1
|
Mahadevan G, Brahma RK, Kini RM, Valiyaveettil S. Purification of Intramineral Peptides from Cuttlebones and In Vitro Activity in CaCO 3 Biomineralization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7249-7257. [PMID: 37201193 DOI: 10.1021/acs.langmuir.2c03433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Living organisms develop functional hard structures such as teeth, bones, and shells from calcium salts through mineralization for managing vital functions to sustain life. However, the exact mechanism or role of biomolecules such as proteins and peptides in the biomineralization process to form defect-free hierarchical structures in nature is poorly understood. In this study, we have extracted, purified, and characterized five major peptides (CBP1-CBP5) from the soluble organic materials (SOMs) of cuttlefish bone (CB) and used for the in vitro mineralization of calcium carbonate crystals. The SOMs induced nucleation of the calcite phase at low concentrations and the vaterite phase at high concentrations. The purified peptides nucleated calcite crystals and enhanced aggregation under laboratory conditions. Among five peptides, only CBP2 and CBP3 showed concentration-dependent nucleation, aggregation, and morphological changes of the calcite crystals within 12 h. Circular dichroism studies showed that the peptides CBP2 and CBP3 are in alpha helix and β-sheet conformation, respectively, in solution. CBP1 and CBP4 and CBP5 are in random coil and β-sheet conformation, respectively. In addition, the peptides showed different sizes in solution in the absence (∼27 nm, low aggregation) and presence (∼118 nm, high aggregation) of calcium ions. Aragonite crystals with needle-type morphologies were nucleated in the presence of Mg2+ ions in solution. Overall, exploring the activities of such intramineral peptides from CB help to unravel the mechanism of calcium salt deposition in nature.
Collapse
Affiliation(s)
- Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Rajeev Kungur Brahma
- Department of Biological Sciences, 14 science drive 4, National University of Singapore, Singapore 117543, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, 14 science drive 4, National University of Singapore, Singapore 117543, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Khattabi AM, Mahmoud NN. Interaction of folate - Linked silica nanoparticles with HeLa cells: Analysis and investigation the effect of polymer length. Saudi Pharm J 2021; 29:1083-1089. [PMID: 34703361 PMCID: PMC8523324 DOI: 10.1016/j.jsps.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022] Open
Abstract
This work is a continuance to our previous findings on silica nanoparticles (NPs) modified with diamine polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. When four different polymer lengths (D230, D400, D2000 and D4000) were analyzed, the release rate of anticancer agents was inversely related to the polymer length while the cell toxicity was directly related to the length. We investigate here the effect of polymer length on the extent of cellular interaction with HeLa cells. The mean particle size, the polydispersity (PD) and the zeta potential of the NPs were measured using dynamic light scattering (DLS), the quantitative analysis of the extent of NPs' interaction was studied using fluorescence microscopy and transmission electron microscopy (TEM) was used to qualitatively visualize them. The particle size increased by increasing the polymer length, the PD values were within the acceptable ranges (0.3−0.5) and the zeta potential was in the range of (−16 to −20 mV). A direct relation was observed between the fluorescence intensity and the length. All modified NPs were capable of entering the cells, however a greater number of NPs with long polymers was observed compared to short polymers. Thus, the direct relation of polymer length to the cell toxicity is due to the release rate behavior and the enhanced interaction of NPs which possess long polymers.
Collapse
Affiliation(s)
- Areen M Khattabi
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman, Jordan
| | - Nouf N Mahmoud
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
3
|
Liu C, Ji X, Huang J, Wang Z, Liu Y, Hincke MT. Proteomics of Shell Matrix Proteins from the Cuttlefish Bone Reveals Unique Evolution for Cephalopod Biomineralization. ACS Biomater Sci Eng 2021; 9:1796-1807. [PMID: 34468131 DOI: 10.1021/acsbiomaterials.1c00693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In contrast to the external shells in bivalves and gastropods, most cephalopods are missing this external protection. The cuttlefish, belonging to class cephalopod, has an internal biomineralized structure made of mainly calcium carbonate for controlling buoyancy. However, the macromolecules, especially proteins that control cuttlebone mineral formation, are not sufficiently understood, limiting our understanding of the evolution of this internal shell. In this study, we extracted proteins from the cuttlebone of pharaoh cuttlefish Sepia pharaonis and performed liquid chromatography-tandem mass spectrometry to identify the shell matrix proteins (SMPs). In total, 41 SMPs were identified. Among them, hemocyanin, an oxygen-carrying protein, was the most abundant SMP. By comparison with SMPs of other marine biominerals, hemocyanin, apolipophorin, soul domain proteins, transferrin, FL-rich, and enolase were found to be unique to the cuttlebone. In contrast, typical SMPs of external shells such as carbonic anhydrase complement control protein, fibronectin type III, and G/A-rich proteins were lacking from the cuttlebone. Furthermore, the cluster analysis of biomineral SMPs suggests that the SMP repertoire of the cuttlebone does not resemble that of other species with external shells. Taken together, this study implies a potential relationship of the cuttlefish internal shell with other internal biominerals, which highlights a unique shell evolutionary pathway in invertebrates.
Collapse
Affiliation(s)
- Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Xin Ji
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Jingliang Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhu hai, Guangdong 519082, China
| | - Zilin Wang
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Yangjia Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Maxwell T Hincke
- Department of Innovation in Medical Education, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H8M5, Ontario, Canada
| |
Collapse
|
4
|
Bhattacharjee A, Kumar R, Sharma KP. Composite Porous Liquid for Recyclable Sequestration, Storage and In Situ Catalytic Conversion of Carbon Dioxide at Room Temperature. CHEMSUSCHEM 2021; 14:3303-3314. [PMID: 34196112 DOI: 10.1002/cssc.202100931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Permanent pores combined with fluidity renders flow processability to porous liquids otherwise not seen in porous solids. Although porous liquids have been utilized for sequestration of different gases and their separation, there is still a dearth of studies for deploying in situ chemical reactions to convert adsorbed gases into utility chemicals. Here, we show the design and development of a new type of solvent-less and hybrid (meso-)porous liquid composite, which, as demonstrated for the first time, can be used for in situ carbon mineralization of adsorbed CO2 . The recyclable porous liquid composite comprising polymer-surfactant modified hollow silica nanorods and carbonic anhydrase enzyme not only sequesters (5.5 cm3 g-1 at 273 K and 1 atm) and stores CO2 but is also capable of driving an in situ enzymatic reaction for hydration of CO2 to HCO3 - ion, subsequently converting it to CaCO3 due to reaction with pre-dissolved Ca2+ . Light and electron microscopy combined with X-ray diffraction reveals the nucleation and growth of calcite and aragonite crystals. Moreover, the liquid-like property of the porous composite material can be harnessed by executing the same reaction via diffusion of complimentary Ca2+ and HCO3 - ions through different compartments separated by an interfacial channel. These studies provide a proof of concept of deploying chemical reactions within porous liquids for developing utility chemical from adsorbed molecules.
Collapse
Affiliation(s)
- Archita Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Raj Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
5
|
Rezende BS, Spotorno-Oliveira P, D'ávila S, Maia LF, Cappa de Oliveira LF. Evidence of a Biogenic Mineralization Process in Vermetid Feeding Mucus as Revealed by Raman Spectroscopy and Scanning Electron Microscopy. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Beatriz Seixas Rezende
- Museu de Malacologia Prof. Maury Pinto de Oliveira, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Paula Spotorno-Oliveira
- Programa de Pós-Graduação em Oceanologia, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Sthefane D'ávila
- Museu de Malacologia Prof. Maury Pinto de Oliveira, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Lenize Fernandes Maia
- Núcleo de Espectroscopia e Estrutura Molecular, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Luiz Fernando Cappa de Oliveira
- Núcleo de Espectroscopia e Estrutura Molecular, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, MG, Brazil
| |
Collapse
|
6
|
Chen Y, Liu C, Li S, Liu Z, Xie L, Zhang R. Repaired Shells of the Pearl Oyster Largely Recapitulate Normal Prismatic Layer Growth: A Proteomics Study of Shell Matrix Proteins. ACS Biomater Sci Eng 2018; 5:519-529. [DOI: 10.1021/acsbiomaterials.8b01355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yan Chen
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuang Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province 314006, China
| | - Shiguo Li
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziwen Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rongqing Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province 314006, China
| |
Collapse
|
7
|
Du J, Xu G, Liu C, Zhang R. The role of phosphorylation and dephosphorylation of shell matrix proteins in shell formation: an in vivo and in vitro study. CrystEngComm 2018. [DOI: 10.1039/c8ce00755a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphorylation of shell matrix proteins is critical for shell formation in vivo and can modulate calcium carbonate formation in vitro.
Collapse
Affiliation(s)
- Jinzhe Du
- Institute of Marine Biotechnology
- School of Life Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Guangrui Xu
- Institute of Marine Biotechnology
- School of Life Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Chuang Liu
- Department of Biomaterials
- Max Planck Institute of Colloids and Interfaces
- Potsdam 14476
- Germany
- Department of Biotechnology and Biomedicine
| | - Rongqing Zhang
- Institute of Marine Biotechnology
- School of Life Sciences
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
8
|
Li S, Liu Y, Huang J, Zhan A, Xie L, Zhang R. The receptor genes PfBMPR1B and PfBAMBI are involved in regulating shell biomineralization in the pearl oyster Pinctada fucata. Sci Rep 2017; 7:9219. [PMID: 28835628 PMCID: PMC5569090 DOI: 10.1038/s41598-017-10011-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022] Open
Abstract
Mounting evidence suggests that TGFβ/BMP signaling pathway is most likely involved in shell biomineralization in molluscs, but the function of pathway receptors is poorly studied. Here, we cloned and identified two homologous BMP receptor genes, PfBMPR1B and PfBAMBI, from the pearl oyster Pinctada fucata. Real-time quantitative PCR and in situ hybridization revealed that these genes were expressed in mantle edge and pallial, specifically located at the outer epithelia. Knockdown of PfBMPR1B by RNA interference (RNAi) significantly decreased the expression levels of matrix protein (MP) genes and induced the abnormal ultrastructure of prismatic and nacreous layers. Conversely, knockdown of PfBAMBI significantly increased the expression levels of a portion of MP genes and induced the overgrowth of nacreous layer crystals. In the RNAi and shell notching experiments, MP gene expressions were competitively regulated by PfBMPR1B and PfBAMBI. In addition, the receptor inhibitor LDN193189 reduced the expression levels of MP genes in mantle primary cells and larvae, and induced abnormal D-shaped shell formation during larval development. Collectively, these results clearly show that PfBMPR1B and PfBAMBI are involved in regulating shell biomineralization in P. fucata. Our study therefore provides the direct evidence that BMP receptors participate in mollusc biomineralization.
Collapse
Affiliation(s)
- Shiguo Li
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yangjia Liu
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingliang Huang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Liping Xie
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Rongqing Zhang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, China.
| |
Collapse
|