1
|
Pan L, Yin N, Duan M, Mei Q, Zeng Y. The role of gut microbiome and its metabolites in pancreatitis. mSystems 2024; 9:e0066524. [PMID: 39212377 PMCID: PMC11494936 DOI: 10.1128/msystems.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as Bifidobacterium, Akkermansia, and Lactobacillus, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.
Collapse
Affiliation(s)
- Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyu Duan
- Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen S, He Y, Huang X, Shen Y, Zou Q, Yang G, Fu L, Liu Q, Luo D. Photosensitive and dual-targeted chromium nanoparticle delivering small interfering RNA YTHDF1 for molecular-targeted immunotherapy in liver cancer. J Nanobiotechnology 2024; 22:348. [PMID: 38898486 PMCID: PMC11188166 DOI: 10.1186/s12951-024-02612-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a promising target for cancer immunotherapy, but delivering therapeutic agents to TAMs within the tumor microenvironment (TME) is challenging. In this study, a photosensitive, dual-targeting nanoparticle system (M.RGD@Cr-CTS-siYTHDF1 NPs) was developed. The structure includes a shell of DSPE-modified RGD peptides targeting integrin receptors on tumor cells and carboxymethyl mannose targeting CD206 receptors on macrophages, with a core of chitosan adsorbing m6A reading protein YTHDF1 siRNA and chromium nanoparticles (Cr NPs). The approach is specifically designed to target TAM and cancer cells, utilizing the photothermal effect of Cr NPs to disrupt the TME and deliver siYTHDF1 to TAM. In experiments with tumor-bearing mice, M.RGD@Cr-CTS-siYTHDF1 NPs, when exposed to laser irradiation, effectively killed tumor cells, disrupted the TME, delivered siYTHDF1 to TAMs, silenced the YTHDF1 gene, and shifted the STAT3-STAT1 equilibrium by reducing STAT3 and enhancing STAT1 expression. This reprogramming of TAMs towards an anti-tumor phenotype led to a pro-immunogenic TME state. The strategy also suppressed immunosuppressive IL-10 production, increased expression of immunostimulatory factors (IL-12 and IFN-γ), boosted CD8 + T cell infiltration and M1-type TAMs, and reduced Tregs and M2-type TAMs within the TME. In conclusion, the dual-targeting M.RGD@Cr-CTS-siYTHDF1 NPs, integrating dual-targeting capabilities with photothermal therapy (PTT) and RNA interference, offer a promising approach for molecular targeted cancer immunotherapy with potential for clinical application.
Collapse
Affiliation(s)
- Shang Chen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
| | - Yan He
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xin Huang
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yao Shen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
| | - Qingshuang Zou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Gun Yang
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, People's Republic of China.
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China.
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China.
| |
Collapse
|
3
|
Influence of Single Deuterium Replacement on Frequency of Hydrogen Bond Dissociation in IFNA17 under the Highest Critical Energy Range. Int J Mol Sci 2022; 23:ijms232415487. [PMID: 36555136 PMCID: PMC9778762 DOI: 10.3390/ijms232415487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The effect of single substitutions of protium for deuterium in hydrogen bonds between pairs of nitrogenous bases on the open states occurrence probability at high critical breaking energies of these bonds has been studied. The study was carried out using numerical methods based on the angular mathematical model of DNA. The IFNA17 gene was divided into three approximately equal parts. A comparison of the open states occurrence probability in these parts of the gene was done. To improve the accuracy of the results, a special data processing algorithm was developed. The developed methods have shown their suitability for taking into account the occurrence of open states in the entire range of high critical energies. It has been established that single 2H/1H substitutions in certain nitrogenous bases can be a mechanism for maintaining the vital activity of IFNA17 under critical conditions. In general, the developed method of the mathematical modeling provide unprecedented insight into the DNA behavior under the highest critical energy range, which greatly expands scientific understanding of nucleobases interaction.
Collapse
|
4
|
Raffaini G, Mele A, Caronna T. Adsorption of Chiral [5]-Aza[5]helicenes on DNA Can Modify Its Hydrophilicity and Affect Its Chiral Architecture: A Molecular Dynamics Study. MATERIALS 2020; 13:ma13215031. [PMID: 33171884 PMCID: PMC7664699 DOI: 10.3390/ma13215031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Helicenes are interesting chiral molecules without asymmetric carbon atoms but with intrinsic chirality. Functionalized 5-Aza[5]helicenes can form non-covalent complexes with anticancer drugs and therefore be potential carriers. The paper highlights the different structural selectivity for DNA binding for two enantiopure compounds and the influence of concentration on their adsorption and self-aggregation process. In this theoretical study based on atomistic molecular dynamics simulations the interaction between (M)- and (P)-5-Aza[5]helicenes with double helix B-DNA is investigated. At first the interaction of single pure enantiomer with DNA is studied, in order to find the preferred site of interaction at the major or minor groove. Afterwards, the interaction of the enantiomers at different concentrations was investigated considering both competitive adsorption on DNA and possible helicenes self-aggregation. Therefore, racemic mixtures were studied. The helicenes studied are able to bind DNA modulating or locally modifying its hydrophilic surface into hydrophobic after adsorption of the first helicene layer partially covering the negative charge of DNA at high concentration. The (P)-enantiomer shows a preferential binding affinity of DNA helical structure even during competitive adsorption in the racemic mixtures. These DNA/helicenes non-covalent complexes exhibit a more hydrophobic exposed surface and after self-aggregation a partially hidden DNA chiral architecture to the biological environment.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20131 Milano, Italy
- Correspondence:
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
| | - Tullio Caronna
- Dipartimento di Ingegneria e Scienze Applicate, Università degli Studi di Bergamo, 24044 Bergamo, Italy;
| |
Collapse
|
5
|
Jakubec D, Vondrášek J. Efficient Estimation of Absolute Binding Free Energy for a Homeodomain-DNA Complex from Nonequilibrium Pulling Simulations. J Chem Theory Comput 2020; 16:2034-2041. [PMID: 32208691 DOI: 10.1021/acs.jctc.0c00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Estimation of binding free energies is one of the central aims of simulations of biomolecular complexes. We explore the accuracy and efficiency of setups based on nonequilibrium pulling simulations applied to the estimation of binding affinities of DNA-binding proteins. Absolute binding free energies are calculated over a range of temperatures and compared to results obtained previously using an equilibrium method. We show that realistic binding affinities can be obtained with the presented nonequilibrium approach, which also entails lower computational requirements. Errors of the binding free energy estimates are investigated and are shown to be comparable to those observed previously. Bounds are provided on the convergence of the errors with respect to the number of pulling simulations performed and with respect to the applied pull rate.
Collapse
Affiliation(s)
- David Jakubec
- Bioinformatics Group, Institute of Organic Chemistry and Biochemistry of the CAS, 166 10 Praha 6, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 43 Praha 2, Czech Republic
| | - Jiří Vondrášek
- Bioinformatics Group, Institute of Organic Chemistry and Biochemistry of the CAS, 166 10 Praha 6, Czech Republic
| |
Collapse
|
6
|
Qian Y, Guo M, Li C, Bi K, Chen Y. New Insight on the Interface between Polythiophene and Semiconductors via Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30470-30476. [PMID: 31339292 DOI: 10.1021/acsami.9b09742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polythiophene is considered as an effective dry adhesive and is promising to be a conductive adhesive due to its excellent properties. Here, we used steered molecular dynamics to investigate the interfacial strength between polythiophene and various semiconductors with similar structures including silicon, silicon carbide, and diamond. Energy decomposition was done to have a detailed insight into the adhesive mechanism. Particularly, we laid stress on the entropy difference of the polythiophene chain in different systems. Van der Waals interaction and electrostatic interaction both positively contributed to the adhesion between polythiophene and semiconductors, while the entropy change of polythiophene, including vibrational entropy change and conformational entropy change, weakened the adhesion to some extent. Our results indicated that the combined effect of these three factors made the adhesion between polythiophene and silicon carbide the strongest among the systems we studied. Additionally, it was found that such adhesion was scarcely influenced by temperature. This simple polythiophene-semiconductor interfacial study can help optimize the choice of the semiconductor when applying the polythiophene adhesive.
Collapse
Affiliation(s)
- Yicheng Qian
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Ming Guo
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Chun Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Kedong Bi
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , P. R. China
| |
Collapse
|
7
|
Eisold A, Labudde D. Detailed Analysis of 17β-Estradiol-Aptamer Interactions: A Molecular Dynamics Simulation Study. Molecules 2018; 23:molecules23071690. [PMID: 29997341 PMCID: PMC6100600 DOI: 10.3390/molecules23071690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Micro-pollutants such as 17β-Estradiol (E2) have been detected in different water resources and their negative effects on the environment and organisms have been observed. Aptamers are established as a possible detection tool, but the underlying ligand binding is largely unexplored. In this study, a previously described 35-mer E2-specific aptamer was used to analyse the binding characteristics between E2 and the aptamer with a MD simulation in an aqueous medium. Because there is no 3D structure information available for this aptamer, it was modeled using coarse-grained modeling method. The E2 ligand was positioned inside a potential binding area of the predicted aptamer structure, the complex was used for an 25 ns MD simulation, and the interactions were examined for each time step. We identified E2-specific bases within the interior loop of the aptamer and also demonstrated the influence of frequently underestimated water-mediated hydrogen bonds. The study contributes to the understanding of the behavior of ligands binding with aptamer structure in an aqueous solution. The developed workflow allows generating and examining further appealing ligand-aptamer complexes.
Collapse
Affiliation(s)
- Alexander Eisold
- Faculty of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
- Institute for Organic Chemistry, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany.
| | - Dirk Labudde
- Faculty of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
| |
Collapse
|
8
|
Zhang W, Wang ML, Khalili S, Cranford SW. Materiomics for Oral Disease Diagnostics and Personal Health Monitoring: Designer Biomaterials for the Next Generation Biomarkers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:12-29. [PMID: 26760957 PMCID: PMC4739130 DOI: 10.1089/omi.2015.0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We live in exciting times for a new generation of biomarkers being enabled by advances in the design and use of biomaterials for medical and clinical applications, from nano- to macro-materials, and protein to tissue. Key challenges arise, however, due to both scientific complexity and compatibility of the interface of biology and engineered materials. The linking of mechanisms across scales by using a materials science approach to provide structure-process-property relations characterizes the emerging field of 'materiomics,' which offers enormous promise to provide the hitherto missing tools for biomaterial development for clinical diagnostics and the next generation biomarker applications towards personal health monitoring. Put in other words, the emerging field of materiomics represents an essentially systematic approach to the investigation of biological material systems, integrating natural functions and processes with traditional materials science perspectives. Here we outline how materiomics provides a game-changing technology platform for disruptive innovation in biomaterial science to enable the design of tailored and functional biomaterials--particularly, the design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. Rigorous and complementary computational modeling and experimental techniques will provide an efficient means to develop new clinical technologies in silico, greatly accelerating the translation of materiomics-driven oral health diagnostics from concept to practice in the clinic.
Collapse
Affiliation(s)
- Wenjun Zhang
- Laboratory for Nanotechnology In Civil Engineering (NICE), Northeastern University, Boston, Massachusetts
- Interdisciplinary Engineering Program, College of Engineering, Northeastern University, Boston, Massachusetts
| | - Ming L. Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts
| | - Sammy Khalili
- Department of Otorhinolaryngology-Head and Neck Surgery, Aurora Medical Group, Milwaukee, Wisconsin
| | - Steven W. Cranford
- Laboratory for Nanotechnology In Civil Engineering (NICE), Northeastern University, Boston, Massachusetts
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts
| |
Collapse
|