1
|
van der Sprong J, de Voogd NJ, McCormack GP, Sandoval K, Schätzle S, Voigt O, Erpenbeck D, Wörheide G, Vargas S. A novel target-enriched multilocus assay for sponges (Porifera): Red Sea Haplosclerida (Demospongiae) as a test case. Mol Ecol Resour 2024; 24:e13891. [PMID: 38010340 DOI: 10.1111/1755-0998.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
With declining biodiversity worldwide, a better understanding of species diversity and their relationships is imperative for conservation and management efforts. Marine sponges are species-rich ecological key players on coral reefs, but their species diversity is still poorly understood. This is particularly true for the demosponge order Haplosclerida, whose systematic relationships are contentious due to the incongruencies between morphological and molecular phylogenetic hypotheses. The single gene markers applied in previous studies did not resolve these discrepancies. Hence, there is a high need for a genome-wide approach to derive a phylogenetically robust classification and understand this group's evolutionary relationships. To this end, we developed a target enrichment-based multilocus probe assay for the order Haplosclerida using transcriptomic data. This probe assay consists of 20,000 enrichment probes targeting 2956 ultraconserved elements in coding (i.e. exon) regions across the genome and was tested on 26 haplosclerid specimens from the Red Sea. Our target-enrichment approach correctly placed our samples in a well-supported phylogeny, in agreement with previous haplosclerid molecular phylogenies. Our results demonstrate the applicability of high-resolution genomic methods in a systematically complex marine invertebrate group and provide a promising approach for robust phylogenies of Haplosclerida. Subsequently, this will lead to biologically unambiguous taxonomic revisions, better interpretations of biological and ecological observations and new avenues for applied research, conservation and managing declining marine diversity.
Collapse
Affiliation(s)
- Joëlle van der Sprong
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicole Joy de Voogd
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Grace Patricia McCormack
- Molecular Evolution and Systematics Laboratory, Zoology, School of Natural Sciences & Ryan Institute, University of Galway, Galway, Ireland
| | - Kenneth Sandoval
- Molecular Evolution and Systematics Laboratory, Zoology, School of Natural Sciences & Ryan Institute, University of Galway, Galway, Ireland
| | - Simone Schätzle
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Oliver Voigt
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Bavarian State Collections of Palaeontology and Geology, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Lavrov DV, Diaz MC, Maldonado M, Morrow CC, Perez T, Pomponi SA, Thacker RW. Phylomitogenomics bolsters the high-level classification of Demospongiae (phylum Porifera). PLoS One 2023; 18:e0287281. [PMID: 38048310 PMCID: PMC10695373 DOI: 10.1371/journal.pone.0287281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Class Demospongiae is the largest in the phylum Porifera (Sponges) and encompasses nearly 8,000 accepted species in three subclasses: Keratosa, Verongimorpha, and Heteroscleromorpha. Subclass Heteroscleromorpha contains ∼90% of demosponge species and is subdivided into 17 orders. The higher level classification of demosponges underwent major revision as the result of nearly three decades of molecular studies. However, because most of the previous molecular work only utilized partial data from a small number of nuclear and mitochondrial (mt) genes, this classification scheme needs to be tested by larger datasets. Here we compiled a mt dataset for 136 demosponge species-including 64 complete or nearly complete and six partial mt-genome sequences determined or assembled for this study-and used it to test phylogenetic relationships among Demospongiae in general and Heteroscleromorpha in particular. We also investigated the phylogenetic position of Myceliospongia araneosa, a highly unusual demosponge without spicules and spongin fibers, currently classified as Demospongiae incertae sedis, for which molecular data were not available. Our results support the previously inferred sister-group relationship between Heteroscleromorpha and Keratosa + Verongimorpha and suggest five main clades within Heteroscleromorpha: Clade C0 composed of order Haplosclerida; Clade C1 composed of Scopalinida, Sphaerocladina, and Spongillida; Clade C2 composed of Axinellida, Biemnida, Bubarida; Clade C3 composed of Tetractinellida; and Clade C4 composed of Agelasida, Clionaida, Desmacellida, Merliida, Suberitida, Poecilosclerida, Polymastiida, and Tethyida. The inferred relationships among these clades were (C0(C1(C2(C3+C4)))). Analysis of molecular data from M. araneosa placed it in the C3 clade as a sister taxon to the highly skeletonized tetractinellids Microscleroderma sp. and Leiodermatium sp. Molecular clock analysis dated divergences among the major clades in Heteroscleromorpha from the Cambrian to the Early Silurian, the origins of most heteroscleromorph orders in the middle Paleozoic, and the most basal splits within these orders around the Paleozoic to Mesozoic transition. Overall, the results of this study are mostly congruent with the accepted classification of Heteroscleromorpha, but add temporal perspective and new resolution to phylogenetic relationships within this subclass.
Collapse
Affiliation(s)
- Dennis V. Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Maria C. Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
- Museo Marino de Margarita, Boca de Río, Nueva Esparta, Venezuela
| | - Manuel Maldonado
- Department of Marine Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| | - Christine C. Morrow
- Zoology Department, School of Natural Sciences & Ryan Institute, NUI Galway, University Road, Galway, Ireland
- Ireland and Queen’s University Marine Laboratory, Portaferry, Northern Ireland
| | - Thierry Perez
- Institut Méditerranéen de la Biodiversité et d’Ecologie marine et continentale (IMBE), CNRS, Aix-Marseille Université, IRD, Avignon Université City, Provence, France
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
| | - Robert W. Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States of America
- Smithsonian Tropical Research Institute, Balboa, Panama City, Republic of Panama
| |
Collapse
|
3
|
Kawasaki S, Kaneko T, Asano T, Maoka T, Takaichi S, Shomura Y. An ependymin-related blue carotenoprotein decorates marine blue sponge. J Biol Chem 2023; 299:105110. [PMID: 37517696 PMCID: PMC10470211 DOI: 10.1016/j.jbc.2023.105110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Marine animals display diverse vibrant colors, but the mechanisms underlying their specific coloration remain to be clarified. Blue coloration is known to be achieved through a bathochromic shift of the orange carotenoid astaxanthin (AXT) by the crustacean protein crustacyanin, but other examples have not yet been well investigated. Here, we identified an ependymin (EPD)-related water-soluble blue carotenoprotein responsible for the specific coloration of the marine blue sponge Haliclona sp. EPD was originally identified in the fish brain as a protein involved in memory consolidation and neuronal regeneration. The purified blue protein, designated as EPD-related blue carotenoprotein-1, was identified as a secreted glycoprotein. We show that it consists of a heterodimer that binds orange AXT and mytiloxanthin and exhibits a bathochromic shift. Our crystal structure analysis of the natively purified EPD-related blue carotenoprotein-1 revealed that these two carotenoids are specifically bound to the heterodimer interface, where the polyene chains are aligned in parallel to each other like in β-crustacyanin, although the two proteins are evolutionary and structurally unrelated. Furthermore, using reconstitution assays, we found that incomplete bathochromic shifts occurred when the protein bound to only AXT or mytiloxanthin. Taken together, we identified an EPD in a basal metazoan as a blue protein that decorates the sponge body by binding specific structurally unrelated carotenoids.
Collapse
Affiliation(s)
- Shinji Kawasaki
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan.
| | - Takayuki Kaneko
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomomi Asano
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Kyoto, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Yasuhito Shomura
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan.
| |
Collapse
|
4
|
Gauberg J, Elkhatib W, Smith CL, Singh A, Senatore A. Divergent Ca 2+/calmodulin feedback regulation of Ca V1 and Ca V2 voltage-gated calcium channels evolved in the common ancestor of Placozoa and Bilateria. J Biol Chem 2022; 298:101741. [PMID: 35182524 PMCID: PMC8980814 DOI: 10.1016/j.jbc.2022.101741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022] Open
Abstract
CaV1 and CaV2 voltage-gated calcium channels evolved from an ancestral CaV1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles. One key difference pertains to their regulation by calmodulin (CaM), wherein bilaterian CaV1 channels are uniquely subject to pronounced, buffer-resistant Ca2+/CaM-dependent inactivation, permitting negative feedback regulation of calcium influx in response to local cytoplasmic Ca2+ rises. Early diverging, nonbilaterian invertebrates also possess CaV1 and CaV2 channels, but it is unclear whether they share these conserved functional features. The most divergent animals to possess both CaV1 and CaV2 channels are placozoans such as Trichoplax adhaerens, which separated from other animals over 600 million years ago shortly after their emergence. Hence, placozoans can provide important insights into the early evolution of CaV1 and CaV2 channels. Here, we build upon previous characterization of Trichoplax CaV channels by determining the cellular expression and ion-conducting properties of the CaV1 channel orthologue, TCaV1. We show that TCaV1 is expressed in neuroendocrine-like gland cells and contractile dorsal epithelial cells. In vitro, this channel conducts dihydropyridine-insensitive, high-voltage–activated Ca2+ currents with kinetics resembling those of rat CaV1.2 but with left-shifted voltage sensitivity for activation and inactivation. Interestingly, TCaV1, but not TCaV2, exhibits buffer-resistant Ca2+/CaM-dependent inactivation, indicating that this functional divergence evolved prior to the emergence of bilaterian animals and may have contributed to their unique adaptation for cytoplasmic Ca2+ signaling within various cellular contexts.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Carolyn L Smith
- NINDS, National Institutes of Health, Bethesda Maryland, 20892 USA
| | - Anhadvir Singh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
5
|
Sandoval K, McCormack GP. Actinoporin-like Proteins Are Widely Distributed in the Phylum Porifera. Mar Drugs 2022; 20:md20010074. [PMID: 35049929 PMCID: PMC8778704 DOI: 10.3390/md20010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70–59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.
Collapse
|
6
|
Posadas N, Baquiran JIP, Nada MAL, Kelly M, Conaco C. Microbiome diversity and host immune functions influence survivorship of sponge holobionts under future ocean conditions. THE ISME JOURNAL 2022; 16:58-67. [PMID: 34218251 PMCID: PMC8692459 DOI: 10.1038/s41396-021-01050-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
The sponge-associated microbial community contributes to the overall health and adaptive capacity of the sponge holobiont. This community is regulated by the environment and the immune system of the host. However, little is known about the effect of environmental stress on the regulation of host immune functions and how this may, in turn, affect sponge-microbe interactions. In this study, we compared the bacterial diversity and immune repertoire of the demosponge, Neopetrosia compacta, and the calcareous sponge, Leucetta chagosensis, under varying levels of acidification and warming stress based on climate scenarios predicted for 2100. Neopetrosia compacta harbors a diverse microbial community and possesses a rich repertoire of scavenger receptors while L. chagosensis has a less diverse microbiome and an expanded range of pattern recognition receptors and immune response-related genes. Upon exposure to RCP 8.5 conditions, the microbiome composition and host transcriptome of N. compacta remained stable, which correlated with high survival (75%). In contrast, tissue necrosis and low survival (25%) of L. chagosensis was accompanied by microbial community shifts and downregulation of host immune-related pathways. Meta-analysis of microbiome diversity and immunological repertoire across poriferan classes further highlights the importance of host-microbe interactions in predicting the fate of sponges under future ocean conditions.
Collapse
Affiliation(s)
- Niño Posadas
- grid.11134.360000 0004 0636 6193Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Jake Ivan P. Baquiran
- grid.11134.360000 0004 0636 6193Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Michael Angelou L. Nada
- grid.11134.360000 0004 0636 6193Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Michelle Kelly
- grid.419676.b0000 0000 9252 5808National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand
| | - Cecilia Conaco
- grid.11134.360000 0004 0636 6193Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
7
|
Plese B, Kenny NJ, Rossi ME, Cárdenas P, Schuster A, Taboada S, Koutsouveli V, Riesgo A. Mitochondrial evolution in the Demospongiae (Porifera): Phylogeny, divergence time, and genome biology. Mol Phylogenet Evol 2020; 155:107011. [PMID: 33217579 DOI: 10.1016/j.ympev.2020.107011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/01/2022]
Abstract
The sponge class Demospongiae is the most speciose and morphologically diverse in the phylum Porifera, and the species within it are vital components of a range of ecosystems worldwide. Despite their ubiquity, a number of recalcitrant problems still remain to be solved regarding their phylogenetic inter-relationships, the timing of their appearance, and their mitochondrial biology, the latter of which is only beginning to be investigated. Here we generated 14 new demosponge mitochondrial genomes which, alongside previously published mitochondrial resources, were used to address these issues. In addition to phylogenomic analysis, we have used syntenic data and analysis of coding regions to forge a framework for understanding the inter-relationships between Demospongiae sub-classes and orders. We have also leveraged our new resources to study the mitochondrial biology of these clades in terms of codon usage, optimisation and gene expression, to understand how these vital cellular components may have contributed to the success of the Porifera. Our results strongly support a sister relationship between Keratosa and (Verongimorpha + Heteroscleromorpha), contradicting previous studies using nuclear markers. Our study includes one species of Clionaida, and show for the first time support for a grouping of Suberitida+(Clionaida+(Tethyida + Poecilosclerida). The findings of our phylogenetic analyses are supported by in-depth examination of structural and coding-level evidence from our mitochondrial data. A time-calibrated phylogeny estimated the origin of Demospongiae in the Cambrian (~529 Mya), and suggests that most demosponge order crown-groups emerged in the Mesozoic. This work therefore provides a robust basis for considering demosponge phylogenetic relationships, as well as essential mitochondrial data for understanding the biological basis for their success and diversity.
Collapse
Affiliation(s)
- Bruna Plese
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Nathan James Kenny
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Faculty of Health and Life Sciences, Oxford Brookes University, Headington Rd, Oxford OX3 0BP, United Kingdom(2).
| | - Maria Eleonora Rossi
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; School of Earth Sciences, University of Bristol, Life Science Building, 24 Tyndall Ave, Bristol BS8 1TH, United Kingdom.
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden.
| | - Astrid Schuster
- Department of Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark; CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.
| | - Sergi Taboada
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Department of Life Sciences, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Spain; Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, C/ José Antonio Novais, 12, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Vasiliki Koutsouveli
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden.
| | - Ana Riesgo
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales de Madrid (CSIC), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| |
Collapse
|
8
|
Dierking K, Pita L. Receptors Mediating Host-Microbiota Communication in the Metaorganism: The Invertebrate Perspective. Front Immunol 2020; 11:1251. [PMID: 32612612 PMCID: PMC7308585 DOI: 10.3389/fimmu.2020.01251] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Multicellular organisms live in close association with a plethora of microorganism, which have a profound effect on multiple host functions. As such, the microbiota and its host form an intimate functional entity, termed the metaorganism or holobiont. But how does the metaorganism communicate? Which receptors recognize microbial signals, mediate the effect of the microbiota on host physiology or regulate microbiota composition and homeostasis? In this review we provide an overview on the function of different receptor classes in animal host-microbiota communication. We put a special focus on invertebrate hosts, including both traditional invertebrate models such as Drosophila melanogaster and Caenorhabditis elegans and “non-model” invertebrates in microbiota research. Finally, we highlight the potential of invertebrate systems in studying mechanism of host-microbiota interactions.
Collapse
Affiliation(s)
- Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Lucía Pita
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
9
|
Leys SP, Mah JL, McGill PR, Hamonic L, De Leo FC, Kahn AS. Sponge Behavior and the Chemical Basis of Responses: A Post-Genomic View. Integr Comp Biol 2020; 59:751-764. [PMID: 31268144 DOI: 10.1093/icb/icz122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sponges perceive and respond to a range of stimuli. How they do this is still difficult to pin down despite now having transcriptomes and genomes of an array of species. Here we evaluate the current understanding of sponge behavior and present new observations on sponge activity in situ. We also explore biosynthesis pathways available to sponges from data in genomes/transcriptomes of sponges and other non-bilaterians with a focus on exploring the role of chemical signaling pathways mediating sponge behavior and how such chemical signal pathways may have evolved. Sponge larvae respond to light but opsins are not used, nor is there a common photoreceptor molecule or mechanism used across sponge groups. Other cues are gravity and chemicals. In situ recordings of behavior show that both shallow and deep-water sponges move a lot over minutes and hours, and correlation of behavior with temperature, pressure, oxygen, and water movement suggests that at least one sponge responds to changes in atmospheric pressure. The sensors for these cues as far as we know are individual cells and, except in the case of electrical signaling in Hexactinellida, these most likely act as independent effectors, generating a whole-body reaction by the global reach of the stimulus to all parts of the animal. We found no evidence for use of conventional neurotransmitters such as serotonin and dopamine. Intriguingly, some chemicals synthesized by symbiont microbes could mean other more complex signaling occurs, but how that interplay might happen is not understood. Our review suggests chemical signaling pathways found in sponges do not reflect loss of a more complex set.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Jasmine L Mah
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.,Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA
| | - Paul R McGill
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Laura Hamonic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Fabio C De Leo
- Ocean Networks Canada, University of Victoria, Queenswood Campus 100-2474 Arbutus Road, Victoria, British Columbia, Canada V8N 1V8.,Department of Biology, University of Victoria, PO Box 3080, Victoria, British Columbia, Canada V8W 2Y2
| | - Amanda S Kahn
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.,Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA.,Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA
| |
Collapse
|
10
|
Evolution of the main skeleton-forming genes in sponges (phylum Porifera) with special focus on the marine Haplosclerida (class Demospongiae). Mol Phylogenet Evol 2018; 131:245-253. [PMID: 30502904 DOI: 10.1016/j.ympev.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 01/14/2023]
Abstract
The skeletons of sponges (Phylum Porifera) are comprised of collagen, often embedded with small siliceous structures (spicules) arranged in various forms to provide strength and flexibility. The main proteins responsible for the formation of the spicules in demosponges are the silicateins, which are related to the cathepsins L of other animals. While the silicatein active site, necessary for the formation of biosilica crystals, is characterized by the amino acids SHN, different variants of the silicatein genes have been found, some that retain SHN at the active site and some that don't. As part of an effort to further understand skeleton formation in marine sponges of the order Haplosclerida, a search for all silicatein variants were made in Irish species representing the main clades of this large sponge group. For this task, transcriptomes were sequenced and de novo assembled from Haliclona oculata, H. simulans and H. indistincta. Silicatein genes were identified from these and all available genomes and transcriptomes from Porifera. These were analysed along with all complete silicateins from GenBank. Silicateins were only found in species belonging to the class Demospongiae but excluding Keratosa and Verongimorpha and there was significant duplication and diversity of these genes. Silicateins showing SHN at the active site were polyphyletic. Indeed silicatein sequences were divided into six major clades (CHNI, CHNII, CHNIII, SHNI, SHNII and C/SQN). In those clades where haplosclerids were well represented the silicatein phylogeny reflected previous ribosomal and mitochondrial topologies. The most basal silicatein clade (CHNI) contained sequences only from marine haplosclerids and freshwater sponges while one silicatein from H. indistincta was more related to cathepsins L (outgroup) than to the overall silicatein clade indicating the presence of an old silicatein or an intermediary form. This data could suggest that marine haplosclerids were one of the first groups of extant demosponges to acquire silicatein genes. Furthermore, we suggest that the paucity of spicule types in this group may be due to their single copy of SHNI variants, and the lack of a silintaphin gene.
Collapse
|
11
|
Muthye V, Lavrov DV. Characterization of mitochondrial proteomes of nonbilaterian animals. IUBMB Life 2018; 70:1289-1301. [PMID: 30419142 DOI: 10.1002/iub.1961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/08/2018] [Accepted: 09/29/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria require ~1,500 proteins for their maintenance and proper functionality, which constitute the mitochondrial proteome (mt-proteome). Although a few of these proteins, mostly subunits of the electron transport chain complexes, are encoded in mitochondrial DNA (mtDNA), the vast majority are encoded in the nuclear genome and imported to the organelle. Previous studies have shown a continuous and complex evolution of mt-proteome among eukaryotes. However, there was less attention paid to mt-proteome evolution within Metazoa, presumably because animal mtDNA and, by extension, animal mitochondria are often considered to be uniform. In this analysis, two bioinformatic approaches (Orthologue-detection and Mitochondrial Targeting Sequence prediction) were used to identify mt-proteins in 23 species from four nonbilaterian phyla: Cnidaria, Ctenophora, Placozoa, and Porifera, as well as two choanoflagellates, the closest animal relatives. Our results revealed a large variation in mt-proteome in nonbilaterian animals in size and composition. Myxozoans, highly reduced cnidarian parasites, possessed the smallest inferred mitochondrial proteomes, while calcareous sponges possessed the largest. About 513 mitochondrial orthologous groups were present in all nonbilaterian phyla and human. Interestingly, 42 human mitochondrial proteins were not identified in any nonbilaterian species studied and represent putative innovations along the bilaterian branch. Several of these proteins were involved in apoptosis and innate immunity, two processes known to evolve within Metazoa. Conversely, several proteins identified as mitochondrial in nonbilaterian phyla and animal outgroups were absent in human, representing cases of possible loss. Finally, a few human cytosolic proteins, such as histones and cytosolic ribosomal proteins, were predicted to be targeted to mitochondria in nonbilaterian animals. Overall, our analysis provides the first step in characterization of mt-proteomes in nonbilaterian animals and understanding evolution of animal mt-proteome. © 2018 IUBMB Life, 70(12):1289-1301, 2018.
Collapse
Affiliation(s)
- Viraj Muthye
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Pita L, Hoeppner MP, Ribes M, Hentschel U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci Rep 2018; 8:16081. [PMID: 30382170 PMCID: PMC6208332 DOI: 10.1038/s41598-018-34330-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
The innate immune system helps animals to navigate the microbial world. The response to microbes relies on the specific recognition of microbial-associated molecular patterns (MAMPs) by immune receptors. Sponges (phylum Porifera), as early-diverging animals, provide insights into conserved mechanisms for animal-microbe crosstalk. However, experimental data is limited. We adopted an experimental approach followed by RNA-Seq and differential gene expression analysis in order to characterise the sponge immune response. Two Mediterranean species, Aplysina aerophoba and Dysidea avara, were exposed to a “cocktail” of MAMPs (lipopolysaccharide and peptidoglycan) or to sterile artificial seawater (control) and sampled 1 h, 3 h, and 5 h post-treatment for RNA-Seq. The response involved, first and foremost, a higher number of differentially-expressed genes in A. aerophoba than D. avara. Secondly, while both species constitutively express a diverse repertoire of immune receptors, they differed in their expression profiles upon MAMP challenge. The response in D. avara was mediated by increased expression of two NLR genes, whereas the response in A. aerophoba involved SRCR and GPCR genes. From the set of annotated genes we infer that both species activated apoptosis in response to MAMPs while in A. aerophoba phagocytosis was additionally stimulated. Our study assessed for the first time the transcriptomic responses of sponges to MAMPs and revealed conserved and species-specific features of poriferan immunity as well as genes potentially relevant to animal-microbe interactions.
Collapse
Affiliation(s)
- Lucía Pita
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Marta Ribes
- Institute of Marine Science, CSIC, Barcelona, Spain
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Christian-Albrechts-University of Kiel (CAU), Kiel, Germany
| |
Collapse
|
13
|
Meng A, Marchet C, Corre E, Peterlongo P, Alberti A, Da Silva C, Wincker P, Pelletier E, Probert I, Decelle J, Le Crom S, Not F, Bittner L. A de novo approach to disentangle partner identity and function in holobiont systems. MICROBIOME 2018; 6:105. [PMID: 29885666 PMCID: PMC5994019 DOI: 10.1186/s40168-018-0481-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/13/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Study of meta-transcriptomic datasets involving non-model organisms represents bioinformatic challenges. The production of chimeric sequences and our inability to distinguish the taxonomic origins of the sequences produced are inherent and recurrent difficulties in de novo assembly analyses. As the study of holobiont meta-transcriptomes is affected by challenges invoked above, we propose an innovative bioinformatic approach to tackle such difficulties and tested it on marine models as a proof of concept. RESULTS We considered three holobiont models, of which two transcriptomes were previously published and a yet unpublished transcriptome, to analyze and sort their raw reads using Short Read Connector, a k-mer based similarity method. Before assembly, we thus defined four distinct categories for each holobiont meta-transcriptome: host reads, symbiont reads, shared reads, and unassigned reads. Afterwards, we observed that independent de novo assemblies for each category led to a diminution of the number of chimeras compared to classical assembly methods. Moreover, the separation of each partner's transcriptome offered the independent and comparative exploration of their functional diversity in the holobiont. Finally, our strategy allowed to propose new functional annotations for two well-studied holobionts (a Cnidaria-Dinophyta, a Porifera-Bacteria) and a first meta-transcriptome from a planktonic Radiolaria-Dinophyta system forming widespread symbiotic association for which our knowledge is considerably limited. CONCLUSIONS In contrast to classical assembly approaches, our bioinformatic strategy generates less de novo assembled chimera and allows biologists to study separately host and symbiont data from a holobiont mixture. The pre-assembly separation of reads using an efficient tool as Short Read Connector is an effective way to tackle meta-transcriptomic challenges and offers bright perpectives to study holobiont systems composed of either well-studied or poorly characterized symbiotic lineages and ultimately expand our knowledge about these associations.
Collapse
Affiliation(s)
- Arnaud Meng
- Sorbonne Université, Univ Antilles, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), F-75005 Paris, France
| | - Camille Marchet
- Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France
| | - Erwan Corre
- Sorbonne Universités, CNRS - FR2424, ABiMS, Station biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | | | - Adriana Alberti
- Institut de biologie François Jacob, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Corinne Da Silva
- Institut de biologie François Jacob, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Patrick Wincker
- Institut de biologie François Jacob, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
- UMR8030, CNRS, Evry, France
| | - Eric Pelletier
- Institut de biologie François Jacob, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
- UMR8030, CNRS, Evry, France
| | - Ian Probert
- Sorbonne Université, CNRS - FR2424, Roscoff Culture Collection, Station Biologique de Roscoff, Place Georges Teissier, 29682 Roscoff, France
| | - Johan Decelle
- Helmholtz Centre for Environmental Research – UFZ, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig, Germany
| | - Stéphane Le Crom
- Sorbonne Université, Univ Antilles, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), F-75005 Paris, France
| | - Fabrice Not
- Sorbonne Université, CNRS - UMR7144 - Ecology of Marine Plankton Group, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Lucie Bittner
- Sorbonne Université, Univ Antilles, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), F-75005 Paris, France
| |
Collapse
|
14
|
BluePharmTrain: Biology and Biotechnology of Marine Sponges. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Abstract
A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system.
Collapse
Affiliation(s)
- Jasmine L Mah
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Senatore A, Raiss H, Le P. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora. Front Physiol 2016; 7:481. [PMID: 27867359 PMCID: PMC5095125 DOI: 10.3389/fphys.2016.00481] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Hamad Raiss
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Phuong Le
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
17
|
Guzman C, Conaco C. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response. PLoS One 2016; 11:e0165368. [PMID: 27788197 PMCID: PMC5082814 DOI: 10.1371/journal.pone.0165368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.
Collapse
Affiliation(s)
- Christine Guzman
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
- * E-mail:
| |
Collapse
|
18
|
Conaco C, Tsoulfas P, Sakarya O, Dolan A, Werren J, Kosik KS. Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome. PLoS One 2016; 11:e0151092. [PMID: 26959231 PMCID: PMC4784904 DOI: 10.1371/journal.pone.0151092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
Abstract
Horizontal gene transfer (HGT) is common between prokaryotes and phagotrophic eukaryotes. In metazoans, the scale and significance of HGT remains largely unexplored but is usually linked to a close association with parasites and endosymbionts. Marine sponges (Porifera), which host many microorganisms in their tissues and lack an isolated germ line, are potential carriers of genes transferred from prokaryotes. In this study, we identified a number of potential horizontally transferred genes within the genome of the sponge, Amphimedon queenslandica. We further identified homologs of some of these genes in other sponges. The transferred genes, most of which possess catalytic activity for carbohydrate or protein metabolism, have assimilated host genome characteristics and are actively expressed. The diversity of functions contributed by the horizontally transferred genes is likely an important factor in the adaptation and evolution of A. queenslandica. These findings highlight the potential importance of HGT on the success of sponges in diverse ecological niches.
Collapse
Affiliation(s)
- Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Pantelis Tsoulfas
- University of Miami School of Medicine, Departments of Neurosurgery and Cell Biology, Miami, Florida, United States of America
| | - Onur Sakarya
- Natera, San Carlos, California, United States of America
| | - Amanda Dolan
- Biology Department, University of Rochester, New York, United States of America
| | - John Werren
- Biology Department, University of Rochester, New York, United States of America
| | - Kenneth S. Kosik
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, United States of America
| |
Collapse
|