1
|
Quoc SD, Fujibuchi T, Arakawa H, Hamada K. Photon and Neutron Dose Estimation Using Monte Carlo Simulation in TrueBeam's Room. J Med Phys 2024; 49:473-479. [PMID: 39526157 PMCID: PMC11548078 DOI: 10.4103/jmp.jmp_70_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose The distribution of neutron ambient dose equivalent within the TrueBeam 10 MV photon chamber was investigated. Materials and Methods The research used particle and heavy ion transport code system (PHITS) code and JENDL-5.0 to simulate the neutron ambient dose equivalent on and around TrueBeam's head. The simulated results were compared with the measured results using CR-39 detectors when TrueBeam radiated 5000 monitor units of 10 MV photons with field sizes 20 cm × 20 cm and 0.5 cm × 0.5 cm. Results Out of field size, the neutron ambient dose equivalents of the 0.5 cm × 0.5 cm field size are higher than those values of the 20 cm × 20 cm field size from 4% to 30%. The differences between the simulated value and the measured value of the neutron ambient dose equivalents at all points out of field size are smaller than 20%. Conclusion The neutron ambient dose equivalents, simulated with PHITS and JENDL-5.0, are satisfied with the measured neutron ambient dose equivalent.
Collapse
Affiliation(s)
- Soai Dang Quoc
- Department of Health Sciences, Division of Medical Quantum Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshioh Fujibuchi
- Department of Health Sciences, Division of Medical Quantum Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Arakawa
- Department of Health Sciences, Division of Medical Quantum Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Hamada
- Department of Health Sciences, Division of Medical Quantum Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Radiological Technology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
2
|
Fallone CJ, Summers C, Cwajna W, Syme A. Assessing the impact of intrafraction motion correction on PTV margins and target and OAR dosimetry for single-fraction free-breathing lung stereotactic body radiation therapy. Med Dosim 2023:S0958-3947(23)00041-9. [PMID: 37164788 DOI: 10.1016/j.meddos.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
The objective of this research is to investigate intrafraction motion correction on planning target volume (PTV) margin requirements and target and organ-at-risk (OAR) dosimetry in single-fraction lung stereotactic body radiation therapy (SBRT). Sixteen patients (15 with upper lobe lesions, 1 with a middle lobe lesion) were treated with single-fraction lung SBRT. Cone-beam computed tomography (CBCT) images were acquired before the treatment, between the arcs, and after the delivery of the treatment fraction. Shifts from the reference images were recorded in anterior-posterior (AP), superior-inferior (SI), and lateral (LAT) dimensions. The deviations from the reference image were calculated for 3 clinical scenarios: not applying intratreatment couch shifts and not correcting for pretreatment deviations < 3 mm ( scenario 1), not applying intratreatment couch shifts and correcting for pretreatment deviations < 3 mm ( scenario 2), and applying all pre- and intratreatment couch shifts (scenario 3). PTV margins were determined using the van Herk formalism for each scenario and maximum and average deviations were assessed. The clinical scenarios were modelled in the treatment planning system based on each patient dataset to assess target and OAR dosimetry. Calculated lower-bound PTV margins in the AP, SI, and LAT dimensions were [4.6, 3.5, 2.3] mm in scenario 1, [4.6, 2.4, 2.2] mm in scenario 2, and [1.7, 1.2, 1.0] mm in scenario 3. The margins are lower bounds because they do not include contributions from nonmotion related errors. Average and maximum intrafraction deviations were larger in the AP dimension compared to the SI and LAT dimensions for all scenarios. A unidimensional movement (several mm) in the negative AP dimension was observed in clinical scenarios 1 and 2 but not scenario 3. Average intrafraction deviation vectors were 1.2, 1.1, and 0.3 mm for scenarios 1, 2, and 3, respectively. Modelled clinical scenarios revealed that using scenario 3 yields significantly fewer treatment plan objective failures compared to scenarios 1 and 2 using a Wilcoxon signed-rank test. Intratreatment motion correction between each arc may enable reductions PTV margin requirements. It may also compensate for unidimensional negative AP movement, and improve target and OAR dosimetry.
Collapse
Affiliation(s)
- Clara J Fallone
- Department of Medical Physics, Nova Scotia Health (NSH), Halifax, Nova Scotia, B3H2Y9 Canada; Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, B3H2Y9 Canada.
| | - Clare Summers
- Department of Radiation Oncology, Nova Scotia Health, Halifax, Nova Scotia, B3H2Y9 Canada
| | - Wladyslawa Cwajna
- Department of Radiation Oncology, Nova Scotia Health, Halifax, Nova Scotia, B3H2Y9 Canada; Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, B3H2Y9 Canada
| | - Alasdair Syme
- Department of Medical Physics, Nova Scotia Health (NSH), Halifax, Nova Scotia, B3H2Y9 Canada; Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, B3H2Y9 Canada; Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H2Y9 Canada
| |
Collapse
|
3
|
Kearney M, Keys M, Faivre-Finn C, Wang Z, Aznar MC, Duane F. Exposure of the heart in lung cancer radiation therapy: A systematic review of heart doses published during 2013 to 2020. Radiother Oncol 2022; 172:118-125. [PMID: 35577022 DOI: 10.1016/j.radonc.2022.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Lung cancer radiotherapy increases the risk of cardiotoxicity and heart radiation dose is an independent predictor of poor survival. This study describes heart doses and strategies aiming to reduce exposure. MATERIALS AND METHODS A systematic review of lung cancer dosimetry studies reporting heart doses published 2013-2020 was undertaken. Doses were compared according to laterality, region irradiated, treatment modality (stereotactic ablative body radiotherapy (SABR) and non-SABR), planning technique, and respiratory motion management. RESULTS For 392 non-SABR regimens in 105 studies, the average MHD was 10.3 Gy (0.0-48.4) and was not significantly different between left and right-sided tumours. It was similar between IMRT and 3DCRT (10.9 Gy versus 10.6 Gy) and lower with particle beam therapy (proton 7.0 Gy; carbon-ion 1.9 Gy). Active respiratory motion management reduced exposure (7.4 Gy versus 9.3 Gy). For 168 SABR regimens in 35 studies, MHD was 4.0 Gy (0.0-32.4). Exposure was higher in central and lower lobe lesions (6.3 and 5.8 Gy respectively). MHD was lowest for carbon ions (0.5 Gy) compared to other techniques. Active respiratory motion management reduced exposure (2.4 Gy versus 5.0 Gy). Delineation guidelines and Dose Volume Constraints for the heart varied substantially. CONCLUSIONS There is scope to reduce heart radiation dose in lung cancer radiotherapy. Consensus on planning objectives, contouring and DVCs for the heart may lead to reduced heart doses in the future. For IMRT, more stringent optimisation objectives may reduce heart dose. Active respiratory motion management or particle therapy may be considered in situations where cardiac dose is high.
Collapse
Affiliation(s)
- Maeve Kearney
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland.
| | - Maeve Keys
- St Luke's Radiation Oncology Network, St. Luke's Hospital, Dublin, Ireland; The Christie NHS Foundation Trust, University of Manchester, United Kingdom
| | | | - Zhe Wang
- Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Marianne C Aznar
- Nuffield Department of Population Health, University of Oxford, United Kingdom; Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Frances Duane
- St Luke's Radiation Oncology Network, St. Luke's Hospital, Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Gaudreault M, Offer K, Kron T, Siva S, Hardcastle N. On the reduction of aperture complexity in kidney SABR. J Appl Clin Med Phys 2021; 22:71-81. [PMID: 33756036 PMCID: PMC8035567 DOI: 10.1002/acm2.13215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/28/2023] Open
Abstract
Background Stereotactic ablative body radiotherapy (SABR) of primary kidney cancers is confounded by motion. There is a risk of interplay effect if the dose is delivered using volumetric modulated arc therapy (VMAT) and flattening filter‐free (FFF) dose rates due to target and linac motion. This study aims to provide an efficient way to generate plans with minimal aperture complexity. Methods In this retrospective study, 62 patients who received kidney SABR were reviewed. For each patient, two plans were created using internal target volume based motion management, on the average intensity projection of a four‐dimensional CT. In the first plan, optimization was performed using a knowledge‐based planning model based on delivered clinical plans in our institution. In the second plan, the optimization was repeated, with a maximum monitor unit (MU) objective applied in the optimization. Dose‐volume, conformity, and complexity metric (with the field edge metric and the modulation complexity score) were compared between the two plans. Results are shown in terms of median (first quartile — third quartile). Results Similar dosimetry was obtained with and without the utilization of an objective on the MU. However, complexity was reduced by using the objective on the MUs (modulation complexity score = 0.55 (0.50–0.61) / 0.33 (0.29–0.36), P‐value < 10−10, with/without the MU objective). Reduction of complexity was driven by a larger aperture area (area aperture variability = 0.68 (0.64–0.73) / 0.42 (0.37–0.45), P‐value < 10−10, with/without the MU objective). Using the objective on the MUs resulted in a more spherical dose distribution (sphericity 50% isodose = 0.73 (0.69–0.75) / 0.64 (0.60–0.68), P‐value < 10−8, with/without the MU objective) reducing dose to organs at risk given respiratory motion. Conclusions Aperture complexity is reduced in kidney SABR by using an objective on the MU delivery with VMAT and FFF dose rate.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia
| | - Keith Offer
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia.,Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Performance of the eclipse monitor unit objective tool utilizing volumetric modulated arc therapy for rectal cancer. Rep Pract Oncol Radiother 2019; 24:227-232. [PMID: 30858766 DOI: 10.1016/j.rpor.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Aim To assess the performance of the monitor unit (MU) Objective tool in Eclipse treatment planning system (TPS) utilizing volumetric modulated arc therapy (VMAT) for rectal cancer. Background Eclipse VMAT planning module includes a tool to control the number of MUs delivered: the MU Objective tool. This tool could be utilized to reduce the total number of MUs in rectal cancer treatments. Materials and methods 20 rectal cancer patients were retrospectively studied using VMAT and the MU Objective tool. The baseline plan for each patient was selected as the one with no usage of the MU Objective tool. The number of MUs of this plan was set to be the reference number of MUs (MUref). Five plans were re-optimized for each patient only varying the Max MU parameter. The selected values were 30%, 60%, 90%, 120% and 150% of MUref for each patient. Differences with respect to the baseline plan were evaluated regarding MU number and parameters for PTVs coverage evaluation, PTVs homogeneity and OARs doses assessment. A two-tailed, paired-samples t-test was used to quantify these differences. Results Average relative differences in MU number obtained was 10% for Max MU values of 30% and 60% of MUref, respectively (p < 0.03). PTVs coverage and homogeneity were not compromised and discrepancies obtained with respect to baseline plans were not significant. Furthermore, maximum OARs doses deviations were also not significant. Conclusions A 10% reduction in the MU number could be obtained without an alteration of PTV coverage and OARs doses for rectal cancer.
Collapse
|
6
|
Jiménez-Puertas S, Sánchez-Artuñedo D, Hermida-López M. Assessment of the Monitor Unit Objective tool for VMAT in the Eclipse treatment planning system. Rep Pract Oncol Radiother 2018; 23:121-125. [PMID: 29556140 DOI: 10.1016/j.rpor.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/02/2018] [Indexed: 12/09/2022] Open
Abstract
Aim This work aims to achieve the highest possible monitor units (MU) reduction using the MU Objective tool included in the Eclipse treatment planning system, while preserving the plan quality. Background The treatment planning system Eclipse (Varian Medical Systems, Palo Alto, CA) includes a control mechanism for the number of monitor units of volumetric modulated arc therapy (VMAT) plans, named the MU Objective tool. Material and methods Forty prostate plans, 20 gynecological plans and 20 head and neck plans designed with VMAT were retrospectively studied. Each plan (base plan) was optimized without using the MU Objective tool, and it was re-optimized with different values of the Maximum MU (MaxMU) parameter of the MU Objective tool. MU differences were analyzed with a paired samples t-test and changes in plan quality were assessed with a set of parameters for OARs and PTVs. Results The average relative MU difference [Formula: see text] considering all treatment sites, was the highest when MaxMU = 400 (-4.2%, p < 0.001). For prostate plans, the lowest [Formula: see text] was obtained (-3.7%, p < 0.001). For head and neck plans [Formula: see text] was -7.3% (p < 0.001) and for gynecological plans [Formula: see text] was 7.0% (p = 0.002). Although similar MU reductions were observed for both sites, for some gynecological plans maximum differences were greater than 10%. All the assessed parameters for PTVs and OARs sparing showed average differences below 2%. Conclusion For the three studied clinical sites, establishing MaxMU = 400 led to the optimum MU reduction, maintaining the original dose distribution and dosimetric parameters practically unaltered.
Collapse
Affiliation(s)
- Sara Jiménez-Puertas
- Servicio de Física y Protección Radiológica, Hospital Universitario Miguel Servet, Paseo Isabel la Católica 1-3, 50009, Zaragoza, Spain
| | - David Sánchez-Artuñedo
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Marcelino Hermida-López
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|