1
|
Govindula A, Ranadive N, Nampoothiri M, Rao CM, Arora D, Mudgal J. Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). J Neuroimmune Pharmacol 2023; 18:248-266. [PMID: 37097603 PMCID: PMC10577110 DOI: 10.1007/s11481-023-10064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.
Collapse
Affiliation(s)
- Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
3
|
Champarini LG, Herrera ML, Comas Mutis RG, Espejo PJ, Molina VA, Calfa GD, Hereñú CB. Effect of intra-BLA overexpression of IGF-1 on the expression of a contextual fear memory trace. Hippocampus 2022; 32:765-775. [PMID: 36000813 DOI: 10.1002/hipo.23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Growth factors, such as insulin-like growth factor 1 (IGF-1), among others are known for their critical involvement in learning and memory processes. IGF-1 regulates cognitive functions, synapse density, neurotransmission, and adult neurogenesis and induces structural and synaptic plasticity-specific changes. Although IGF-1 has been suggested to participate in different memory processes, its role in memories associated with negative emotional experiences still remains to be elucidated. The principal aim of the present study was to test whether IGF-1 overexpression using adenoviral vectors in basolateral amygdala (BLA) influences both the expression and formation of contextual fear memory, as well as the hippocampal structural plasticity associated with such memory trace. We found that IGF-1 overexpression promotes the formation and expression of a specific contextual fear memory trace, and such effect persisted at least 7 days after recall. Moreover, the overexpression of this growth factor in BLA upregulates the activation of the ERK/MAPK pathway in this brain structure. In addition, intra-BLA IGF-1 overexpression causes dorsal hippocampus (DH) structural plasticity modifications promoting changes in the proportion of mature dendritic spines in the CA1 region, after a weak conditioning protocol. The present findings contribute to the knowledge underlying BLA-DH trace memory of fear and reveal important new insights into the neurobiology and neurochemistry of fear acquisition modulated by IGF-1 overexpression. The understanding of how IGF-1 modulates the formation of a fear contextual trace may pave the way for the development of novel therapeutic strategies focused on fear, anxiety, and trauma-related disorders.
Collapse
Affiliation(s)
- Leandro Gabriel Champarini
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Macarena Lorena Herrera
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Ramiro Gabriel Comas Mutis
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Pablo Javier Espejo
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Victor Alejandro Molina
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Gastón Diego Calfa
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Claudia Beatriz Hereñú
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
4
|
Alhowail A. Molecular insights into the benefits of nicotine on memory and cognition (Review). Mol Med Rep 2021; 23:398. [PMID: 33786606 PMCID: PMC8025477 DOI: 10.3892/mmr.2021.12037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The health risks of nicotine are well known, but there is some evidence of its beneficial effects on cognitive function. The present review focused on the reported benefits of nicotine in the brain and summarizes the associated underlying mechanisms. Nicotine administration can improve cognitive impairment in Alzheimer's disease (AD), and dyskinesia and memory impairment in Parkinson's disease (PD). In terms of its mechanism of action, nicotine slows the progression of PD by inhibiting Sirtuin 6, a stress‑responsive protein deacetylase, thereby decreasing neuronal apoptosis and improving neuronal survival. In AD, nicotine improves cognitive impairment by enhancing protein kinase B (also referred to as Akt) activity and stimulating phosphoinositide 3‑kinase/Akt signaling, which regulates learning and memory processes. Nicotine may also activate thyroid receptor signaling pathways to improve memory impairment caused by hypothyroidism. In healthy individuals, nicotine improves memory impairment caused by sleep deprivation by enhancing the phosphorylation of calmodulin‑dependent protein kinase II, an essential regulator of cell proliferation and synaptic plasticity. Furthermore, nicotine may improve memory function through its effect on chromatin modification via the inhibition of histone deacetylases, which causes transcriptional changes in memory‑related genes. Finally, nicotine administration has been demonstrated to rescue long‑term potentiation in individuals with sleep deprivation, AD, chronic stress and hypothyroidism, primarily by desensitizing α7 nicotinic acetylcholine receptors. To conclude, nicotine has several cognitive benefits in healthy individuals, as well as in those with cognitive dysfunction associated with various diseases. However, further research is required to shed light on the effect of acute and chronic nicotine treatment on memory function.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52571, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev 2021; 41:1089-1137. [PMID: 33325563 PMCID: PMC7906922 DOI: 10.1002/med.21753] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The biological functions of sirtuin 6 (SIRT6; e.g., deacetylation, defatty-acylation, and mono-ADP-ribosylation) play a pivotal role in regulating lifespan and several fundamental processes controlling aging such as DNA repair, gene expression, and telomeric maintenance. Over the past decades, the aberration of SIRT6 has been extensively observed in diverse life-threatening human diseases. In this comprehensive review, we summarize the critical roles of SIRT6 in the onset and progression of human diseases including cancer, inflammation, diabetes, steatohepatitis, arthritis, cardiovascular diseases, neurodegenerative diseases, viral infections, renal and corneal injuries, as well as the elucidation of the related signaling pathways. Moreover, we discuss the advances in the development of small molecule SIRT6 modulators including activators and inhibitors as well as their pharmacological profiles toward potential therapeutics for SIRT6-mediated diseases.
Collapse
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| |
Collapse
|
6
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
7
|
Wang X, Li W, Yue Q, Du W, Li Y, Liu F, Yang L, Xu L, Zhao R, Hu J. C-C chemokine receptor 5 signaling contributes to cardiac remodeling and dysfunction under pressure overload. Mol Med Rep 2020; 23:49. [PMID: 33200795 PMCID: PMC7716393 DOI: 10.3892/mmr.2020.11687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Aortic stenosis (AS) leads to chronic pressure overload, cardiac remodeling and eventually heart failure. Chemokines and their receptors have been implicated in pressure overload‑induced cardiac remodeling and dysfunction. In the present study, the role of C‑C chemokine receptor 5 (CCR5) in pressure overload‑induced cardiac remodeling and dysfunction was investigated in mice subjected to transverse aortic constriction (TAC). Cardiac levels of CCR5 and C‑C motif chemokine ligands (CCLs)3, 4 and 5 were determined by western blotting and reverse transcription‑quantitative PCR, respectively. Cardiac functional parameters were evaluated by echocardiographic and hemodynamic measurements. Myocardial fibrosis was assessed by Masson's trichrome staining and α‑smooth muscle actin immunostaining. Myocardial hypertrophy and inflammatory cell infiltration were evaluated by hematoxylin and eosin staining. Angiotensin II (Ang II)‑induced hypertrophy of H9c2 cardiomyocytes was assessed by F‑actin immunostaining. ERK1/2 and P38 phosphorylation was examined by western blotting. TAC mice exhibited higher myocardial CCL3, CCL4, CCL5 and CCR5 levels compared with sham mice. Compared with sham mice, TAC mice also exhibited impaired cardiac function along with myocardial hypertrophy, fibrosis and inflammatory cell infiltration. TAC‑induced cardiac remodeling and dysfunction were effectively ameliorated by administration of anti‑CCR5 but not by IgG control antibody. Mechanistically, increased ERK1/2 and P38 phosphorylation was detected in TAC hearts and Ang II‑stimulated H9c2 cardiomyocytes. Treatment with anti‑CCR5 antibody decreased ERK1/2 and P38 phosphorylation and attenuated Ang II‑induced H9c2 cell hypertrophy. CCR5 inhibition protected against pressure overload‑induced cardiac abnormality. The findings of the present study indicate that ERK1/2 and P38 signaling pathways may be involved in the cardioprotective effects of CCR5 inhibition.
Collapse
Affiliation(s)
- Xiaomin Wang
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Wei Li
- Translational Medicine Center, Baotou Central Hospital, Donghe, Baotou 014040, P.R. China
| | - Qiang Yue
- Department of Cardiology, Baotou Central Hospital, Donghe, Baotou 014040, P.R. China
| | - Wei Du
- Department of Cardiology, Baotou Central Hospital, Donghe, Baotou 014040, P.R. China
| | - Yongming Li
- Department of Cardiology, Baotou Central Hospital, Donghe, Baotou 014040, P.R. China
| | - Fu Liu
- Department of Cardiology, Baotou Central Hospital, Donghe, Baotou 014040, P.R. China
| | - Liu Yang
- Department of Institution of Interventional and Vascular Surgery, Tongji University, Shanghai 200072, P.R. China
| | - Lijuan Xu
- Department of Institution of Interventional and Vascular Surgery, Tongji University, Shanghai 200072, P.R. China
| | - Ruiping Zhao
- Baotou Central Hospital (The Post-doctoral Research Station of Clinic Medicine, Tongji University), Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jiang Hu
- Translational Medicine Center, Baotou Central Hospital, Donghe, Baotou 014040, P.R. China
| |
Collapse
|
8
|
Liu Y, Jones CD, Day LB, Summers K, Burmeister SS. Cognitive Phenotype and Differential Gene Expression in a Hippocampal Homologue in Two Species of Frog. Integr Comp Biol 2020; 60:1007-1023. [DOI: 10.1093/icb/icaa032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
SynopsisThe complexity of an animal’s interaction with its physical and/or social environment is thought to be associated with behavioral flexibility and cognitive phenotype, though we know little about this relationship in amphibians. We examined differences in cognitive phenotype in two species of frog with divergent natural histories. The green-and-black poison frog (Dendrobates auratus) is diurnal, displays enduring social interactions, and uses spatially distributed resources during parental care. Túngara frogs (Physalaemus=Engystomops pustulosus) are nocturnal, express only fleeting social interactions, and use ephemeral puddles to breed in a lek-type mating system. Comparing performance in identical discrimination tasks, we find that D. auratus made fewer errors when learning and displayed greater behavioral flexibility in reversal learning tasks than túngara frogs. Further, túngara frogs preferred to learn beacons that can be used in direct guidance whereas D. auratus preferred position cues that could be used to spatially orient relative to the goal. Behavioral flexibility and spatial cognition are associated with hippocampal function in mammals. Accordingly, we examined differential gene expression in the medial pallium, the amphibian homolog of the hippocampus. Our preliminary data indicate that genes related to learning and memory, synaptic plasticity, and neurogenesis were upregulated in D. auratus, while genes related to apoptosis were upregulated in túngara frogs, suggesting that these cellular processes could contribute to the differences in behavioral flexibility and spatial learning we observed between poison frogs and túngara frogs.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Sabrina S Burmeister
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep 2020; 37:653-676. [PMID: 31993614 PMCID: PMC7577396 DOI: 10.1039/c9np00057g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
10
|
Pardo M, Cheng Y, Sitbon YH, Lowell JA, Grieco SF, Worthen RJ, Desse S, Barreda-Diaz A. Insulin growth factor 2 (IGF2) as an emergent target in psychiatric and neurological disorders. Review. Neurosci Res 2019; 149:1-13. [PMID: 30389571 DOI: 10.1016/j.neures.2018.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/05/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022]
Abstract
Insulin-like growth factor 2 (IGF2) is abundantly expressed in the central nervous system (CNS). Recent evidence highlights the role of IGF2 in the brain, sustained by data showing its alterations as a common feature across a variety of psychiatric and neurological disorders. Previous studies emphasize the potential role of IGF2 in psychiatric and neurological conditions as well as in memory impairments, targeting IGF2 as a pro-cognitive agent. New research on animal models supports that upcoming investigations should explore IGF2's strong promising role as a memory enhancer. The lack of effective treatments for cognitive disturbances as a result of psychiatric diseases lead to further explore IGF2 as a promising target for the development of new pharmacology for the treatment of memory dysfunctions. In this review, we aim at gathering all recent relevant studies and findings on the role of IGF2 in the development of psychiatric diseases that occur with cognitive problems.
Collapse
Affiliation(s)
- M Pardo
- University of Miami Miller School of Medicine, Department of Neurology, Miami, FL, USA.
| | - Y Cheng
- University of California Los Angeles, Neurology Department, Los Angeles, CA, USA.
| | - Y H Sitbon
- University of Miami Miller School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, FL, USA.
| | - J A Lowell
- University of Miami, Department of Psychiatry & Behavioral Sciences, Miami, FL, USA.
| | - S F Grieco
- University of California, Department of Anatomy and Neurobiology, Irvine, CA, USA.
| | - R J Worthen
- University of Miami, Department of Psychiatry & Behavioral Sciences, Miami, FL, USA.
| | - S Desse
- University of Miami, Department of Psychiatry & Behavioral Sciences, Miami, FL, USA.
| | - A Barreda-Diaz
- University of Miami Miller School of Medicine, Department of Neurology, Miami, FL, USA.
| |
Collapse
|
11
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
12
|
Histone acetyltransferase CBP-related H3K23 acetylation contributes to courtship learning in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2018; 18:20. [PMID: 30458702 PMCID: PMC6247617 DOI: 10.1186/s12861-018-0179-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022]
Abstract
Background Histone modifications are critical in regulating neuronal processes. However, the impacts of individual histone modifications on learning and memory are elusive. Here, we investigated the contributions of histone H3 lysine modifications to learning and memory in Drosophila by using histone lysine-to-alanine mutants. Results Behavioural analysis indicated that compared to the H3WT group, mutants overexpressing H3K23A displayed impaired courtship learning. Chromatin immunoprecipitation analysis of H3K23A mutants showed that H3K23 acetylation (H3K23ac) levels were decreased on learning-related genes. Knockdown of CREB-binding protein (CBP) decreased H3K23ac levels, attenuated the expression of learning-related genes, led to a courtship learning defect and altered development of the mushroom bodies. A decline in courtship learning ability was observed in both larvae and adult treatments with ICG-001. Furthermore, treatment of Drosophila overexpressing mutated H3K23A with a CBP inhibitor did not aggravate the learning defect. Conclusions H3K23ac, catalysed by the acetyltransferases dCBP, contributes to Drosophila learning, likely by controlling the expression of specific genes. This is a novel epigenetic regulatory mechanism underlying neuronal behaviours. Electronic supplementary material The online version of this article (10.1186/s12861-018-0179-z) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Elevated contextual fear memory by SIRT6 depletion in excitatory neurons of mouse forebrain. Mol Brain 2018; 11:49. [PMID: 30189861 PMCID: PMC6127998 DOI: 10.1186/s13041-018-0391-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
A class of NAD-dependent protein deacetylases, the Sirtuin (SIRT) family of proteins is involved in aging, cell survival, and neurodegeneration. Recently, SIRT proteins, including SIRT6, have been reported to be important in learning and memory. However, the role of SIRT6 in excitatory brain neurons in cognitive behaviors is not well characterized. We investigated how cognitive behaviors are affected by genetic SIRT6 depletion in excitatory neurons in the mouse forebrain. We generated a conditional knockout (cKO) mouse line by mating two transgenic lines, Floxed SIRT6 and CaMKIIa-Cre. SIRT6 was thus deleted by Cre recombinase in CaMKIIa-expressing excitatory neurons. We performed cognitive behavioral tests, focusing on learning and memory, including contextual fear conditioning and Morris-water maze. The freezing level of SIRT6 cKO before the fear conditioning was comparable to that of wild-type littermate controls, while the freezing level after the conditioning was higher in SIRT6 cKO mice. In contrast, the mice showed normal spatial learning and memory in the Morris-water maze. In addition, anxiety and locomotion were also normal in SIRT6 cKO mice. SIRT6 genetic depletion enhanced contextual fear memory without affecting spatial memory. Since a previous report showed that overexpression of SIRT6 reduced contextual fear memory, our results suggest that the expression level of SIRT6 bi-directionally regulates contextual fear memory in mice.
Collapse
|
14
|
Pharmacological inhibition of 2-arachidonoilglycerol hydrolysis enhances memory consolidation in rats through CB2 receptor activation and mTOR signaling modulation. Neuropharmacology 2018; 138:210-218. [DOI: 10.1016/j.neuropharm.2018.05.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/09/2018] [Accepted: 05/24/2018] [Indexed: 11/24/2022]
|
15
|
Islam MS, Wei FY, Ohta K, Shigematsu N, Fukuda T, Tomizawa K, Yoshizawa T, Yamagata K. Sirtuin 7 is involved in the consolidation of fear memory in mice. Biochem Biophys Res Commun 2018; 495:261-266. [DOI: 10.1016/j.bbrc.2017.10.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022]
|
16
|
Singh P, Srivas S, Thakur MK. Epigenetic Regulation of Memory-Therapeutic Potential for Disorders. Curr Neuropharmacol 2017; 15:1208-1221. [PMID: 28393704 PMCID: PMC5725549 DOI: 10.2174/1570159x15666170404144522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/03/2017] [Accepted: 03/25/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Memory is a vital function which declines in different physiological and pathological conditions such as aging and neurodegenerative diseases. Research in the past has reported that memory formation and consolidation require the precise expression of synaptic plasticity genes. However, little is known about the regulation of these genes. Epigenetic modification is now a well established mechanism that regulates synaptic plasticity genes and neuronal functions including memory. Therefore, we have reviewed the epigenetic regulation of memory and its therapeutic potential for memory dysfunction during aging and neurological disorders. METHOD Research reports and online contents relevant to epigenetic regulation of memory during physiological and pathological conditions have been compiled and discussed. RESULTS Epigenetic modifications include mainly DNA methylation and hydroxymethylation, histone acetylation and methylation which involve chromatin modifying enzymes. These epigenetic marks change during memory formation and impairment due to dementia, aging and neurodegeneration. As the epigenetic modifications are reversible, they can be modulated by enzyme inhibitors leading to the recovery of memory. CONCLUSION Epigenetic modifications could be exploited as a potential therapeutic target to recover memory disorders during aging and pathological conditions.
Collapse
Affiliation(s)
- Padmanabh Singh
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Sweta Srivas
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - M K Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
17
|
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health SystemSingapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of SingaporeSingapore, Singapore
| |
Collapse
|
18
|
Mao Q, Gong X, Zhou C, Tu Z, Zhao L, Wang L, Wang X, Sun L, Xia J, Lian B, Chen J, Mu J, Yang D, Xie P. Up-regulation of SIRT6 in the hippocampus induced rats with depression-like behavior via the block Akt/GSK3β signaling pathway. Behav Brain Res 2017; 323:38-46. [DOI: 10.1016/j.bbr.2017.01.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 12/22/2022]
|