1
|
Yamashita T, Nakamoto K, Hitaoka S, Mizoguchi J, Watanabe T, Hasebe T. Influence of oligonucleotides structures for separation of diastereomers by capillary electrophoresis method using polyvinylpyrrolidone 1,300,000. J Chromatogr A 2024; 1725:464945. [PMID: 38688053 DOI: 10.1016/j.chroma.2024.464945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
In the field of oligonucleotides drug discovery, phosphorothioate (PS) modification has been recognized as an effective tool to overcome the nuclease digestion, and generates 2n of possible diastereomers, where n equals the number of PS linkages. However, it is also well known that differences in drug efficacy and toxicity are caused by differences in stereochemistry of oligonucleotides. Therefore, the development of a high-resolution analytical method that enables stereo discrimination of oligonucleotides is desired. Under this circumstance, capillary electrophoresis (CE) using polyvinylpyrrolidone (PVP) is considered as one of the useful tools for the separation analysis of diastereomers. In this study, we evaluated the several oligonucleotides with the structural diversities in order to understand the separation mechanism of the diastereomers by CE. Especially, five kinds of 2'-moieties were deeply examined by CE with PVP 1,300,000 polymer solution. We found that different trend of the peak shapes and the peak resolution were observed among these oligonucleotides. For example, the better peak resolution was observed in 6 mer PS3-DNA compared to the rigid structure of 6 mer PS3-LNA. As for this reason, the computational simulation revealed that difference of accessible surface area caused by the steric structure of thiophosphate in each oligonucleotide is one of the key attributes to explain the separation of the diastereomers. In addition, we achieved the separation of sixteen peak tops of the diastereomers in 6 mer PS4-DNA, and the complete separation of fifteen diastereomers in 6 mer PS4-RNA. These knowledge for the separation of the diastereomers by CE will be expected to the quality control of the oligonucleotide drugs.
Collapse
Affiliation(s)
- Taro Yamashita
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Kosuke Nakamoto
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Seiji Hitaoka
- Emerging Modality Generation Department, Discovery Evidence Generation Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Junichi Mizoguchi
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Tomohiro Watanabe
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Takashi Hasebe
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
2
|
Vásconez J, Pero-Gascon R, Giménez E, Benavente F. Comparison of capillary electrophoresis and zwitterionic-hydrophilic interaction capillary liquid chromatography with ultraviolet and mass spectrometry detection for the analysis of microRNA biomarkers. Talanta 2020; 219:121263. [PMID: 32887154 DOI: 10.1016/j.talanta.2020.121263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
This study evaluates zwitterionic-hydrophilic interaction capillary liquid chromatography (capZIC-HILIC) and capillary electrophoresis (CE) with ultraviolet (UV) and mass spectrometry (MS) detection for the direct, label-free and multiplex analysis of microribonucleic acids (miRNAs). CapZIC-HILIC-UV and CE-UV methods were first optimized, resulting in similar separations for a mixture of three miRNAs (hsa-iso-miR-16-5p, hsa-let-7g-5p, and hsa-miR-21-5p) but with reversal of elution/migration orders and small differences in repeatability, linearity, limit of detection (LOD) and separation efficiency. The established UV methods were transferred and validated in these terms with mass spectrometry (MS) detection, which allowed identifying the miRNAs and characterizing their post-transcriptional modifications. LOD by capZIC-HILIC-MS was 1 μM of miRNA, around 5 times lower than by CE-MS due to the analyte dilution with the sheathflow CE-MS interface and to the slightly increased abundance of alkali metals adducts in the CE-MS mass spectra. In addition, the suction effect promoted by the nebulizer gas in CE-MS negatively affected the already compromised separations. In contrast, CE-MS showed superior repeatabilities with spiked serum samples, as well as reduced costs, extended capillary column durabilities and shorter conditioning times. The comparison of the different methods allows disclosing the current advantages and disadvantages of capZIC-HILIC and CE for the analysis of miRNA biomarkers.
Collapse
Affiliation(s)
- Jeanneth Vásconez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain
| | - Roger Pero-Gascon
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
3
|
Kanavarioti A. HPLC methods for purity evaluation of man-made single-stranded RNAs. Sci Rep 2019; 9:1019. [PMID: 30705318 PMCID: PMC6356003 DOI: 10.1038/s41598-018-37642-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/11/2018] [Indexed: 02/08/2023] Open
Abstract
Synthetic RNA oligos exhibit purity decreasing as a function of length, because the efficiency of the total synthesis is the numerical product of the individual step efficiencies, typically below 98%. Analytical methods for RNAs up to the 60 nucleotides (nt) have been reported, but they fall short for purity evaluation of 100nt long, used as single guide RNA (sgRNA) in CRISPR technology, and promoted as pharmaceuticals. In an attempt to exploit a single HPLC method and obtain both identity as well as purity, ion-pair reversed-phase chromatography (IP-RP) at high temperature in the presence of an organic cosolvent is the current analytical strategy. Here we report that IP-RP is less suitable compared to the conventional ion-exchange (IEX) for analysis of 100nt RNAs. We demonstrate the relative stability of RNA in the denaturing/basic IEX mobile phase, lay out a protocol to determine the on-the-column stability of any RNA, and establish the applicability of this method for quality testing of sgRNA, tRNA, and mRNA. Unless well resolving HPLC methods are used for batch-to-batch evaluation of man-made RNAs, process development will remain shortsighted, and observed off-target effects in-vitro or in-vivo may be partially related to low purity and the presence of shorter sequences.
Collapse
Affiliation(s)
- Anastassia Kanavarioti
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95762, USA.
| |
Collapse
|
4
|
Woo N, Kim SK, Kang SH. Voltage-programming-based capillary gel electrophoresis for the fast detection of angiotensin-converting enzyme insertion/deletion polymorphism with high sensitivity. J Sep Sci 2016; 39:3230-8. [PMID: 27307099 DOI: 10.1002/jssc.201600439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/19/2023]
Abstract
A voltage-programming-based capillary gel electrophoresis method with a laser-induced fluorescence detector was developed for the fast and highly sensitive detection of DNA molecules related to angiotensin-converting enzyme insertion/deletion polymorphism, which has been reported to influence predisposition to various diseases such as cardiovascular disease, high blood pressure, myocardial infarction, and Alzheimer's disease. Various voltage programs were investigated for fast detection of specific DNA molecules of angiotensin-converting enzyme insertion/deletion polymorphism as a function of migration time and separation efficiency to establish the effect of voltage strength to resolution. Finally, the amplified products of the angiotensin-converting enzyme insertion/deletion polymorphism (190 and 490 bp DNA) were analyzed in 3.2 min without losing resolution under optimum voltage programming conditions, which were at least 75 times faster than conventional slab gel electrophoresis. In addition, the capillary gel electrophoresis method also successfully applied to the analysis of real human blood samples, although no polymorphism genes were detected by slab gel electrophoresis. Consequently, the developed voltage-programming capillary gel electrophoresis method with laser-induced fluorescence detection is an effective, rapid analysis technique for highly sensitive detection of disease-related specific DNA molecules.
Collapse
Affiliation(s)
- Nain Woo
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Su-Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong Ho Kang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.,Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Yang X, Guo X, Li S, Kong D, Liu Z, Yang J, Yuan L. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber. OPTICS LETTERS 2016; 41:1873-1876. [PMID: 27082367 DOI: 10.1364/ol.41.001873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.
Collapse
|