)
- Zhiyou Xiao
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, P.R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, P.R. China
| | - Anjiang Tang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, P.R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, P.R. China
| | - Hongsheng Huang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, P.R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, P.R. China
| | - Ze Wang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, P.R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, P.R. China
| |
Collapse
|
20
|
Vial S, Berrahal Y, Prado M, Wenger J. Single-Step DNA Detection Assay Monitoring Dual-Color Light Scattering from Individual Metal Nanoparticle Aggregates. ACS Sens 2017; 2:251-256. [PMID: 28261666 PMCID: PMC5329769 DOI: 10.1021/acssensors.6b00737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
![]()
Efficiently detecting
DNA sequences within a limited time is vital
for disease screening and public health monitoring. This calls for
a new method that combines high sensitivity, fast read-out time, and
easy manipulation of the sample, avoiding the extensive steps of DNA
amplification, purification, or grafting to a surface. Here, we introduce
photon cross-correlation spectroscopy as a new method for specific
DNA sensing with high sensitivity in a single-step homogeneous solution
phase. Our approach is based on confocal dual-color illumination and
detection of the scattering intensities from individual silver nanoparticles
and gold nanorods. In the absence of the target DNA, the nanoparticles
move independently and their respective scattering signals are uncorrelated.
In the presence of the target DNA, the probe-functionalized gold and
silver nanoparticles assemble via DNA hybridization with the target,
giving rise to temporal coincidence between the signals scattered
by each nanoparticle. The degree of coincidence accurately quantifies
the amount of target DNA. To demonstrate the efficiency of our technique,
we detect a specific DNA sequence of sesame, an allergenic food ingredient,
for a range of concentration from 5 pM to 1.5 nM with a limit of detection
of 1 pM. Our method is sensitive and specific enough to detect single
nucleotide deletion and mismatch. With the dual-color scattering signals
being much brighter than fluorescence-based analogs, the analysis
is fast, quantitative, and simple to operate, making it valuable for
biosensing applications.
Collapse
Affiliation(s)
- Stéphanie Vial
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Youri Berrahal
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Marta Prado
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre José Veiga, 4715-310, Braga, Portugal
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|