1
|
Raguraman R, Munshi A, Ramesh R. Interleukin-24: A Multidimensional Therapeutic for Treatment of Human Diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70013. [PMID: 40338095 PMCID: PMC12058350 DOI: 10.1002/wnan.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/28/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
The field of targeted therapy exploits the selective expression of therapeutic genes or proteins in diseased cells. While this area is gaining attraction in the context of cardiovascular diseases, diabetes, and other major health disorders, it has been most extensively explored in the realm of cancer. Targeted therapy has gained significance in the cancer field for its potential to address the limitations of conventional treatments and enhance patient survival. Interleukin-24 (IL-24), a versatile cytokine, has been evaluated as a cancer therapeutic in various preclinical cancer models and clinical trials, and has yielded promising results. Consequently, multiple studies highlight IL-24 as a viable "anti-cancer" therapeutic, with successful outcomes observed in combination therapies involving small molecule inhibitors, chemotherapeutic drugs, and radiation. Despite the evidence validating the tumor-suppressing properties of IL-24 in cancer models, there is a dearth of information regarding its role in other human diseases. The objective of this review is to offer a synopsis of the potential role of IL-24 in diverse human diseases. Additionally, it provides a comprehensive review of the progress in cancer therapy utilizing IL-24. Finally, from the author's standpoint, the review also addresses some of the limitations that impede the translational potential of IL-24-based therapy in clinical settings. It offers arguments in favor of incorporating IL-24-based targeted therapy as an effective and safer alternative for current treatment modalities, thereby highlighting its potential to revolutionize the field of therapeutics.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, and OU Health Stephenson Cancer CenterUniversity of Oklahoma Health SciencesOklahoma CityOklahomaUSA
| | - Anupama Munshi
- Department of Radiation Oncology, and OU Health Stephenson Cancer CenterUniversity of Oklahoma Health SciencesOklahoma CityOklahomaUSA
| | - Rajagopal Ramesh
- Department of Pathology, and OU Health Stephenson Cancer CenterUniversity of Oklahoma Health SciencesOklahoma CityOklahomaUSA
| |
Collapse
|
2
|
Coutinho LL, Femino EL, Gonzalez AL, Moffat RL, Heinz WF, Cheng RYS, Lockett SJ, Rangel MC, Ridnour LA, Wink DA. NOS2 and COX-2 Co-Expression Promotes Cancer Progression: A Potential Target for Developing Agents to Prevent or Treat Highly Aggressive Breast Cancer. Int J Mol Sci 2024; 25:6103. [PMID: 38892290 PMCID: PMC11173351 DOI: 10.3390/ijms25116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.
Collapse
Affiliation(s)
- Leandro L. Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Elise L. Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Ana L. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Rebecca L. Moffat
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - Robert Y. S. Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - M. Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Lisa A. Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| |
Collapse
|
3
|
Gao X, Chen F, Jin MY, Xu C. Triethyl amine as an effective reducing agent for sulfoxide deoxygenation. Org Biomol Chem 2024; 22:3215-3219. [PMID: 38567548 DOI: 10.1039/d4ob00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Enabled by triethyl amine (Et3N) and thionyl chloride (SOCl2), an efficient and practical protocol for deoxygenation of sulfoxide to sulfide was developed. This new method features a wide range of substrate scope, including diaryl, dialkyl and aryl alkyl substituted sulfoxides. Detailed mechanistic investigations reveal the crucial role played by Et3N as an electron-donating reductant rather than a hydrogen-atom donor.
Collapse
Affiliation(s)
- Xiaojing Gao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fumin Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
4
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
5
|
Hossain F, Ucar DA, Monticone G, Ran Y, Majumder S, Larter K, Luu H, Wyczechowska D, Heidari S, Xu K, Shanthalingam S, Matossian M, Xi Y, Burow M, Collins-Burow B, Del Valle L, Hicks C, Zabaleta J, Golde T, Osborne B, Miele L. Sulindac sulfide as a non-immune suppressive γ-secretase modulator to target triple-negative breast cancer. Front Immunol 2023; 14:1244159. [PMID: 37901240 PMCID: PMC10612326 DOI: 10.3389/fimmu.2023.1244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Giulia Monticone
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Yong Ran
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Kristina Larter
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Hanh Luu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Dorota Wyczechowska
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Soroor Heidari
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Yaguang Xi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Matthew Burow
- School of Medicine, Tulane University, New Orleans, LA, United States
| | | | - Luis Del Valle
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
- Department of Pathology, Louisiana State University Health Sciences Center - New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Todd Golde
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Barbara Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| |
Collapse
|
6
|
Miliński M, Staś M, Rok J, Beberok A, Wrześniok D. The effect of sulindac on redox homeostasis and apoptosis-related proteins in melanotic and amelanotic cells. Pharmacol Rep 2023; 75:995-1004. [PMID: 37195561 PMCID: PMC10374796 DOI: 10.1007/s43440-023-00493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs have been shown to inhibit the development of induced neoplasms. Our previous research demonstrated that the cytotoxicity of sulindac against melanoma cells is comparable to dacarbazine, the drug used in chemotherapy. The aim of this study was to investigate the mechanism of sulindac cytotoxicity on COLO 829 and C32 cell lines. METHODS The influence of sundilac on the activity of selected enzymes of the antioxidant system (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and the content of hydrogen peroxide as well as the level of proteins initiating (p53, Bax) and inhibiting (Bcl-2) apoptosis were measured in melanoma cells. RESULTS In melanotic melanoma cells, sulindac increased the activity of SOD and the content of H2O2 but decreased the activity of CAT and GPx. The level of p53 and Bax proteins rose but the content of Bcl-2 protein was lowered. Similar results were observed for dacarbazine. In amelanotic melanoma cells, sulindac did not cause an increase in the activity of measured enzymes or any significant changes in the level of apoptotic proteins. CONCLUSION The cytotoxic effect of sulindac in the COLO 829 cell line is connected to disturbed redox homeostasis by changing the activity of SOD, CAT, GPx, and level of H2O2. Sulindac also induces apoptosis by changing the ratio of the pro-apoptotic/anti-apoptotic protein. The presented studies indicate the possibility of developing target therapy against melanotic melanoma using sulindac.
Collapse
Affiliation(s)
- Maciej Miliński
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Monika Staś
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, School of Pharmacy With the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, School of Pharmacy With the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy With the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
| |
Collapse
|
7
|
Huang Y, Xue C, Wang L, Bu R, Mu J, Wang Y, Liu Z. Structural basis for substrate and inhibitor recognition of human multidrug transporter MRP4. Commun Biol 2023; 6:549. [PMID: 37217525 PMCID: PMC10202912 DOI: 10.1038/s42003-023-04935-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Human multidrug resistance protein 4 (hMRP4, also known as ABCC4), with a representative topology of the MRP subfamily, translocates various substrates across the membrane and contributes to the development of multidrug resistance. However, the underlying transport mechanism of hMRP4 remains unclear due to a lack of high-resolution structures. Here, we use cryogenic electron microscopy (cryo-EM) to resolve its near-atomic structures in the apo inward-open and the ATP-bound outward-open states. We also capture the PGE1 substrate-bound structure and, importantly, the inhibitor-bound structure of hMRP4 in complex with sulindac, revealing that substrate and inhibitor compete for the same hydrophobic binding pocket although with different binding modes. Moreover, our cryo-EM structures, together with molecular dynamics simulations and biochemical assay, shed light on the structural basis of the substrate transport and inhibition mechanism, with implications for the development of hMRP4-targeted drugs.
Collapse
Affiliation(s)
- Ying Huang
- Department Of Immunology And Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Chenyang Xue
- Department Of Immunology And Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Liangdong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Ruiqian Bu
- Department Of Immunology And Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jianqiang Mu
- Department Of Immunology And Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China.
| | - Zhongmin Liu
- Department Of Immunology And Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
8
|
De S, Chowdhury C. Substrate-Controlled Product Divergence in Iron(III)-Catalyzed Reactions of Propargylic Alcohols: Easy Access to Spiro-indenyl 1,4-Benzoxazines and 2-(2,2-Diarylvinyl)quinoxalines. Chemistry 2023; 29:e202203993. [PMID: 36651187 DOI: 10.1002/chem.202203993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
We report herein unprecedented cascade reactions of O-propargyl-N-tosyl-amino phenols with 10 mol% FeCl3 in DCE at room temperature for 0.67-3 h to form spiro-indenyl 1,4-benzoxazines with 38-89 % yield. Replacing the substrates' oxygen atom by a N-tosylimine group followed by treatment with the same catalyst and solvent at 80 °C produced 2-(2,2-diarylvinyl)quinoxalines in 12-20 h with up to 62 % yield. Mechanistic understanding provided an insight into the transformations. The use of simple substrates and an environmentally benign low-cost catalyst, broad substrate scope and tolerance of diverse functional groups makes the methodology inherently attractive.
Collapse
Affiliation(s)
- Sukanya De
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
9
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
10
|
Yi B, Cheng H, Wyczechowska D, Yu Q, Li L, Ochoa AC, Riker AI, Xi Y. Sulindac Modulates the Response of Proficient MMR Colorectal Cancer to Anti-PD-L1 Immunotherapy. Mol Cancer Ther 2021; 20:1295-1304. [PMID: 33879557 PMCID: PMC8295201 DOI: 10.1158/1535-7163.mct-20-0934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Immune-checkpoint inhibitor (ICI) therapy has been widely used to treat different human cancers, particularly advanced solid tumors. However, clinical studies have reported that ICI immunotherapy benefits only ∼15% of patients with colorectal cancer, specifically those with tumors characterized by microsatellite instability (MSI), a molecular marker of defective DNA mismatch repair (dMMR). For the majority of patients with colorectal cancer who carry proficient MMR (pMMR), ICIs have shown little clinical benefit. In this study, we examined the efficacy of sulindac to enhance the response of pMMR colorectal cancer to anti-PD-L1 immunotherapy. We utilized a CT26 syngeneic mouse tumor model to compare the inhibitory effects of PD-L1 antibody (Ab), sulindac, and their combination on pMMR colorectal cancer tumor growth. We found that mice treated with combination therapy showed a significant reduction in tumor volume, along with increased infiltration of CD8+ T lymphocytes in the tumor tissues. We also demonstrated that sulindac could downregulate PD-L1 by blocking NF-κB signaling, which in turn led to a decrease in exosomal PD-L1. Notably, PD-L1 Ab can be bound and consumed by exosomal PD-L1 in the blood circulation. Therefore, in combination therapy, sulindac downregulating PD-L1 leads to increased availability of PD-L1 Ab, which potentially improves the overall efficacy of anti-PD-L1 therapy. We also show that low-dose sulindac does not appear to have a systemic inhibitory effect on prostaglandin E2 (PGE2). In conclusion, our findings provide unique insights into the mechanism of action and efficacy for sulindac as an immunomodulatory agent in combination with anti-PD-L1 therapy for the treatment of pMMR colorectal cancer.
Collapse
Affiliation(s)
- Bin Yi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Hao Cheng
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Qingzhao Yu
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Li Li
- Ochsner Clinical School, University of Queensland, and Institute for Translational Research, Ochsner Clinic Foundation, New Orleans, Louisiana
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Anne Arundel Medical Center, Luminis Health, Annapolis, Maryland
| | - Yaguang Xi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
11
|
Baumeister T, Ingermann J, Marcazzan S, Fang HY, Oellinger R, Rad R, Engleitner T, Kleigrewe K, Anand A, Strangmann J, Schmid RM, Wang TC, Quante M. Anti-inflammatory chemoprevention attenuates the phenotype in a mouse model of esophageal adenocarcinoma. Carcinogenesis 2021; 42:1068-1078. [PMID: 33878160 DOI: 10.1093/carcin/bgab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 01/20/2023] Open
Abstract
Barrett´s Esophagus (BE) is the main known precursor condition of Esophageal Adenocarcinoma (EAC). BE is defined by the presence of metaplasia above the normal squamous columnar junction and has mainly been attributed to gastroesophageal reflux disease (GERD) and chronic reflux esophagitis. Thus, the rising incidence of EAC in the Western world is likely mediated by chronic esophageal inflammation, secondary to GERD in combination with environmental risk factors such as a Western diet and obesity. However, (at present) risk prediction tools and endoscopic surveillance have shown limited effectiveness. Chemoprevention as an adjunctive approach remains an attractive option to reduce the incidence of neoplastic disease. Here, we investigate the feasibility of chemopreventive approaches in BE and EAC via inhibition of inflammatory signaling in a transgenic mouse model of BE and EAC (L2-IL1B mice), with accelerated tumor formation on a high fat diet (HFD). L2-IL1B mice were treated with the IL-1 receptor antagonist Anakinra and the nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin or Sulindac. Interleukin-1b antagonism reduced tumor progression in L2-IL1B mice with or without a HFD, while both NSAIDs were effective chemoprevention agents in the accelerated HFD fed L2-IL1B mouse model. Sulindac treatment also resulted in a marked change in the immune profile of L2-IL-1B mice. In summary, anti-inflammatory treatment of HFD-treated L2-IL1B mice acted protectively on disease progression. These results from a mouse model of BE support results from clinical trials that suggest that anti-inflammatory medication may be effective in the chemoprevention of EAC.
Collapse
Affiliation(s)
- Theresa Baumeister
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Jonas Ingermann
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Sabrina Marcazzan
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Hsin-Yu Fang
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional Genomics, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany.,Institute of Molecular Oncology and Functional Genomics, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Karin Kleigrewe
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich
| | - Akanksha Anand
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Julia Strangmann
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Roland M Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Timothy C Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Quante
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany.,Innere Medizin II, Universitätskliniken Freiburg, Universität Freiburg, Germany
| |
Collapse
|
12
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
13
|
Ruan Y, Kim HN, Ogana H, Kim YM. Wnt Signaling in Leukemia and Its Bone Marrow Microenvironment. Int J Mol Sci 2020; 21:ijms21176247. [PMID: 32872365 PMCID: PMC7503842 DOI: 10.3390/ijms21176247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemia is an aggressive hematologic neoplastic disease. Therapy-resistant leukemic stem cells (LSCs) may contribute to the relapse of the disease. LSCs are thought to be protected in the leukemia microenvironment, mainly consisting of mesenchymal stem/stromal cells (MSC), endothelial cells, and osteoblasts. Canonical and noncanonical Wnt pathways play a critical role in the maintenance of normal hematopoietic stem cells (HSC) and LSCs. In this review, we summarize recent findings on the role of Wnt signaling in leukemia and its microenvironment and provide information on the currently available strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Correspondence:
| |
Collapse
|
14
|
Piazza GA, Ward A, Chen X, Maxuitenko Y, Coley A, Aboelella NS, Buchsbaum DJ, Boyd MR, Keeton AB, Zhou G. PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity. Drug Discov Today 2020; 25:1521-1527. [PMID: 32562844 DOI: 10.1016/j.drudis.2020.06.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Although numerous reports conclude that nonsteroidal anti-inflammatory drugs (NSAIDs) have anticancer activity, this common drug class is not recommended for long-term use because of potentially fatal toxicities from cyclooxygenase (COX) inhibition. Studies suggest the mechanism responsible for the anticancer activity of the NSAID sulindac is unrelated to COX inhibition but instead involves an off-target, phosphodiesterase (PDE). Thus, it might be feasible develop safer and more efficacious drugs for cancer indications by targeting PDE5 and PDE10, which are overexpressed in various tumors and essential for cancer cell growth. In this review, we describe the rationale for using the sulindac scaffold to design-out COX inhibitory activity, while improving potency and selectivity to inhibit PDE5 and PDE10 that activate cGMP/PKG signaling to suppress Wnt/β-catenin transcription, cancer cell growth, and tumor immunity.
Collapse
Affiliation(s)
- Gary A Piazza
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.
| | - Antonio Ward
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Xi Chen
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Yulia Maxuitenko
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Alex Coley
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Adam B Keeton
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
15
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
16
|
Zappavigna S, Cossu AM, Grimaldi A, Bocchetti M, Ferraro GA, Nicoletti GF, Filosa R, Caraglia M. Anti-Inflammatory Drugs as Anticancer Agents. Int J Mol Sci 2020; 21:ijms21072605. [PMID: 32283655 PMCID: PMC7177823 DOI: 10.3390/ijms21072605] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammation is strictly associated with cancer and plays a key role in tumor development and progression. Several epidemiological studies have demonstrated that inflammation can predispose to tumors, therefore targeting inflammation and the molecules involved in the inflammatory process could represent a good strategy for cancer prevention and therapy. In the past, several clinical studies have demonstrated that many anti-inflammatory agents, including non-steroidal anti-inflammatory drugs (NSAIDs), are able to interfere with the tumor microenvironment by reducing cell migration and increasing apoptosis and chemo-sensitivity. This review focuses on the link between inflammation and cancer by describing the anti-inflammatory agents used in cancer therapy, and their mechanisms of action, emphasizing the use of novel anti-inflammatory agents with significant anticancer activity.
Collapse
Affiliation(s)
- Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
| | - Anna Grimaldi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
| | - Giuseppe Andrea Ferraro
- Multidisciplinary Department of Medical and Dental Specialties, University of Campania, “Luigi Vanvitelli”, Plastic Surgery Unit, 80138 Naples, Italy; (G.A.F.); (G.F.N.)
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical and Dental Specialties, University of Campania, “Luigi Vanvitelli”, Plastic Surgery Unit, 80138 Naples, Italy; (G.A.F.); (G.F.N.)
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
- Consorzio Sannio Tech-AMP Biotec, 82030 Apollosa, Italy
- Correspondence:
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
| |
Collapse
|
17
|
Guerra RB, de Campos Fraga-Silva TF, Aguiar J, Oshiro PB, Holanda BB, Venturini J, Bannach G. Lanthanum(III) and neodymium(III) complexes with anti-inflammatory drug sulindac: Synthesis, characterization, thermal investigation using coupled techniques TG-FTIR, and in vitro biological studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Robinson RM, Reyes L, Duncan RM, Bian H, Strobel ED, Hyman SL, Reitz AB, Dolloff NG. Tuning isoform selectivity and bortezomib sensitivity with a new class of alkenyl indene PDI inhibitor. Eur J Med Chem 2019; 186:111906. [PMID: 31787362 DOI: 10.1016/j.ejmech.2019.111906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Protein disulfide isomerase (PDI, PDIA1) is an emerging therapeutic target in oncology. PDI inhibitors have demonstrated a unique propensity to selectively induce apoptosis in cancer cells and overcome resistance to existing therapies, although drug candidates have not yet progressed to the stage of clinical development. We recently reported the discovery of lead indene compound E64FC26 as a potent pan-PDI inhibitor that enhances the cytotoxic effects of proteasome inhibitors in panels of Multiple Myeloma (MM) cells and MM mouse models. An extensive medicinal chemistry program has led to the generation of a diverse library of indene-containing molecules with varying degrees of proteasome inhibitor potentiating activity. These compounds were generated by a novel nucleophilic aromatic ring cyclization and dehydration reaction from the precursor ketones. The results provide detailed structure activity relationships (SAR) around this indene pharmacophore and show a high degree of correlation between potency of PDI inhibition and bortezomib (Btz) potentiation in MM cells. Inhibition of PDI leads to ER and oxidative stress characterized by the accumulation of misfolded poly-ubiquitinated proteins and the induction of UPR biomarkers ATF4, CHOP, and Nrf2. This work characterizes the synthesis and SAR of a new chemical class and further validates PDI as a therapeutic target in MM as a single agent and in combination with proteasome inhibitors.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Leticia Reyes
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ravyn M Duncan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Haiyan Bian
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Eric D Strobel
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Sarah L Hyman
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Nathan G Dolloff
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
Ashraf Z, Mahmood T, Hassan M, Afzal S, Rafique H, Afzal K, Latip J. Dexibuprofen amide derivatives as potential anticancer agents: synthesis, in silico docking, bioevaluation, and molecular dynamic simulation. Drug Des Devel Ther 2019; 13:1643-1657. [PMID: 31190743 PMCID: PMC6524612 DOI: 10.2147/dddt.s178595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The amide derivatives of nonsteroidal anti-inflammatory drugs have been reported to possess antitumor activity. The present work describes the synthesis of dexibuprofen amide analogues (4a-j) as potential anticancer agents. METHODS The title amides (4a-j) were obtained by simple nucleophilic substitution reaction of dexibuprofen acid chloride with substituted amines in good yield and chemical structures were confirmed by FTIR, 1H NMR, 13C NMR and mass spectral data. RESULTS The brine shrimp lethality assay results showed that all of the synthesized compounds are non-toxic to shrimp larvae. The inhibitory effects on tumor growth were evaluated and it was observed that N-(2,5-dichlorophenyl)-2-(4-isobutylphenyl) propionamide (4e) and N-(2-chlorophenyl)-2-(4-isobutylphenyl) propionamide (4g) exhibited excellent antitumor activity compared to all other derivatives. The compound 4e bearing 2,5-dichloro substituted phenyl ring and 4g possesses 2-chloro substituted phenyl ring exhibited 100% inhibition of the tumor growth. The anticancer activity was evaluated against breast carcinoma cell line (MCF-7) and it was observed that derivative 4e exhibited excellent growth inhibition of cancer cells with IC50 value of 0.01±0.002 µm, which is better than the standard drugs. The docking studies against breast cancer type 1 susceptibility protein BRCA1 (PDBID 3K0H) exhibited good binding affinities, which are in good agreement with the wet lab results. The compounds 4e and 4g showed the binding energy values of -6.39 and -6.34 Kcal/mol, respectively. The molecular dynamic (MD) simulation was also carried out to evaluate the residual flexibility of the best docking complexes of compounds 4e and 4g. The MD simulation analysis assured that the 4e formed a more stable complex with the target protein than the 4g. The synthesized amide derivatives exhibited were devoid of gastrointestinal side effects and no cytotoxic effects against human normal epithelial breast cell line (MCF-12A) were found. CONCLUSION Based upon our wet lab and dry lab findings we propose that dexibuprofen analogue 4e may serve as a lead structure for the design of more potent anticancer drugs.
Collapse
Affiliation(s)
- Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Samina Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakria University, Multan, Pakistan
| | - Hummera Rafique
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Khurram Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakria University, Multan, Pakistan
| | - Jalifah Latip
- Department of Pharmaceutical Chemistry, School of Chemical Sciences & Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia,
| |
Collapse
|
20
|
Li S, Li G, Zhang T, Li J, Zhao Q, Zhang B, Wang R, Zhou R, Si J, Gan L, Liu Y, Zhang H, Liu B. Co-SLD suppressed the growth of oral squamous cell carcinoma via disrupting mitochondrial function. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1746-1757. [PMID: 31062618 DOI: 10.1080/21691401.2019.1608218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sirui Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Guo Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Taofeng Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Jili Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Baoping Zhang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rui Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Scheurer MJJ, Brands RC, El-Mesery M, Hartmann S, Müller-Richter UDA, Kübler AC, Seher A. The Selection of NFκB Inhibitors to Block Inflammation and Induce Sensitisation to FasL-Induced Apoptosis in HNSCC Cell Lines Is Critical for Their Use as a Prospective Cancer Therapy. Int J Mol Sci 2019; 20:ijms20061306. [PMID: 30875877 PMCID: PMC6471923 DOI: 10.3390/ijms20061306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 02/02/2023] Open
Abstract
Inflammation is a central aspect of tumour biology and can contribute significantly to both the origination and progression of tumours. The NFκB pathway is one of the most important signal transduction pathways in inflammation and is, therefore, an excellent target for cancer therapy. In this work, we examined the influence of four NFκB inhibitors—Cortisol, MLN4924, QNZ and TPCA1—on proliferation, inflammation and sensitisation to apoptosis mediated by the death ligand FasL in the HNSCC cell lines PCI1, PCI9, PCI13, PCI52 and SCC25 and in the human dermal keratinocyte cell line HaCaT. We found that the selection of the inhibitor is critical to ensure that cells do not respond by inducing counteracting activities in the context of cancer therapy, e.g., the extreme IL-8 induction mediated by MLN4924 or FasL resistance mediated by Cortisol. However, TPCA1 was qualified by this in vitro study as an excellent therapeutic mediator in HNSCC by four positive qualities: (1) proliferation was inhibited at low μM-range concentrations; (2) TNFα-induced IL-8 secretion was blocked; (3) HNSCC cells were sensitized to TNFα-induced cell death; and (4) FasL-mediated apoptosis was not disrupted.
Collapse
Affiliation(s)
| | - Roman Camillus Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97080 Würzburg, Germany.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura E-35516, Egypt.
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany.
| | | | - Alexander Christian Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.
| |
Collapse
|
22
|
Sarkar K, Khasimbi S, Mandal S, Dastidar P. Rationally Developed Metallogelators Derived from Pyridyl Derivatives of NSAIDs Displaying Anti-Inflammatory and Anticancer Activities. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30649-30661. [PMID: 30118200 DOI: 10.1021/acsami.8b09872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal-ligand coordination involving hydrogen-bond-functionalized ligands was employed rationally to get an easy access to a series of metallogelators derived from 3-pyridyl derivatives of nonsteroidal anti-inflammatory drugs [e.g., ibuprofen, sulindac, and flurbiprofen designated as 3-pyIBU, 3-pySUL, and 3-pyFLR, respectively] and biogenic metal centers [Zn(II), Cu(II), Mn(II), and Ag(I)]. A total of 13 metallogels (MG1-MG13) were obtained by allowing the ligands and the metal salts to react in dimethyl sulfoxide (DMSO)/water at room temperature. A slightly different solvent system (DMSO/water/MeOH) afforded four crystalline coordination complexes of 3-pyIBU, namely, [{Cu(3-pyIBU)4(DMSO)2}(NO3)2] (CC1), [{Ag(3-pyIBU)2}(BF4)] (CC2), [{Ag(3-pyIBU)2}(ClO4)] (CC3), and [{Cu(3-pyIBU)4(CH3OH)2}(OTf)] (CC4), which were fully characterized by single-crystal X-ray diffraction. However, none of these coordination complexes produced metallogels-the results corroborated well with the rationale, based on which the metallogelators were obtained. Two selected metallogels (MG3 and MG9) could be leached out from the corresponding metallogels to the bulk solvent to the extent of 51 and 59%, respectively after 24 h of incubation at 37 °C, indicating their plausible use in topical application. Moreover, one of the selected metallogelators, i.e., MG9, displayed anti-inflammatory response and was able to inhibit the migration of highly aggressive human breast cancer cells MDA-MB-231, suggesting its plausible use as anticancer agent.
Collapse
Affiliation(s)
- Koushik Sarkar
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Kolkata 700032 , India
| | - Shaik Khasimbi
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Kolkata 700032 , India
| | - Souvik Mandal
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Kolkata 700032 , India
| | - Parthasarathi Dastidar
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Kolkata 700032 , India
| |
Collapse
|
23
|
Lagarde N, Rey J, Gyulkhandanyan A, Tufféry P, Miteva MA, Villoutreix BO. Online structure-based screening of purchasable approved drugs and natural compounds: retrospective examples of drug repositioning on cancer targets. Oncotarget 2018; 9:32346-32361. [PMID: 30190791 PMCID: PMC6122352 DOI: 10.18632/oncotarget.25966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Drug discovery is a long and difficult process that benefits from the integration of virtual screening methods in experimental screening campaigns such as to generate testable hypotheses, accelerate and/or reduce the cost of drug development. Current drug attrition rate is still a major issue in all therapeutic areas and especially in the field of cancer. Drug repositioning as well as the screening of natural compounds constitute promising approaches to accelerate and improve the success rate of drug discovery. We developed three compounds libraries of purchasable compounds: Drugs-lib, FOOD-lib and NP-lib that contain approved drugs, food constituents and natural products, respectively, that are optimized for structure-based virtual screening studies. The three compounds libraries are implemented in the MTiOpenScreen web server that allows users to perform structure-based virtual screening computations on their selected protein targets. The server outputs a list of 1,500 molecules with predicted binding scores that can then be processed further by the users and purchased for experimental validation. To illustrate the potential of our service for drug repositioning endeavours, we selected five recently published drugs that have been repositioned in vitro and/or in vivo on cancer targets. For each drug, we used the MTiOpenScreen service to screen the Drugs-lib collection against the corresponding anti-cancer target and we show that our protocol is able to rank these drugs within the top ranked compounds. This web server should assist the discovery of promising molecules that could benefit patients, with faster development times, and reduced costs and risk.
Collapse
Affiliation(s)
- Nathalie Lagarde
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, INSERM UMR-S 973, Paris, France
- INSERM, U973, Paris, France
| | - Julien Rey
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, INSERM UMR-S 973, Paris, France
- INSERM, U973, Paris, France
| | - Aram Gyulkhandanyan
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, INSERM UMR-S 973, Paris, France
- INSERM, U973, Paris, France
| | - Pierre Tufféry
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, INSERM UMR-S 973, Paris, France
- INSERM, U973, Paris, France
| | - Maria A. Miteva
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, INSERM UMR-S 973, Paris, France
- INSERM, U973, Paris, France
| | - Bruno O. Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, INSERM UMR-S 973, Paris, France
- INSERM, U973, Paris, France
| |
Collapse
|
24
|
Mathew B, Snowden TS, Connelly MC, Guy RK, Reynolds RC. A small diversity library of α-methyl amide analogs of sulindac for probing anticancer structure-activity relationships. Bioorg Med Chem Lett 2018; 28:2136-2142. [PMID: 29776741 DOI: 10.1016/j.bmcl.2018.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have a variety of potential indications that include management of pain and inflammation as well as chemoprevention and/or treatment of cancer. Furthermore, a specific form of ibuprofen, dexibuprofen or the S-(+) form, shows interesting neurological activities and has been proposed for the treatment of Alzheimer's disease. In a continuation of our work probing the anticancer activity of small sulindac libraries, we have prepared and screened a small diversity library of α-methyl substituted sulindac amides in the profen class. Several compounds of this series displayed promising activity compared with a lead sulindac analog.
Collapse
Affiliation(s)
- Bini Mathew
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| | - Timothy S Snowden
- Department of Chemistry and Biochemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Michele C Connelly
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mailstop 1000, Memphis, TN 38105-3678, USA
| | - R Kiplin Guy
- The University of Kentucky College of Pharmacy, 214H BioPharm Complex, Lexington, KY 40536-0596, USA
| | - Robert C Reynolds
- Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Fletcher R, Wang YJ, Schoen RE, Finn OJ, Yu J, Zhang L. Colorectal cancer prevention: Immune modulation taking the stage. Biochim Biophys Acta Rev Cancer 2018; 1869:138-148. [PMID: 29391185 DOI: 10.1016/j.bbcan.2017.12.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
Abstract
Prevention or early detection is one of the most promising strategies against colorectal cancer (CRC), the second leading cause of cancer death in the US. Recent studies indicate that antitumor immunity plays a key role in CRC prevention. Accumulating evidence suggests that immunosurveillance represents a critical barrier that emerging tumor cells have to overcome in order to sustain the course of tumor development. Virtually all of the agents with cancer preventive activity have been shown to have an immune modulating effect. A number of immunoprevention studies aimed at triggering antitumor immune response against early lesions have been performed, some of which have shown promising results. Furthermore, the recent success of immune checkpoint blockade therapy reinforces the notion that cancers including CRC can be effectively intervened via immune modulation including immune normalization, and has stimulated various immune-based combination prevention studies. This review summarizes recent advances to help better harness the immune system in CRC prevention.
Collapse
Affiliation(s)
- Rochelle Fletcher
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Yi-Jun Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Robert E Schoen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Olivera J Finn
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Study of molecular structure, anharmonic vibrational dynamic and electronic properties of sulindac using spectroscopic techniques integrated with quantum chemical calculations. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Sakakibara K, Sato T, Kufe DW, VonHoff DD, Kawabe T. CBP501 induces immunogenic tumor cell death and CD8 T cell infiltration into tumors in combination with platinum, and increases the efficacy of immune checkpoint inhibitors against tumors in mice. Oncotarget 2017; 8:78277-78288. [PMID: 29108228 PMCID: PMC5663279 DOI: 10.18632/oncotarget.20968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
CBP501, a calmodulin-binding peptide, is an anti-cancer drug candidate and functions as an enhancer of platinum uptake into cancer cells. Here we show that CBP501 promotes immunogenic cell death (ICD) in combination with platinum agents. CBP501 enhanced a clinically relevant low dose of cisplatin (CDDP) in vitro as evidenced by upregulation of ICD markers, including cell surface calreticulin exposure and release of high-mobility group protein box-1. Synergistic induction of ICD by CDDP plus CBP501 as compared to CDDP alone was confirmed in the well-established vaccination assay. Furthermore, cotreatment of CDDP plus CBP501 significantly reduced the tumor growth and upregulated the percentage of tumor infiltrating CD8+ T cell in vivo. Importantly, the antitumor effect of CDDP plus CBP501 was significantly reduced by anti-CD8 antibody treatment. Based on this novel effect of CBP501, we analyzed the combination treatment with immune checkpoint inhibitors in vivo. Mice treated with CBP501 in combination with CDDP and anti-PD-1 or anti-PD-L1 showed an additive antitumor effect. These results support the conclusion that CBP501 enhances CDDP-induced ICD in vitro and in vivo. The findings also support the further clinical development of the CBP501 for enhancing the antitumor activity of immune checkpoint inhibitors in combination with CDDP.
Collapse
Affiliation(s)
| | | | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel D VonHoff
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | | |
Collapse
|
28
|
Szadvari I, Krizanova O, Babula P. Athymic nude mice as an experimental model for cancer treatment. Physiol Res 2017; 65:S441-S453. [PMID: 28006926 DOI: 10.33549/physiolres.933526] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Athymic nude mice, a murine strain bearing spontaneous deletion in the Foxn1 gene that causes deteriorated or absent thymus (which results in inhibited immune system with reduction of number of T cells), represent a widely used model in cancer research having long lasting history as a tool for preclinical testing of drugs. The review describes three models of athymic mice that utilize cancer cell lines to induce tumors. In addition, various methods that can be applied in order to evaluate activity of anticancer agents in these models are shown and discussed. Although each model has certain disadvantages, they are still considered as inevitable instruments in many fields of cancer research, particularly in finding new drugs that would more effectively combat the cancer disease or enhance the use of current chemotherapy. Finally, the review summarizes strengths and weaknesses as well as future perspectives of the athymic nude mice model in cancer research.
Collapse
Affiliation(s)
- I Szadvari
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | |
Collapse
|
29
|
Yue F, Li W, Zou J, Jiang X, Xu G, Huang H, Liu L. Spermidine Prolongs Lifespan and Prevents Liver Fibrosis and Hepatocellular Carcinoma by Activating MAP1S-Mediated Autophagy. Cancer Res 2017; 77:2938-2951. [PMID: 28386016 DOI: 10.1158/0008-5472.can-16-3462] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 03/31/2017] [Indexed: 12/23/2022]
Abstract
Liver fibrosis and hepatocellular carcinoma (HCC) have worldwide impact but continue to lack safe, low cost, and effective treatments. In this study, we show how the simple polyamine spermidine can relieve cancer cell defects in autophagy, which trigger oxidative stress-induced cell death and promote liver fibrosis and HCC. We found that the autophagic marker protein LC3 interacted with the microtubule-associated protein MAP1S, which positively regulated autophagy flux in cells. MAP1S stability was regulated in turn by its interaction with the histone deacetylase HDAC4. Notably, MAP1S-deficient mice exhibited a 20% reduction in median survival and developed severe liver fibrosis and HCC under stress. Wild-type mice or cells treated with spermidine exhibited a relative increase in MAP1S stability and autophagy signaling via depletion of cytosolic HDAC4. Extending recent evidence that orally administered spermidine can extend lifespan in mice, we determined that life extension of up to 25% can be produced by lifelong administration, which also reduced liver fibrosis and HCC foci as induced by chemical insults. Genetic investigations established that these observed impacts of oral spermidine administration relied upon MAP1S-mediated autophagy. Our findings offer a preclinical proof of concept for the administration of oral spermidine to prevent liver fibrosis and HCC and potentially extend lifespan. Cancer Res; 77(11); 2938-51. ©2017 AACR.
Collapse
Affiliation(s)
- Fei Yue
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Wenjiao Li
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Jing Zou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Xianhan Jiang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas.,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guibin Xu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas.,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hai Huang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Leyuan Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas. .,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
30
|
Karmakar S, Reilly KM. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2016; 6:45-60. [PMID: 28001089 DOI: 10.2217/cns-2016-0024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.
Collapse
Affiliation(s)
- Souvik Karmakar
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Karlyne M Reilly
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| |
Collapse
|